PV Temperature Prediction Incorporating the Effect of Humidity and Cooling Due to Seawater Flow and Evaporation on Modules Simulating Floating PV Conditions
Abstract
:1. Introduction
- The Effect of RH on Tpv
- 2.
- The Combined effect of wind and water on Tpv
- 3.
- Spectral effects
- 4.
- Atmospheric effects
- 5.
- Tpv modeling in FPV
FPV Research Gaps and Objectives
2. Experimental Procedure for the Measurement of the Tpv Profiles on the Seashore and Inland
3. Theoretical Analysis of Tpv Profiles on the Seashore vs. Inland
3.1. Steady-State Tpv Prediction Model
- RH1 (phu,1% moles of dry air and qhu,1% moles of H2O), with phu,1 + qhu,1 = 1.
- RH2 (phu,2% moles of dry air and qhu,2% moles of H2O), with phu,2 + qhu,2 = 1.
3.2. Transient Effects in Tpv Due to Water Splashing on the PV Module
3.2.1. Seawater Layer Thickness
3.2.2. Tpv(t) Profile Taking into Consideration the s.w. Layer on the PV
3.3. Evaporation Rate of Seawater Layer from the Module and the PV Cooling Effect
4. Results and Analysis
4.1. Experimental Tpv(t) Profiles on the Seashore vs. Inland and Interpretation of the Seawater Splashing Effect
4.2. Seawater Evaporation from the PV Module and Its Effect on Tpv
4.3. Steady-State Tpv Prediction by the Proposed Model Taking into Account RH, Ta, Ts.w.
- The relative concentration is 0.98565% g-mol dry air and 0.014345% g-mol H2O in the humid air at RHs.e. = 55%.
- The relative concentration is, correspondingly, 0.9885% g-mol dry air and 0.01147% g-mol H2O in the humid air at RHinl = 45%.
4.4. Comparison with Other Tpv Prediction Models
5. Discussion
6. Conclusions
- Tpv depends on the humidity and decreases as hu increases from low to medium values in a clear sky. For relative humidity 55% on the seashore compared to 45% inland, the steady-state Tpv was both predicted and measured about 18% lower on the seashore. This corresponds to a 4% higher efficiency on the seashore compared to inland, which is mainly attributed to the difference in humidity as vw, IT, and Ta were almost the same on the seashore and inland sites.
- The transient Tpv(t) profile depends on the pattern of seawater splashing on the module. After seawater splashing, a steep temperature drop of 22% lasting for 2 s was measured and theoretically confirmed. The drop depends on the seawater temperature and the mode it splashes on the modules. This reached 52% when the pattern of the s.w. flow on the module was three shots of 25 mL/s per unit width of the module.
- Tpv is affected by the subsequent seawater layer evaporation on the module which caused an overall decrease between 20 and 40% (depending on the flow pattern) compared to the steady-state value on the seashore before the seawater splash. This decrease lasted for 60–100 s, depending on the seawater flow rate and mode of splashing, which was theoretically predicted and experimentally confirmed.
- The Tpv profiles on the seashore with seawater splashing on the modules were 35–51% lower compared to the steady-state inland values.
- Taking into consideration the effect of humidity as well as the seawater cooling and evaporation on the modules, it was estimated that the PV efficiency on the seashore was 11.5% higher than inland.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
ANN | Artificial neural network |
FPV | Floating PV |
IT | Global solar radiation intensity on the PV plane (W/m2) |
IT,SOC | Global solar radiation intensity at SOC conditions, 800 W/m2 |
IT,ref | Reference solar irradiance equal to 103 W/m2 |
L | Length of the PV module in the direction of the seawater flow on the front side (m) |
Nu | Nusselt number of the air flow either in the front or back side of the PV module |
Pm | Peak power of a PV module (W) |
Pra, Prs.w | Prandtl number of air and water (dimensionless) |
Q | Flow rate (mL/s) |
RH | Relative humidity |
Re | Reynolds number |
SOC | Standard operating conditions (IT = 800 W/m2, Ta = 20 °C, vw = 1 m/s) |
STC | Standard test conditions (IT = 1000 W/m2, Tpv = 25 °C, air mass AM1.5) |
Tpv, Tf, | Steady-state PV module temperature and PV front side temperature, respectively, considered equal in this paper |
Ta | Ambient temperature (°C or K as specified) |
Tpv(t) | PV module temperature at transient conditions at time t |
Ts.w. | Seawater temperature (°C) |
Tw | Freshwater temperature (°C) |
Ub−a, Uc−s.w. | Heat losses coefficients due to convection and IR radiation at the back side of the PV module (W/m2K), equal to hc,b + hr,b |
Uev | An empirical evaporation coefficient (kg/m2h) |
Uf−a, Us.w.−a | Heat losses coefficients due to convection and IR radiation at the front side of the PV module (W/m2K), equal to hc,f + hr,f |
Upv | The overall heat losses coefficient in a PV (W/m2K), equal to Uf + Ub |
b | The width of the string of PV cells in a module on which the water flows (m) |
hc,a | Heat convection coefficient with dry air as coolant (W/m2K) |
hc,b | Heat convection coefficient from PV back surface to air (W/m2K) |
hc,f | Heat convection coefficient from PV glass to air (W/m2K) |
hc,s.w. | Heat convection coefficient with s.w. as coolant (W/m2K) |
hcr | The critical thickness of the water layer on the module (m) |
hev | Evaporation heat (J/g) |
hr,b | Radiative heat coefficient from the PV back side to environment (W/m2K) |
hr,f | Radiative heat coefficient from the front PV side (W/m2K) |
hu | Humidity (kg H2O/kg dry air) |
hus | Humidity ratio at saturation |
ki | Thermal conductivity of material i (W/mK) |
mev | Rate of mass evaporation (g/s) |
(mc)ef, (mc)i | Effective heat capacity of the PV cell or module and the heat capacity of a material i |
phu, qhu | Moles of dry air in the environment (%) Moles of H2O in the environment (%) |
q | The heat rate required for the evaporation (W) |
s.w. | Seawater |
u(y), uav | Seawater layer velocity at distance y off the module in an axis normal to its surface and the average speed, respectively |
vw | Wind velocity (m/s) |
Δx | Seawater layer thickness on a PV module (m) |
β | PV module inclination angle with reference to horizontal |
δtev | The time the seawater layer evaporates |
ηpv | PV module efficiency |
νf | Kinematic viscosity of the fluid (air, water) at temperature Tf (m2/s) |
σ | Surface tension (N/m) |
τ, τs.w., τg | Temperature profile time constants. For the module, the seawater layer and the glass cover |
References
- Vats, K.; Tiwari, G.N. Performance evaluation of a building integrated semitransparent photovoltaic thermal system for roof and façade. Energy Build. 2012, 45, 211–218. [Google Scholar] [CrossRef]
- Ghosh, A.; Sarmah, N.; Sundaram, S.; Mallick, T.K. Numerical studies of thermal comfort for semi-transparent building integrated photovoltaic (BIPV)-vacuum glazing system. Sol. Energy 2019, 190, 608–616. [Google Scholar] [CrossRef]
- Assoa, Y.B.; Gaillard, L.; Menezo, C.; Negri, N.; Sauzedde, F. Dynamic prediction of a building integrated photovoltaic system thermal behaviour. Appl. Energy 2018, 214, 73–82. [Google Scholar] [CrossRef]
- Kaplanis, S.; Kaplani, E. A New Dynamic Model to Predict Transient and Steady State PV Temperatures Taking into Account the Environmental Conditions. Energies 2019, 12, 2. [Google Scholar] [CrossRef] [Green Version]
- Kaldellis, J.; Kapsali, M.; Kavadias, K. Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece. Renew. Energy 2014, 66, 612–624. [Google Scholar] [CrossRef]
- Lobera, D.T.; Valkealahti, S. Dynamic thermal model of solar PV systems under varying climatic conditions. Sol. Energy 2013, 93, 183–194. [Google Scholar] [CrossRef]
- Luketa-Hanlin, A.; Stein, J.S. Improvement and Validation of a Transient Model to Predict Photovoltaic Module Temperature; Sandia National Laboratories: Albuquerque, NM, USA, 2012.
- Kaplani, E.; Kaplanis, S. Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction, module orientation and inclination. Sol. Energy 2014, 107, 443–460. [Google Scholar] [CrossRef] [Green Version]
- Kaplani, E.; Kaplanis, S. Dynamic Electro-Thermal PV Temperature and Power Output Prediction Model for Any PV Geometries in Free-Standing and BIPV Systems Operating under Any Environmental Conditions. Energies 2020, 13, 4743. [Google Scholar] [CrossRef]
- Kaplanis, S.; Kaplani, E.; Kaldellis, J.K. PV temperature and performance prediction in free-standing, BIPV and BAPV incorporating the effect of temperature and inclination on the heat transfer coefficients and the impact of wind, efficiency and ageing. Renew. Energy 2022, 181, 235–249. [Google Scholar] [CrossRef]
- Faiman, D. Assessing the outdoor operating temperature of photovoltaic modules. Prog. Photovolt. Res. Appl. 2008, 16, 307–315. [Google Scholar] [CrossRef]
- Ciulla, G.; Lo Brano, V.; Moreci, E. Forecasting the cell temperature of PV modules with an adaptive system. Int. J. Photoenergy 2013, 2013, 192854. [Google Scholar] [CrossRef]
- Schwingshackl, C.; Petitta, M.; Wagner, J.E.; Belluardo, G. Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation. Energy Procedia 2013, 40, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Skoplaki, E.; Boudouvis, A.G.; Palyvos, J.A. A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Sol. Energy Mater. Sol. Cells 2008, 92, 1393–1402. [Google Scholar] [CrossRef]
- TamizhMani, G.; Ji, L.; Tang, Y.; Petacci, L.; Osterwald, C. Photovoltaic module thermal/wind performance: Long term monitoring and model development for energy rating. In Proceedings of the NCPV and Solar Program Review Meeting Proceedings, Denver, CO, USA, 24–26 March 2003; pp. 936–939. [Google Scholar]
- Kamuyu, W.C.L.; Lim, J.R.; Won, C.S. Prediction model of Photovoltaic Module Temperature for Power Performance of Floating PVs. Energies 2018, 11, 447. [Google Scholar] [CrossRef] [Green Version]
- Graditi, G.; Ferlito, S.; Adinolfi, G.; Tina, G.M.; Ventura, C. Energy yield estimation of thin-film photovoltaic plants by using physical approach and artificial neural networks. Solar Energy 2016, 130, 232–243. [Google Scholar] [CrossRef]
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world—A review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Hacke, P.; Spataru, S.; Terwilliger, K.; Perrin, G.; Glick, S.; Kurtz, S.; Wohlgemuth, J. Accelerated testing and modeling of potential-induced degradation as a function of temperature and relative humidity. IEEE J. Photovolt. 2015, 5, 1549–1553. [Google Scholar] [CrossRef]
- Kempe, M.D.; Wohlgemuth, J.H. Evaluation of temperature and humidity on PV module component degradation. In Proceedings of the IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, 16–21 June 2013; pp. 0120–0125. [Google Scholar] [CrossRef]
- Park, N.C.; Oh, W.W.; Kim, D.H. Effect of Temperature and Humidity on the Degradation Rate of Multicrystalline Silicon Photovoltaic Module. Int. J. Photoenergy 2013, 2013, 925280. [Google Scholar] [CrossRef] [Green Version]
- Kaplanis, S.; Kaplani, E.; Borza, P.N. PV defects identification through a synergistic set of non-destructive testing (NDT) techniques. Sensors 2023, 23, 3016. [Google Scholar] [CrossRef]
- Cazzaniga, R.; Rosa-Clot, M. The booming of floating PV. Sol. Energy 2021, 219, 3–10. [Google Scholar] [CrossRef]
- Rosa-Clot, M.; Tina, G.M.; Nizetic, S. Floating photovoltaic plants and wastewater basins: An Australian project. Energy Procedia 2017, 134, 664–674. [Google Scholar] [CrossRef]
- Tina, G.M.; Scavo, F.B.; Merlo, L.; Bizzarri, F. Comparative analysis of monofacial and bifacial photovoltaic modules for floating power plants. Appl. Energy 2021, 281, 116084. [Google Scholar] [CrossRef]
- Sahu, A.; Yadav, N.; Sudhakar, K. Floating photovoltaic power plant: A review. Renew. Sustain. Energy Rev. 2016, 66, 815–824. [Google Scholar] [CrossRef]
- Wild, M.; Folini, D.; Hakuba, M.Z.; Schär, C.; Seneviratne, S.I.; Kato, S.; Rutan, D.; Ammann, C.; Wood, E.F.; König-Langlo, G. The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models. Clim. Dyn. 2015, 44, 3393–3429. [Google Scholar] [CrossRef] [Green Version]
- Lindfors, A.V.; Hertsberg, A.; Riihela, A.; Carlund, T.; Trentmann, J.; Mueller, R. On the Land-Sea Contrast in the Surface Solar Radiation (SSR) in the Baltic Region. Remote Sens. 2020, 12, 3509. [Google Scholar] [CrossRef]
- Govardhanan, M.S.; Kumaraguruparan, G.; Kameswari, M.; Saravanan, R.; Vivar, M.; Srithar, K. Photovoltaic Module with Uniform Water Flow on Top Surface. Int. J. Photoenergy 2020, 2020, 8473253. [Google Scholar] [CrossRef]
- Kerzika, A.H.; Barimah, B.; Aurelien, K.K.C. Photovoltaic Solar Panel Cooled with Runoff Water. Int. J. Energy Eng. 2020, 10, 41–45. [Google Scholar]
- Sukarno, K.; Hamid, A.S.A.; Razali, H.; Dayou, J. Evaluation on cooling effect on solar PV power output using Laminar H2O surface method. Int. J. Renew. Energy Res. 2017, 7, 1213–1217. [Google Scholar]
- Iqbal, S.; Afzal, S.; Mazhar, A.U.; Anjum, H.; Diyyan, A. Effect of Water Cooling on the Energy Conversion Efficiency of PV Cell. Am. Sci. Res. J. Eng. Technol. Sci. 2016, 20, 122–128. [Google Scholar]
- Nižetić, S.; Čoko, D.; Yadav, A.; Grubišić-Čabo, F. Water spray cooling technique applied on a photovoltaic panel: The performance response. Energy Convers. Manag. 2016, 108, 287–296. [Google Scholar] [CrossRef]
- Bahaidarah, H.M.S. Experimental performance evaluation and modelling of jet impingement cooling for thermal management of photovoltaics. Sol. Energy 2016, 135, 605–617. [Google Scholar] [CrossRef]
- Bahaidarah, H.; Subhan, A.; Gandhidasan, P.; Rehman, S. Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions. Energy 2013, 59, 445–453. [Google Scholar] [CrossRef]
- Chandrasekhar, M.; Suresh, S.; Senthilkumar, T.; Karthikeyan, M.G. Passive cooling of standalone flat PV module with cotton wick structures. Energy Convers. Manag. 2013, 71, 43–50. [Google Scholar] [CrossRef]
- Alami, A.H. Effects of evaporative cooling on efficiency of photovoltaic modules. Energy Convers. Manag. 2014, 77, 668–679. [Google Scholar] [CrossRef]
- Kumar, M.; Niyaz, H.M.; Gupta, R. Challenges and opportunities towards the development of floating photovoltaic systems. Sol. Energy Mater. Sol. Cells 2021, 233, 111408. [Google Scholar] [CrossRef]
- Trapani, K.; Millar, D.L. The thin film flexible floating PV (T3F-PV) array: The concept and development of the prototype. Renew. Energy 2014, 71, 43–50. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Q.; Lin, H.; Li, H.; Sun, Q.; Wennersten, R. Power Generation Efficiency and Prospects of Floating Photovoltaic Systems. Energy Procedia 2017, 105, 1136–1142. [Google Scholar] [CrossRef]
- Dorenkamper, M.; Wahed, A.; Kumar, A.; de Jong, M.; Kroon, J.; Reindl, T. The cooling effect of floating PV in two different climate zones: A comparison of field test data from the Netherlands and Singapore. Sol. Energy 2021, 219, 15–23. [Google Scholar] [CrossRef]
- Bonkaney, A.L.; Madougou, S.; Adamou, R. Impact of Climatic Parameters on the Performance of Solar Photovoltaic (PV) Module in Niamey. Smart Grid Renew. Energy 2017, 8, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Almaktar, M.; Rahman, H.A.; Hassan, M.Y.; Rahman, S. Climate Based Empirical Model for PV Module Temperature Estimation in Tropical Environment. Appl. Sol. Energy 2013, 49, 192–201. [Google Scholar] [CrossRef]
- Liu, H.; Krishna, V.; Leung, J.L.; Reindl, T.; Zhao, L. Field experience and performance analysis of floating PV technologies in the tropics. Progr. Photovolt. Res. Appl. 2018, 26, 957–967. [Google Scholar] [CrossRef]
- Luo, W.; Isukapalli, S.N.; Vinayagam, L.; Ting, S.A.; Pravettoni, M.; Reindl, T.; Kumar, A. Performance loss rates of floating photovoltaic installations in the tropics. Sol. Energy 2021, 219, 58–64. [Google Scholar] [CrossRef]
- Kjeldstad, T.; Lindholm, D.; Marstein, E.; Selj, J. Cooling of floating photovoltaics and the importance of water temperature. Sol. Energy 2021, 218, 544–551. [Google Scholar] [CrossRef]
- Lindholm, D.; Kjeldstad, T.; Selj, J.; Marstein, E.S.; Fjær, H.G. Heat loss coefficients computed for floating PV modules. Prog. Photovolt. Res. Appl. 2021, 29, 1262–1273. [Google Scholar] [CrossRef]
- Niyaz, H.M.; Kumar, M.; Gupta, R. Estimation of module temperature for water-base photovoltaic systems. J. Renew. Sustain. Energy 2021, 13, 053705. [Google Scholar] [CrossRef]
- Golroodbari, S.Z.; van Sark, W. Simulation of performance differences between offshore and land-based photovoltaic systems. Prog. Photovolt. Res. Appl. 2020, 28, 873–886. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T. Effect of humidity on Photovoltaic Performance based on experimental study. Int. J. Appl. Eng. Res. 2015, 10, 43572–43577. [Google Scholar]
- Chaicham, M.T.; Kazem, H.A. Experimental analysis of solar intensity on photovoltaic in hot and humid weather conditions. Int. J. Sci. Eng. Res. 2016, 7, 91–96. [Google Scholar]
- Choi, J.H.; Hyun, J.H.; Lee, W.; Bhang, B.-G.; Min, Y.K.; Ahn, H.-K. Power performance of high density photovoltaic module using energy balance model under high humidity environment. Sol. Energy 2021, 219, 50–57. [Google Scholar] [CrossRef]
- Dirnberger, D.; Blackburn, G.; Müller, B.; Reise, C. On the impact of solar spectral irradiance on the yield of different PV technologies. Sol. Energy Mater. Sol. Cells 2015, 132, 431–442. [Google Scholar] [CrossRef]
- Tashtoush, B.; Al-Oqool, A. Factorial analysis and experimental study of water-based cooling system effect on the performance of photovoltaic module. Int. J. Environ. Sci. Technol. 2019, 16, 3645–3656. [Google Scholar] [CrossRef]
- Lienhard, J.H., IV; Lienhard, J.H., V. A Heat Transfer Textbook, 3rd ed.; Phlogiston Press: Cambridge MA, USA, 2003. [Google Scholar]
- White, F.M. Heat and Mass Transfer; Addison-Wesley Publishing Co.: Boston, MA, USA, 1988. [Google Scholar]
- Ilha, A.; Doria, M.M.; Aibe, V.Y. Treatment of the Time Dependent Residual Layer and its Effects on the Calibration Procedures of Liquids and Gases Inside a Volume Prover. In Proceedings of the 15th Flow Measurement Conference (FLOMEKO), Taipei, Taiwan, 13–15 October 2010. [Google Scholar]
- Shah, M.M. Methods for calculation of evaporation from swimming pools and other water surfaces. ASHRAE Trans. 2014, 120 Pt 2, 3–17. [Google Scholar]
- Mattei, M.; Notton, G.; Cristofari, C.; Muselli, M.; Poggi, P. Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renew. Energy 2006, 31, 553–567. [Google Scholar] [CrossRef]
- Mannino, G.; Tina, G.M.; Cacciato, M.; Merlo, L.; Cucuzza, A.V.; Bizzarri, F.; Canino, A. Photovoltaic Module Degradation Forecast Models for Onshore and Offshore Floating Systems. Energies 2023, 16, 2117. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Cao, D.-K.; Diaham, S.; Zhang, X.; Yin, X.-Q.; Wang, Q. Research on potential induced degradation (PID) of polymeric backsheet in PV modules after salt-mist exposure. Sol. Energy 2019, 188, 475–482. [Google Scholar] [CrossRef]
- Almeida, R.M.; Schmitt, R.; Grodsky, S.M.; Flecker, A.S.; Gomes, C.P.; Zhao, L.; Liu, H.; Barros, N.; Kelman, R.; McIntyre, P.B. Floating solar power could help fight climate change—Let’s get it right. Nature 2022, 606, 246–249. [Google Scholar] [CrossRef]
- Wang, J.; Lund, P.D. Review of recent offshore photovoltaics development. Energies 2022, 15, 7462. [Google Scholar] [CrossRef]
- Arabatzis, I.; Todorova, N.; Fasaki, I.; Tsesmeli, C.; Peppas, A.; Li, W.X.; Zhao, Z. Photocatalytic, self-cleaning, antireflective coating for photovoltaic panels: Characterization and monitoring in real conditions. Sol. Energy 2018, 159, 251–259. [Google Scholar] [CrossRef]
- World Bank Group; Energy Sector Management Assistance Program; The Solar Energy Research Institute of Singapore. Where Sun Meets Water: Floating Solar Handbook for Practitioners; World Bank: Washington, DC, USA, 2019. [Google Scholar]
Ref. | Model | Equation | Tpv Predicted (°C) |
---|---|---|---|
Proposed model: Equations (1)–(9) | 36.8 | ||
[43] | Tpv = 26.97 + 0.77Ta + 0.023IT − 0.206RH −0.137vw | (32) | 49.3 |
[15] | Tpv = 0.961Ta + 0.029IT − 1.457vw + 0.000(°C/degree direction) + 0.109RH + 1.57 °C | (33) | 48.5 |
[15] | Tpv = 0.942Ta + 0.028IT − 1.509vw + 3.9 °C | (34) | 43.6 |
[16] | Tpv = 0.9458Ta + 0.0215IT − 1.2376vw + 2.0458 | (35) | 36.9 |
[16] | Tpv = 0.9282Ta + 0.021IT − 1.221vw + 0.0246Tw + 1.8081 | (36) | 36.3 |
[48] | Tpv = [TaUf + TwUb + ((τα) −ηref − γηrefTref)IT]/(Uf + Ub − γηrefIT) | (37) | 39.1 |
[14] | Tpv = Ta + 0.32 IT/(8.91 + 2.0vw) | (38) | 43.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaplanis, S.; Kaplani, E.; Kaldellis, J.K. PV Temperature Prediction Incorporating the Effect of Humidity and Cooling Due to Seawater Flow and Evaporation on Modules Simulating Floating PV Conditions. Energies 2023, 16, 4756. https://doi.org/10.3390/en16124756
Kaplanis S, Kaplani E, Kaldellis JK. PV Temperature Prediction Incorporating the Effect of Humidity and Cooling Due to Seawater Flow and Evaporation on Modules Simulating Floating PV Conditions. Energies. 2023; 16(12):4756. https://doi.org/10.3390/en16124756
Chicago/Turabian StyleKaplanis, Socrates, Eleni Kaplani, and John K. Kaldellis. 2023. "PV Temperature Prediction Incorporating the Effect of Humidity and Cooling Due to Seawater Flow and Evaporation on Modules Simulating Floating PV Conditions" Energies 16, no. 12: 4756. https://doi.org/10.3390/en16124756
APA StyleKaplanis, S., Kaplani, E., & Kaldellis, J. K. (2023). PV Temperature Prediction Incorporating the Effect of Humidity and Cooling Due to Seawater Flow and Evaporation on Modules Simulating Floating PV Conditions. Energies, 16(12), 4756. https://doi.org/10.3390/en16124756