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Abstract: Photovoltaic (PV) cell and module temperature profiles, Tc and Tpv, respectively, developed
under solar irradiance were predicted and measured both at transient and steady state conditions.
The predicted and measured Tc or Tpv covered both a bare c-Si PV cell, by SOLARTEC, at laboratory
conditions using a solar light simulator, as well as various c-Si and pc-Si modules (SM55, Bioenergy
195W, Energy Solutions 125W) operating in field conditions. The time constants, τ, of the Tc and Tpv

profiles were determined by the proposed model and calculated using the experimentally obtained
profiles for both the bare PV cell and PV modules. For model validation, the predicted steady
state and transient temperature profiles were compared with experimental ones and also with those
generated from other models. The effect of the ambient temperature, Ta, wind speed, vw, and the solar
irradiance, IT, on the model performance, as well as of the mounting geometries, was investigated
and incorporated in the prediction model. The predicted temperatures had the best matching to the
measured ones in comparison to those from six other models. The model developed is applicable to
any geographical site and environmental conditions.

Keywords: PV cell temperature; transient profiles; time constant; steady state; wind velocity;
environmental effects

1. Introduction

The photovoltaic (PV) temperature is a significant factor which affects the PV module performance
through its effect on the PV cell electric characteristics, analytically presented in PV cell textbooks.
Correspondingly, we speak about the PV module temperature, Tpv, and the PV cell temperature, Tc,
which are equal provided the cells of the module are healthy and experience the same environmental
conditions. It is of much interest to develop reliable models to predict Tpv, and the PV performance,
through prediction of the power output Pm(t), when the module operates under any configuration
and field conditions. Various mathematical expressions have been proposed and validated on their
reliability to predict steady state Tpv [1–9], as to be discussed in detail later in this paper or transient
Tpv profiles, [10–14] with good accuracy under any field conditions and for Building Integrated
Photovoltaic (BIPV) configurations [15–19]. Those Tpv prediction models are grouped in: explicit
models described in [1–7], usually physics based theoretical models which try to incorporate the
environmental parameters, mainly, solar irradiance on the PV plane IT, wind velocity vw, wind
direction, heat transfer from the PV to the environment, and radiation exchanges between PV and
environment:

a. Implicit models which use various algorithms and regression analysis to produce formulae to
predict Tpv through quantities which depend on Tpv, as reviewed in [3,20].
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b. Theoretical based semi-empirical models, a mixture of Physics based processes elaborated on
implicit functions, which through regression analysis incorporate the environmental conditions
and develop expressions to predict Tpv including geometrical factors like PV module inclination,
sun-tracking systems, BIPV [6,8,21].

c. Approaches based on Artificial Neural Networks (ANN) [5,10,22].

An assessment of the Tpv prediction models discloses that those which have incorporated the
radiation exchanges and the air flow regimes, where heat extraction off the modules is affected
specifically, provide values closer to the measured ones [6,7,23–25]. A comparison among the models is
necessary as to conclude on the conditions Tpv is predicted effectively and consistently. It is, therefore,
necessary to compare Tpv models extensively to examine their validity in any PV configuration as the
ones studied in [20,26–29].

A time dependent temperature profile is developed in a PV cell when under solar irradiance,
IT, [8,30]. The latter is the main factor contributing to the development of the temperature profile
in which the ambient temperature Ta and the wind speed play a role too. This profile has a straight
relationship with IT at low Concentration Ratio, C, conditions, with C < 4, where C = IT/103 W/m2,
and a strong dependence on the wind speed, vw; that is, Tc(t; IT, vw). Tc(t) depends, also, on the cell
structure and the material composition of its layers. Figure 1 shows a section of a PV cell with its
characteristic layers which govern the heat conduction causing an effect on the time constant, τ, of
the temperature profiles. Tc(t) or Tpv(t), either the PV module is heated or cooled due to changes in
the environmental conditions, is described through an exponential term, exp(−t/τ), as discussed in
Sections 2 and 3.
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Figure 1. A schematic section of a photovoltaic (PV) module with its characteristic layers. EVA:
Ethylene-vinyl Acetate, ARC: Anti-reflective Coating.

The PV cell electric characteristics, short circuit current Isc, open circuit voltage Voc depend on
Tc(t) and on IT according to (1) and (2). The prediction of Tc(t) by the model analytically outlined in
this paper and the equations below [1,11], may lead to an excellent Voc(t) and Isc(t) profile prediction
under any operating conditions.

Voc(IT, Tc) = Voc(IT,ref, Tc,ref) +
n·k
q

·Tc·(lnIT − lnIT,ref) +
dVoc

dTc
(Tc − Tc,ref) (1)

Isc(IT, Tc) =
IT

IT,ref
Iph(IT,ref, Tc,ref)− Io

(
exp

(
Isc(IT, Tc)·Rs

n·k·Tc/q

)
− 1

)
− Isc(IT, Tc)·Rs

Rsh
(2)

Equation (1) has a form outlined in more detail in [1] and explains the Voc(t) vs. Tc behavior from
the very early stage of the transient profile, where it is not a straight line. The fact that Tc(t) is affected
by vw, may be used as simple recover agent for both Isc, Voc and Pm. The degree of the Tc effect
depends indirectly on the PV cell size, especially as IT increases, [31]. This is related to the module
internal resistance, Rs and thus due to Joule effect Pm decreases as IT increases, beyond a critical value.
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To reduce the deviations between predicted and measured values of the PV power output Pm(t), it
is necessary that the model provides accurate Tc(t) results. This is the objective of this research project
whose final outcome is a formula built on theoretical background and regression analysis and predicts
Tpv under any environmental conditions. The predicted Tpv values provide the correction required for
an accurate estimation of the PV power output which is necessary for online monitoring, control and
diagnostic purposes in PV installations.

2. Tpv Prediction Models for Steady State and Transient Conditions

Tc(t) or Tpv(t) may be obtained theoretically by building the Energy Balance Equation (EBE) for
any PV cell or module with conversion efficiency ηc and incident solar radiation IT. A fraction ηcITdt
of the intensity of the global solar radiation on the cell is converted into electricity, while the rest
(1 − ηc)ITdt is converted into heat, assuming a negligible reflection. The heat propagates to both
sides front and back, whereof it is transferred to the environment by convection, with coefficients hc,f
and hc,b for the front and back side, respectively, and by infrared (IR) radiated heat with coefficients
hr,f and hr,b for the front and back side respectively. The coefficients hc,f, hc,b, hr,f, and hr,b depend
on the surface conditions, geometry and the thermal and environmental conditions that the PV cell
operates. Therefore, all possible factors related to the mode of heat transfer from the cell surface to
the environment must be considered, either it is natural flow, forced flow, or mixed; the type of the
air flow, laminar or turbulent; also, the wind velocity and its angle of incidence relative to the PV cell
plane. The formulae to estimate the coefficients hr,f, hr,b, hc,f and hc,b for any of the above conditions
are elaborated and discussed critically in [23,32–34]. Typical values of the physico-thermal properties
of the cell components with their usual dimensions are provided in Table 1 which was developed
based on data from [17,35,36]. These data are required to estimate the resistance due to conduction
within the cell, the mass heat capacity (mc), and the Tc(t) or Tpv(t) time constant, τ.

Table 1. Characteristic, average values of the thickness δx, conductivity k, density ρ, specific heat
capacity cp, mass heat capacity mc and thermal resistance Rk normalised to surface area, for the PV
cell components.

Material δx (m) K (W/mK) ρ (kg/m3) cp (J/kgK)
(mc = ρcpAcδx)/Ac

(J/Km2)
Rk = δx/kAc

(K/W)

Glass * 0.003–0.004 1.0–1.4 2500–3000 500 4500 3 × 10−3

ARC 100 × 10−9 32 2400 691 0.165 3.13 × 10−9

EVA 250 × 10−6 0.35 960 2090 502 714 × 10−6

Cell 225 × 10-6 148 2330 677 355 1.52 × 10−6

EVA 250 × 10-6 0.35 960 2090 502 714 × 10−6

Tedlar ** 0.0001 0.2 1200 1000–1760 150 5 × 10−4

* Glass cp ranges from 600–750 J/kgK based on its composition; ** Tedlar/PET/Tedlar (TPT) or Tedlar/PET/Ethylen
primer (TPE), surface density 380–480 g/m2, thickness = 0.3–0.4 mm, Tedlar cp = 1760 J/kgK for UV screening glass.
The cp of TPT or TPE is almost the same as of the Tedlar.

Figure 2 shows the coefficient f = f(t; IT, vw) given by Equations (3) and (4) vs. the hour in a
mid-day of March with vw and IT as parameters, determined both for the fixed inclination (FIX) and
double-axis sun tracking (ST) PV systems. Coefficient f and Tpv are given by the expressions, [12,21,37].

Tpv = Ta + f IT (3)

F = [(τα) − ηc]/[Uf + Ub] (4)

The strong effect of vw on f is shown in Figure 2 where for an increase in vw from 1 to 3.3 m/s, f
decreases by 28.5% in the ST to 46.6% in the FIX. In absolute values, f changed by 0.01 for the ST and
0.02 m2K/W for FIX. Based on these results and Equation (3), the Tpv generally follows the f profile.
The heat losses coefficients from the front and back PV sides, Uf and Ub respectively are represented
by Ug−a and Ub−a respectively according to:
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Ug−a = hc,f + hr,f (5)

Ub−a = hc,b + hr,b (6)

The PV module temperature in the front side, Tg, is generally higher than Tb at the back at steady
state conditions by 2–3 ◦C [16]. However, this figure may not be taken for granted and might be even
reversed as it depends on the PV cell structural details, the specific heat capacity of each one of the cell
components, their thickness, conductivity, and emissivity coefficients εg and εb of the PV glass cover
and backsheet respectively, as well as the vw along with its angle of incidence on the module, either
windward or leeward [23].
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2.1. Steady State Tpv Prediction Models

The steady state Tpv or Tc may be estimated by using formulas derived in this work and others
proposed in [1–7]. Usually, there is no discrimination between Tc with the Tf or Tg and the Tb, which
stand for the cell, glass, and back cover PV temperatures, respectively. Those temperatures will be
analytically determined by the model proposed in Section 2.2. They differ to each other depending on
the PV cell structure, PV cell type, the thermo-physical properties and the mounting e.g., for Building
Adapted Photovoltaics (BAPV), PV thermal (PV/T) [37–41].
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Various Formulae for the Tpv Prediction at Steady State Conditions:

Tpv = Ta + f(vw; ηpv)IT (7)

f may be expressed as a function of vw, and δηpv according to the model proposed, Equations (8)–(10),

f = f(vw; ηpv) = f(vw)(1 − δηpv/(1 − ηpv,m)) (8)

δηpv = ηpv − ηpv,m where, ηpv,m is the PV efficiency at the average conditions, (Ta = 20◦C, IT =
800 W/m2), during the experiments carried out and which are used as reference. The regression
analysis of one year’s monitored data (IT, Ta, Tpv, vw) from a pc-Si PV (Energy Solutions 125Wp

module) generator gave for f(vw; ηpv) a quadratic vw function multiplied with a correction function
standing for the change in ηpv due to deviations of the environmental conditions from the average
values mentioned above.

f(vw; ηpv) = (a + bvw + cvw
2) (1 − δηpv/(1 − ηpv,m)) (the proposed model) (9)

a, b, and c values when the PV module is at open rack conditions are given in (10)

f(vw; ηpv) = (0.0381 − 0.00428vw + 0.000196vw
2)(1 − δηpv/(1 − ηpv,m)) (10)

Tpv = Ta + IT/(Uo + U1vw) model [2] (11)

Uo takes values from 23.5 to 26.5 W/m2 K, with an average 25.5 W/m2 K; U1 takes values from 6.25 to
7.68 W/m2 K, with an average 6.84 W/m2 K.

Tc = Ta + ITexp(a + bvw) model [1] (12)

a and b are provided in Table 2, below.

Table 2. Values of the parameters a and b. Data from [1].

Type of Module Mount a * b *

Glass-cell-polymer sheet Open rack −3.56 −0.0750
Glass-cell-polymer sheet Insulated back −2.81 −0.0455

* for values of a and b for different type of modules and configurations, see [1].

The (Tpv − Ta)/IT equal to f, Equation (7), was fitted onto a quadratic function given by (13),

f × 103 = 0.0712vw
2 − 2.411vw + 32.96 for vw < 18 m/s with vw at 10 m model [7] (13)

Tpv is then estimated from Tpv = Ta + f IT

Tpv = 0.943Ta + 0.028IT − 1.528vw + 4.3 model [5] (14)

Tc = Ta +ω(0.32/(8.91 + 2vF)) IT vF = vW/0.67 model [3] (15)

where ω = 1, according to [3], as this paper addresses free standing PV. The vF = vw,p which is the
parallel component of vw on the PV plane

Tc = [Upv·Ta + IT[((τα) − ηr) − µTr]/(Upv − µIT) model [4] (16)

where, µ = 0.05%/◦C, Tr = 25 ◦C and ηr is the reference efficiency of the PV cell or module.
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2.2. The Proposed Prediction Model for the Transient Profile Tc(t) or Generally, Tpv(t)

To obtain theoretically the Tc(t) profile the following set of energy balance equations is developed
for the characteristic PV module components, that is, glass, cell and back sheet,

(mc)cdTc/dt = Ac[((τα) − ηc)IT−Uc−g(Tc − Tg) −Uc−b(Tc − Tb)] (17)

(mc)gdTg/dt = Ac[Uc−g(Tc − Tg) −Ug−a(Tg − Ta)] (18)

(mc)bdTb/dt = Ac[Uc−b(Tc − Tb) −Ub−a(Tb − Ta)] (19)

where:

Uc−g = 1/Rc−g = 1/(δxCell/2kCell + δxARC/kARC + δxEVA/kEVA + δxGlass/kGlass)

Uc−b = 1/Rc−b = 1/(δxCell/2kCell + δxEVA/kEVA+ δxTedlar/kTedlar)

The corresponding values of the above properties are shown in Table 1.
For the case of a bare PV cell the optical factor (τα) in (17) is nearly equal to 1, and the Ug−a and

Ub−a for the front and back side were assumed to be equal. This is acceptable in case the PV cell is
positioned at vertical and there is no wind on the cell. Hence, Tg and Tb in this case are equal to a very
good approximation. Based on the continuity of the heat flow from the cell to the environment the
following formula holds, too,

Uc−a(Tc − Ta) = Ug−a(Tg − Ta) + Ub−a(Tb − Ta) (20)

Equation (21) gives the heat flow from the cell to the glass cover which equals the one from the
front, i.e., glass cover to the environment and Equation (22) from the cell to the back cover and the
back cover to the environment.

Uc−g(Tc − Tg) = Ug−a(Tg − Ta) (21)

Uc−b(Tc − Tb) = Ub−a(Tb − Ta) (22)

The derivatives dTg/dt and dTc/dt with respect to dTb/dt are derived from (20)–(22),

dTc/dt = [(Uc−b + Ub−a)/Uc−b]dTb/dt (23)

dTg/dt = [Uc−g/(Uc−g + Ug−a)]dTc/dt = [Uc−g/(Uc−g + Ug−a)][(Uc−b + Ub−a)/Uc−b]dTb/dt (24)

Adding (17)–(19), using (20)–(24), rearranging the terms and making the proper substitutions, the
following 2 groups of relationships are obtained as in Sections 2.2.1 and 2.2.2 and lead to the estimation
of Tc(t) and Tb(t).

2.2.1. The Relationships to Determine Tc(t)

dTc/dt = Ac[((τα) − ηc)IT − Uc−a(Tc − Ta)]/(mc)ef = F1 − F2(U)(Tc − Ta) (25)

(mc)ef = (mc)c + ((mc)EVA + (mc)g)[Uc−g/(Uc−g + Ug−a)]+((mc)EVA + (mc)b)[Uc−b/(Uc−b + Ub−a)] (26)

F2(U) = AcUc−a/(mc)ef (27)

F1 = Ac((τα) − ηc)IT/(mc)ef (28)

2.2.2. The Relationships to Determine Tb(t)

dTb/dt = F1−F2(U)(Tb − Ta) (29)
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(mc)ef = ((mc)b + (mc)EVA) + (mc)c[(Uc−b + Ub−a)/Uc−b] + ((mc)EVA + (mc)g)[(Uc−g/(Uc−g + Ug−a)]
[(Uc−b + Ub−a)/Uc−b]

(30)

In this subsection, F1 and F2(U) are given by:

F1 = Ac((τα) − ηc)IT/(mc)ef (31)

F2(U) = Ac[Ub−a + Ug−a[(1 + (Ub−a/Uc−b))/(1 + (Ug−a/Uc−g))]]/(mc)ef (32)

Based on (29), Tb(t) is provided by the algorithmic expression below, which is part of the
model proposed:

[F1 − F2(U)(Tb(t + δt) − Ta)]/[F1 − F2(U)(Tb(t) − Ta)] = exp(−δt/τ) (33)

Tb(t + δt) is the PV backside temperature at time interval t + δt, and Tb(t) at time t. Time intervals
δt may be equal to a practical time unit. Equation (33) allows for introducing IT(t + δt) and IT(t) to
Equation (31) and for using vw(t) to estimate Ug−a and Ub−a from equations in [23] taking into account
the environmental conditions in that time interval [t, t + δt] and introducing the values to (32). For the
Tc(t) the same expression is used where instead of Tb is Tc and the factors F2(U) and (mc)ef are given
in Section 2.2.1. In all cases, the time constant of the PV module temperature profile (τ) is given by:

τ = 1/F2(U) (34)

For the estimation of the time constants, τb, τg, τc appropriate (mc)ef and F2(U) are used in (34).
F2(U) for the Tb(t) prediction tends to:

F2(U) = Ac(Ub−a + Ug−a)/(mc)ef (35)

provided that Uc−g and Uc−b have high values compared to Ub−a and Ug−a and for Ub−a = Ug−a

F2(U) = 2AcUb−a/(mc)ef = Ub−a/((ρc)efLc) (36)

Hence, in simplified cases the time constant, τ, of the Tc(t) profile is given by:

τ = (ρc)efLc/Ub−a (37)

The (ρc)ef for the c-Si cell is taken from Table 1 data and is estimated by the sum of the products
of the density and the specific heat capacity of every component of the PV cell. Lc is the characteristic
length of the cell for the heat propagation process from inside the cell to outside, which is equal to the
ratio of the PV cell volume (V) over its total surface. In this case, Lc due to the very small cell thickness
is equal to the half of the PV cell thickness. In such simplified cases, recurrence formulae like in [11]
are used, while Equations (23)–(32) are opted to get accurate Tc(t), Tb(t) and Tf(t) prediction under any
environmental conditions. From Equations (34)–(37) becomes clear that τ increases with (mc)ef that is,
with the glass and back sheet thickness, which mostly contribute to (mc)ef and inversely decreases
with vw (see Figure 2) or with the friction of air flow on the PV back side due to Uf and Ub increase.

3. Results

3.1. The Experimental Set Up

The experimental set up includes a Data Acquisition System, a solar simulator model Solar Light
16S-300-002 Class A Air Mass 1.5 emission spectrum, as well as the simulation model to predict Tpv(t),
Voc(t) and Isc(t). Also, thin diameter Cu-Const thermocouples attached at the PV cell or module back
side to monitor Tb(t), a Pt 100 for the ambient temperature and a series of c-Si bare cells and several
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c-Si and pc-Si modules mounted on FIX and ST frames installed at free environment. According to the
data acquisition system used in the experiments data were collected and recorded every 1 s.

3.2. Predicted and Measured Transient Tb(t) Profiles for Bare c-Si Cells

Figure 3 shows the measured and predicted profile of a SOLARTEC 2.5 × 2.5 cm2 c-Si part
of a cell under IT = 103 W/m2 at controlled environmental conditions in the laboratory, by using
Equations (33)–(36). The deviation between the measured Tb,meas(t) and predicted Tb,pred(t) values
is less than 3% throughout the transient period. Thus, the theoretical and experimental τ values
for the bare cell are practically the same as discussed below. The time constant, τ, was predicted
from the expression (mc)ef/(Uf + Ub), given in Equations (34) and (35). The (mc)ef normalized to the
bare cell surface is equal to 857 J/m2 K based on Table 1 data. The appropriate equations from [23]
gave Uf = Ub = 11.5–12 W/m2 K at air free flow for Tb in the range 20–50 ◦C and 16–20 ◦C indoor
temperature and therefore, τ was determined in the range of 35.7–37.3 s compared to the experimental
37.1 s, which was estimated by fitting the function Tb(t) = a − b·exp(−t/τ) on the Tb(t) measured
values. The deviation of the theoretical τ from the experimental one was less than 3.8%. The predicted
Tb,pred(t) were introduced into (1) to obtain Voc(t), as in Figure 4, where predicted and experimentally
determined Voc(t) are shown. A maximum difference of 6 mV is observed at the saturation time period
of 5τ to 6τ. This corresponds to 1.1% deviation between measured and predicted values. It is noted
that the Voc(t) time constant, was determined experimentally, as done with the Tb(t), by fitting an
exponential function on the data.
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According to (1) the τ of Voc(t) is the same with the Tb(t) time constant determined from the
curve analysis of Figure 3, equal to 37.1 s. Fitting the function a+b·exp(−t/τ) on the measured Voc(t)
the result was τ = 37.2 s. Similarly, a good practical estimation of τ is obtained from the Voc(t) curve,
Figure 4, using the value of 6τ at saturation which is in the range of 215–225 s/6 = 35.8–37.5 s. From (1)
the sign of the derivative of Tpv(t) is opposite to the corresponding of Voc(t).

3.3. Predicted and Measured Transient Tb(t) Profiles and Time Constants,τ, for PV Modules

The improved set of the abovementioned iterative relationships which provide transient profiles,
end up to the steady state value,

Tb = Ta + ((τα) − ηpv)IT/(Uf + Ub) (38)

Tb obtained from (38) lies very close to Tpv at saturation predicted in the previous section,
provided that proper values for ηpv and (Uf + Ub) are substituted in the above expression. For (τα)
= 0.91 (bare cell) ηpv = 0.15 (manufacturer value), (Uf + Ub) = 24 W/m2 K, as above, and Ta = 16 ◦C,
Equation (38) gives Tb = 47.6 ◦C compared to the 44.8 ◦C predicted, i.e., a 5.8% deviation.

Figure 5 gives measured Tb(t) of a PV module Bioenergy 195W. τ was experimentally determined
by the curve fitting analysis and found equal to τ = 316.7 s. For the theoretical prediction of τ, the total
heat losses coefficient at field conditions with low vw was given above equal to 24 W/m2 K. According
to the values from Table 1, the (mc)ef normalized to surface Ac for this module, with 3.2 mm glass
and PET back sheet of 0.4mm, is estimated in the range of 6760–7720 depending on the cp of the glass
cover. Hence, τ = [6760–7720]:24 = 281.7–321.6 s. In fact, the experimental τ lies inside the domain of
the theoretically predicted τ values.
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Figure 5. Tb(t) profile for a c-Si Bioenergy 195W PV module in field conditions.

Figure 6 shows the Tb(t) profile of an SM55 module inclined over a window as shadow hanger
and power generator, too. The expression F(x) = A(1 − exp(−Bx)) + C was fitted on the data, (upper
curve) with R2 = 0.959, and gave τ = 306.2 s while the predicted value was determined by setting (mc)ef
6760 J/m2 K (considered for the lower size SM55) and 23–24 W/m2 K for the heat losses coefficient.
Thus, τ lies in the range 281.7–293.9 s with a deviation of its average from the experimental <6%.
However, the wind speed increases at around 1100 s and steady state temperature reached earlier, see
lower curve in Figure 6, where the final time constant due to the wind increase shortened τ to 235.7 s,
according to the curve analysis. Using (39) [4], a theoretical estimate of τ, is obtained.

U = hc,f + hc,b = 11.34 + 7.73v (39)
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which for average wind speed during the experiments v = 1 m/s, as the PV module, operating as a
shadow hanger, was in wind protected zone, U = 19.07 W/m2 K. Adding 10 W/m2 K for hr,f + hr,b
then, Upv = 29.07 W/m2 K and hence, τ = 6760/29.07 = 232.5 s which is a very good prediction. That
shows the strong effect of vw on PV performance.
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3.4. Predicted Steady State Tb(t) Values and Comparison with Measured Data and Results from other Models:
Validation of the Proposed Model

The steady state Tb and the f values of pc-Si PV modules operating in field conditions in FIX and
ST mounting were experimentally determined and theoretically predicted. The experiments for both
FIX and ST PV systems were carried out in months of different environmental conditions, January and
July. Tb and f were predicted by:

a. the simulation model elaborated and proposed in this article, Equation (10), and
b. formulae provided from the other models [1–5,7].

Those f and Tpv values were compared with the experimentally determined ones, shown in
Table 3.

Table 3. Comparison of predicted by this model (Tc − Ta) for morning–noon–afternoon hours in a
mid-day of July with the measured values from the FIX and ST and those calculated using models [1–5].

Hour Model [1] Model [2] Model [4] Model [3] This Model Model [5] Measured *

F ST F ST F ST F ST F ST F ST F ST

10 12.9 24 11.4 21.3 10.15 18.8 11.25 21.0 13.6 25.3 12.5 24.1 14.0 23.0
12 20.5 27.3 19.9 26.5 16.25 26.9 20.0 26.6 23.3 27.1 20.4 27.2 23.5 27.3
14 23.2 28.2 22.2 27.1 19 22.2 22.3 27.2 24.1 28.5 22.9 28.0 24.0 29.0
16 16.7 24 13 18.7 12.75 18.55 12.52 18.05 16.5 24 15.4 23.8 17 23

* The fixed inclination (FIX) and ST systems were installed at free environment.

In addition, Table 4 gives the f values predicted by this model, (10), and also by the known
models [1–5,7] during the hours in a mid-day of July and January. In the application presented Ta, vw

and IT change during the day and the two PV generators sun-tracker and fixed inclination system
having identical modules were used. Hence, the tests included two different PV mountings and
varying environmental conditions.
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Table 4. The predicted by this model f values compared with those calculated using models [1–5,7] and the experimentally determined ones, for various hours of a
mid-day of January and July under various environmental conditions, IT and vw. Both cases of FIX and ST PV systems were considered.

Hour/Type IT Tc − Ta vw f exp * f model Model [2] Model [7] Model [1] Model [5] Model [4] Model [3]

14 h/7/FIX 840 24.5 2.0 0.0291 0.0303 0.0255 0.0305 0.0245 0.0285 0.0276 0.0278
11 h/7/FIX 623 17 3.8 0.0272 0.0267 0.0195 0.0248 0.0215 0.0227 0.0203 0.0202
16 h/7/ST 970 23 4.2 0.0237 0.0235 0.0184 0.0240 0.0208 0.0237 0.0196 0.0185
16 h/7/FIX 680 16 4.2 0.0235 0.0236 0.0184 0.0240 0.0208 0.0227 0.0220 0.0185
12 h/1/ST 1050 35 1.0 0.0335 0.0340 0.0309 0.0307 0.0264 0.0305 0.0366 0.0300
14 h/1/ST 1020 30.5 2.5 0.0299 0.0286 0.0235 0.0273 0.0236 0.0284 0.0266 0.0264
14 h/1/FIX 800 26.5 2.5 0.0330 0.0340 0.0235 0.0273 0.0236 0.0286 0.0250 0.0264
13 h/1/ST 1080 34.5 1.5 0.0318 0.0337 0.0280 0.0295 0.0254 0.0290 0.0332 0.0322
13 h/1/FIX 860 30.5 1.5 0.0355 0.0330 0.0280 0.0295 0.0254 0.0316 0.0330 0.0322
8 h/7/ST 625 19 1.2 0.0304 0.0318 0.0297 0.0302 0.0260 0.0295 0.0360 0.0343

* f exp is the f value determined from (Tb − Ta)/IT measured during the day by a monitoring system.
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It is clear from Table 3 that the proposed model has an overall higher prediction performance over
the other models. For this, a statistical analysis on both Tables data provides the consistency and the
prediction quality of the models, as shown in Figure 7.
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From the results deployed in Tables 3 and 4 it is clear that the proposed model predicts f and
Tpv for FIX and ST configurations systematically very close to the experimentally determined values
with deviation less than 4%. The predicted values from models [1–5,7] experience a larger dispersion
disclosed by the determination coefficient, R2, while their deviations may in general reach up to
15%. In general, the models which do not provide correction due to the effect of IT, Ta on ηpv exhibit
higher deviation compared to this model. Figure 7a–g show the predicted by this model and the
models [1–5,7] f values versus the experimental ones. The model proposed exhibits the least dispersion
of data and is nearer to the best theoretical line.

4. Discussion

The measured Tb(t) values either for the bare PV cell or the PV modules were best fitted on
the function a(1 − exp(t/τTc)), with a coefficient of determination always >0.998, which provided
for the τTc. Tb(t) and τwere also predicted theoretically from Equations (29)–(34) accounting for the
environmental conditions. The predicted Tb values for a cell deviated by <3% from the measured
ones. Both depend on IT, vw and the PV geometrical and physico-chemical characteristics, as in
Table 1. The dependence on IT creeps in through the heat transfer coefficients as Ug−a and Ub−a
increase with the Tb, which in turn increases with IT. A formula proposed to predict τTc directly based
on Equations (37) and (39) gave very good results, which deviated by <5% from the experimental
value. Using more accurate expressions for the Uf and Ub as proposed by the authors in [23], would
result in much smaller deviations between the predicted and experimental values but would raise
the algorithmic complexity of the model which requires the use of many theoretical expressions to
accurately simulate Tpv as analyzed in [23,24], rather than the mixed type compact model proposed
here which was the aim of the current work. For the bare c-Si τTc was found equal to 35.8 s–37.1 s for
IT = 103 W/m2, while for c-Si and pc-Si PV modules the τTc value was around 4.5–5.5 min. For vw

higher than 1–2 m/s, τ decreased to 2–2.5 min. This is explained through Equations (32) and (34)
where the effect of environmental conditions is expressed through the total effect of Ub−a and Ug−a

which inversely affects τ. Note that Uc−b and Uc−g are much larger than Ub−a and Ug−a respectively
and therefore the ratio (1 + (Ub−a/Uc−b))/(1 + (Ug−a/Uc−g)) tends to 1. Therefore, the effect of the
characteristics of the layers of the module on the time constant is expressed mainly through (mc)ef in
Equations (32) and (34), which proportionally affects τ. For example, the effect of the EVA encapsulant
alone is significant as may be estimated using Equation (30) for the modules used in the study the EVA
has 15% contribution in the module (mc)ef value, leading to a larger time constant (by 15%) and more
pronounced transient phenomena.

The predicted Tc(t) was used to predict Voc(t). The result was in excellent agreement with the
experimental values for IT = 103 W/m2. The time constants, τVoc, of the theoretically developed Voc(t)
profiles by using (1) lie very close to the experimentally determined ones. The transient prediction
model is easily handled even for IT and vw changing during monitoring. The introduction of the
IT(t) and vw(t) values into the algorithm, Equations (31)–(33), is done using their average values in
each time unit. The recorded steady state Tb values during the hours of the mid-day of 2 climatically
opposite months, July and January, were compared with the predicted values. An excellent agreement
was confirmed and the diagram of the predicted by this model f values versus experimental ones was
of higher quality compared to the other models. It is important to underline that the constants a, b,
c in Equations (9) and (10) were derived by regression analysis of data taken from the operation of
7 years old pc-Si modules. Therefore, an ageing correction, of +7 years × 0.85%/year = +6% must be
added in the predicted f values obtained from the other models [1–3,7], provided that those models
were developed using brand new PV modules. Thus, a good improvement will be achieved in their
prediction performance. Finally, it is emphasized that the experimentally determined f and Tb values
used in the validation test were excluded from the data used in the regression analysis to build the
f (vw) quadratic formula.
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The model developed applies to free standing PV modules or cells in any environmental
conditions. It is based on c-Si PV modules but could be easily adapted to flat plate PV modules
of other types as long as the properties of Table 1 are enriched for the layers and composition of
these types. The model would need to be adapted for PV modules inclined before windows and
BIPV as it concerns the view factor and the convection coefficients. The steady state model takes into
account wind velocity but not wind direction, while module inclination is not considered. These can
be integrated into the model through Uf and Ub as in [23] and will be presented in future work.

5. Conclusions

A new model to predict the steady state PV cell or module temperature, Tpv or Tb with a version
to predict the transient temperature profiles was elaborated, presented, and validated. The model
is based on a quadratic vw function multiplied with a correction function accounting for the change
in ηpv due to the deviation of the environmental conditions from their average values taken as
reference. An excellent agreement under any environmental conditions was confirmed between
predicted and recorded PV module Tb values, deviation <3%, in comparison with other 6 known
models. The model performed better than any other one. Accurate PV temperature prediction is
especially important considering its significant effect on PV power output, with a typical value for the
temperature coefficient of Pm of −0.5%/◦C. Considering that a range of 5–25% reduction in power
output is normally expected from the nominal value for 1000 W/m2 incident irradiance due to PV
temperature alone, accurate prediction of PV temperature can assist in adequate control measures,
monitoring and diagnostic procedures to be taken in practical situations of PV installations.

Finally, a mathematical algorithmic expression was developed to predict the transient Tb(t),
Tg(t), Tc(t). The time constant of the Tb(t) profiles for the PV modules theoretically derived and
experimentally determined deviated by less than 5%. The accuracy can be further increased with a
more analytical determination of Uf and Ub as in [23]. The transient model provided also a simple
expression for the steady state Tb whose deviation from the theoretical and experimental values was
less than 5.8%. The transient Tb(t) profile produced by the model followed closely the measured Tb
data, as was shown in many cases examined in a bare c-Si cell and also in 3 c-Si and pc-Si PV modules.
The compact model developed is applicable to any geographical site and environmental conditions.
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Nomenclature

ANN Artificial Neural Networks Uf = Ug−a

Heat losses coefficients due to convection
and IR radiation at the front side of the
PV module (W/m2 K), equal to hc,f + hr,f

BAPV Building Adapted Photovoltaics Voc
Open circuit voltage in a PV cell or
module (V)

BIPV Building Integrated Photovoltaics hc,f
Heat convection coefficient from PV glass
to air

EBE Energy Balance Equation hr,f
Radiative heat coefficient from the front
PV side (W/m2 K)

FIX Fixed inclination PV installation hc,b
Heat convection coefficient from PV back
surface to air (W/m2 K)
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IT
Global solar radiation intensity on the
tilted PV plane (W/m2)

hr,b
Radiative heat coefficient from the PV
back side to environment (W/m2 K)

IT,ref It is the IT equal to 103 W/m2 ki
Thermal conductivity of cell layer i
(W/mK)

Iph The photo-current of the PV cell (A) (mc) Mass heat capacity (J/K)

Isc
Short circuit current from a PV cell or
module (A)

n The ideality factor of the PV cell diode

Pm(t) PV power output at MPP at time t (W) vw Wind velocity (m/s)

ST Sun-tracking system δx Cell layer thickness (m)

Tpv, Tc

Tf, Tb

PV module temperature, PV
semiconductor temperature, PV front
side and PV back side temperatures,
respectively

εpv, εb
Emissivity coefficients of the PV glass and
back surface, respectively

Tg PV glass cover temperature = Tf (◦C)
ηc,ηpv,
ηpv,m

PV cell and module efficiency,
PV module efficiency at average
environmental conditions

Ta Ambient temperature (K) ρ Density (kg/m3)

Ub = Ub−a

Heat losses coefficients due to
convection and IR radiation at the back
side of the PV module (W/m2 K), equal
to hc,b + hr,b

τ
Time constant of the PV module or cell
temperature profile

Upv
The overall heat losses coefficient from
a PV (W/m2 K), equal to Uf + Ub

(τα) Transmittance-absorptance product
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