Experimental Analysis of the Long-Term Stability of Thermoelectric Generators under Thermal Cycling in Air and Argon Atmosphere
Abstract
1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BiTe | Bismuth telluride |
C | Cold side |
H | Hot side |
MPPT | Maximum power point tracker |
PbTe | Lead telluride |
TEG | Thermoelectric Generator |
TEM | Thermoelectric Module |
References
- Forman, C.; Muritala, I.K.; Pardemann, R.; Meyer, B. Estimating the global waste heat potential. Renew. Sustain. Energy Rev. 2016, 57, 1568–1579. [Google Scholar] [CrossRef]
- Rowe, D.M. (Ed.) Thermoelectrics Handbook: Macro to Nano; CRC/Taylor & Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Chen, X.Q.; Fan, S.J.; Han, C.; Wu, T.; Wang, L.J.; Jiang, W.; Dai, W.; Yang, J.P. Multiscale architectures boosting thermoelectric performance of copper sulfide compound. Rare Met. 2021, 40, 2017–2025. [Google Scholar] [CrossRef] [PubMed]
- Kober, M. Holistic Development of Thermoelectric Generators for Automotive Applications. J. Electron. Mater. 2020, 49, 2910–2919. [Google Scholar] [CrossRef][Green Version]
- Kober, M.; Knobelspies, T.; Rossello, A.; Heber, L. Thermoelectric Generators for Automotive Applications: Holistic Optimization and Validation by a Functional Prototype. J. Electron. Mater. 2020, 49, 2902–2909. [Google Scholar] [CrossRef][Green Version]
- Heber, L.; Schwab, J. Modelling of a thermoelectric generator for heavy-duty natural gas vehicles: Techno-economic approach and experimental investigation. Appl. Therm. Eng. 2020, 174, 115156. [Google Scholar] [CrossRef]
- Heber, L.; Schwab, J.; Knobelspies, T. 3 kW Thermoelectric Generator for Natural Gas-Powered Heavy-Duty Vehicles—Holistic Development, Optimization and Validation. Energies 2022, 15, 15. [Google Scholar] [CrossRef]
- Schwab, J.; Bernecker, M.; Fischer, S.; Seyed Sadjjadi, B.; Kober, M.; Rinderknecht, F.; Siefkes, T. Exergy Analysis of the Prevailing Residential Heating System and Derivation of Future CO2-Reduction Potential. Energies 2022, 15, 3502. [Google Scholar] [CrossRef]
- Bates, H.E.; Weinstein, M. Sublimation rates In vacuo of PbTe and Pb0.5Sn0.5Te thermoelements. Adv. Energy Convers. 1966, 6, 177–180. [Google Scholar] [CrossRef]
- Ohsugi, I.J.; Tokunaga, D.; Kato, M.; Yoneda, S.; Isoda, Y. Dissociation and sublimation of tellurium from the thermoelectric tellurides. Mater. Res. Innov. 2015, 19, S5-301–S5-303. [Google Scholar] [CrossRef]
- Leszczynski, J.; Wojciechowski, K.T.; Malecki, A.L. Studies on thermal decomposition and oxidation of CoSb3. J. Therm. Anal. Calorim. 2011, 105, 211–222. [Google Scholar] [CrossRef][Green Version]
- Brož, P.; Zelenka, F.; Kohoutek, Z.; Vřešťál, J.; Vykoukal, V.; Buršík, J.; Zemanová, A.; Rogl, G.; Rogl, P. Study of thermal stability of CoSb3 skutterudite by Knudsen effusion mass spectrometry. Calphad 2019, 65, 1–7. [Google Scholar] [CrossRef]
- Zelenka, F.; Brož, P.; Vřešťál, J.; Buršík, J.; Zemanová, A.; Rogl, G.; Rogl, P. Study of thermal stability of half-Heusler alloys TiFe1.33Sb and TixNb1-xFeSb (x = 0, 0.15) by differential thermal analysis and Knudsen effusion method. Calphad 2021, 74, 102292. [Google Scholar] [CrossRef]
- Berchenko, N.; Fadeev, S.; Savchyn, V.; Kurbanov, K.; Trzyna, M.; Cebulski, J. Pb–Te–O phase equilibrium diagram and the lead telluride thermal oxidation. Thermochim. Acta 2014, 579, 64–69. [Google Scholar] [CrossRef]
- Chen, L.; Goto, T.; Tu, R.; Hirai, T. High-temperature Oxidation Behavior Of PbTe And Oxidation-resistive Glass Coating. In Proceedings of the 16th International Conference on Thermoelectrics (1997), Dresden, Germany, 26–29 August 1997. [Google Scholar]
- Sklad, A.C.; Gaultois, M.W.; Grosvenor, A.P. Examination of CeFe4Sb12 upon exposure to air: Is this material appropriate for use in terrestrial, high-temperature thermoelectric devices? J. Alloys Compd. 2010, 505, L6–L9. [Google Scholar] [CrossRef]
- Xia, X.; Qiu, P.; Shi, X.; Li, X.; Huang, X.; Chen, L. High-Temperature Oxidation Behavior of Filled Skutterudites Yb y Co4Sb12. J. Electron. Mater. 2012, 41, 2225–2231. [Google Scholar] [CrossRef]
- Xia, X.; Qiu, P.; Huang, X.; Wan, S.; Qiu, Y.; Li, X.; Chen, L. Oxidation Behavior of Filled Skutterudite CeFe4Sb12 in Air. J. Electron. Mater. 2014, 43, 1639–1644. [Google Scholar] [CrossRef]
- Skomedal, G.; Kristiansen, N.R.; Engvoll, M.; Middleton, H. Methods for Enhancing the Thermal Durability of High-Temperature Thermoelectric Materials. J. Electron. Mater. 2014, 43, 1946–1951. [Google Scholar] [CrossRef][Green Version]
- Shin, D.K.; Kim, I.H.; Park, K.H.; Lee, S.; Seo, W.S. Thermal Stability of La0.9Fe3CoSb12 Skutterudite. J. Electron. Mater. 2015, 44, 1858–1863. [Google Scholar] [CrossRef]
- Kang, H.B.; Saparamadu, U.; Nozariasbmarz, A.; Li, W.; Zhu, H.; Poudel, B.; Priya, S. Understanding Oxidation Resistance of Half-Heusler Alloys for in-Air High Temperature Sustainable Thermoelectric Generators. ACS Appl. Mater. Interfaces 2020, 12, 36706–36714. [Google Scholar] [CrossRef]
- Appel, O.; Cohen, S.; Beeri, O.; Shamir, N.; Gelbstein, Y.; Zalkind, S. Surface Oxidation of TiNiSn (Half-Heusler) Alloy by Oxygen and Water Vapor. Materials 2018, 11, 2296. [Google Scholar] [CrossRef][Green Version]
- Appel, O.; Breuer, G.; Cohen, S.; Beeri, O.; Kyratsi, T.; Gelbstein, Y.; Zalkind, S. The Initial Stage in Oxidation of ZrNiSn (Half Heusler) Alloy by Oxygen. Materials 2019, 12, 1509. [Google Scholar] [CrossRef][Green Version]
- Zillmann, D.; Waag, A.; Peiner, E.; Feyand, M.H.; Wolyniec, A. Thermoelectric and Structural Properties of Zr-/Hf-Based Half-Heusler Compounds Produced at a Large Scale. J. Electron. Mater. 2018, 47, 1546–1554. [Google Scholar] [CrossRef]
- Li, C.C.; Drymiotis, F.; Liao, L.L.; Hung, H.T.; Ke, J.H.; Liu, C.K.; Kao, C.R.; Snyder, G.J. Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials. J. Mater. Chem. C 2015, 3, 10590–10596. [Google Scholar] [CrossRef][Green Version]
- Ferreres, X.R.; Aminorroaya Yamini, S.; Nancarrow, M.; Zhang, C. One-step bonding of Ni electrode to n-type PbTe—A step towards fabrication of thermoelectric generators. Mater. Des. 2016, 107, 90–97. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, L.; Zhang, J.; Gou, W.; Zhong, S.; Zhang, G.; Geng, H.; Feng, J. Metallization and Diffusion Bonding of CoSb3-Based Thermoelectric Materials. Materials 2020, 13, 1130. [Google Scholar] [CrossRef][Green Version]
- Chu, J.; Huang, J.; Liu, R.; Liao, J.; Xia, X.; Zhang, Q.; Wang, C.; Gu, M.; Bai, S.; Shi, X.; et al. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices. Nat. Commun. 2020, 11, 2723. [Google Scholar] [CrossRef]
- Nozariasbmarz, A.; Saparamadu, U.; Li, W.; Kang, H.B.; Dettor, C.; Zhu, H.; Poudel, B.; Priya, S. High-performance half-Heusler thermoelectric devices through direct bonding technique. J. Power Sources 2021, 493, 229695. [Google Scholar] [CrossRef]
- Al Malki, M.M.; Qiu, Q.; Zhu, T.; Snyder, G.J.; Dunand, D.C. Creep behavior and postcreep thermoelectric performance of the n-type half-Heusler alloy Hf0.3Zr0.7NiSn0.98Sb0.02. Mater. Today Phys. 2019, 9, 100134. [Google Scholar] [CrossRef]
- Ding, L.C.; Akbarzadeh, A.; Date, A. Performance and reliability of commercially available thermoelectric cells for power generation. Appl. Therm. Eng. 2016, 102, 548–556. [Google Scholar] [CrossRef]
- Harish, S.; Sivaprahasam, D.; Jayachandran, B.; Gopalan, R.; Sundararajan, G. Performance of bismuth telluride modules under thermal cycling in an automotive exhaust thermoelectric generator. Energy Convers. Manag. 2021, 232, 113900. [Google Scholar] [CrossRef]
- Riyadi, T.W.B.; Utomo, B.R.; Effendy, M.; Wijayanta, A.T.; Al-Kayiem, H.H. Effect of thermal cycling with various heating rates on the performance of thermoelectric modules. Int. J. Therm. Sci. 2022, 178, 107601. [Google Scholar] [CrossRef]
- Merienne, R.; Lynn, J.; McSweeney, E.; O’Shaughnessy, S.M. Thermal cycling of thermoelectric generators: The effect of heating rate. Appl. Energy 2019, 237, 671–681. [Google Scholar] [CrossRef]
- Barako, M.T.; Park, W.; Marconnet, A.M.; Asheghi, M.; Goodson, K.E. Thermal Cycling, Mechanical Degradation, and the Effective Figure of Merit of a Thermoelectric Module. J. Electron. Mater. 2013, 42, 372–381. [Google Scholar] [CrossRef]
- Salvador, J.R.; Cho, J.Y.; Ye, Z.; Moczygemba, J.E.; Thompson, A.J.; Sharp, J.W.; König, J.D.; Maloney, R.; Thompson, T.; Sakamoto, J.; et al. Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules. J. Electron. Mater. 2013, 42, 1389–1399. [Google Scholar] [CrossRef]
- Siadatan, A.; fakhari, M.; Taheri, B.; Sedaghat, M. New fundamental modulation technique with SHE using shuffled frog leaping algorithm for multilevel inverters. Evol. Syst. 2020, 11, 541–557. [Google Scholar] [CrossRef]
- Torkaman, H.; Fakhari, M.; Karimi, H.; Taheri, B. New Frequency Modulation Strategy with SHE for H-bridge Multilevel Inverters. In Proceedings of the 2018 4th International Conference on Electrical Energy Systems (ICEES), Chennai, India, 7–9 February 2018; pp. 157–161. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwab, J.; Fritscher, C.; Filatov, M.; Kober, M.; Rinderknecht, F.; Siefkes, T. Experimental Analysis of the Long-Term Stability of Thermoelectric Generators under Thermal Cycling in Air and Argon Atmosphere. Energies 2023, 16, 4145. https://doi.org/10.3390/en16104145
Schwab J, Fritscher C, Filatov M, Kober M, Rinderknecht F, Siefkes T. Experimental Analysis of the Long-Term Stability of Thermoelectric Generators under Thermal Cycling in Air and Argon Atmosphere. Energies. 2023; 16(10):4145. https://doi.org/10.3390/en16104145
Chicago/Turabian StyleSchwab, Julian, Christopher Fritscher, Michael Filatov, Martin Kober, Frank Rinderknecht, and Tjark Siefkes. 2023. "Experimental Analysis of the Long-Term Stability of Thermoelectric Generators under Thermal Cycling in Air and Argon Atmosphere" Energies 16, no. 10: 4145. https://doi.org/10.3390/en16104145
APA StyleSchwab, J., Fritscher, C., Filatov, M., Kober, M., Rinderknecht, F., & Siefkes, T. (2023). Experimental Analysis of the Long-Term Stability of Thermoelectric Generators under Thermal Cycling in Air and Argon Atmosphere. Energies, 16(10), 4145. https://doi.org/10.3390/en16104145