Coastal Depositional Responses to Relative Sea-Level Rise: Insights from a Superimposed Sandstone–Shale–Coal Reservoir in the Linxing Gas Field, China
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results and Discussion
4.1. Facies Associations and Depositional Environments
4.1.1. Facies Association 1 (FA1): Fluvial Channel
4.1.2. Facies Association 2 (FA2): Tidal–Fluvial Channel
4.1.3. Facies Association 3 (FA3): Estuarine Tidal Bar
4.1.4. Facies Association 4 (FA4): Upper Flow Regime Sand Flat
4.1.5. Facies Association 5 (FA5): Fringing Tidal Flat
4.1.6. Facies Association 6 (FA6): Lagoonal Tidal Shoreface
4.1.7. Facies Association 7 (FA7): Back-Barrier Lagoon
4.1.8. Facies Association 8 (FA8): Lagoonal Coastal Mire
4.2. Stratigraphic Architecture and Depositional Evolution
4.3. Grain-Size Distributions and Depositional Processes
4.3.1. Frequency Distribution Curves
4.3.2. Ternary Diagram
5. Conclusions
- (1)
- Eight facies associations are recognized in the Ximing Sandstone-to-No. 9 Coal succession, including fluvial channel (FA1), tidal–fluvial channel (FA2), estuarine tidal bar (FA3), UFR sand flat (FA4), fringing tidal flat (FA5), lagoonal tidal shoreface (FA6), back-barrier lagoon (FA7), and lagoonal coastal mire (FA8).
- (2)
- Seven high-frequency stratigraphic cycles (HFC-1 to 7) separated by fluvial-, tidal-, and bay-ravinement surfaces are identified in the Ximing Sandstone-to-No. 9 Coal succession. HFC-1 consists predominantly of falling-stage and/or lowstand fluvial channel deposits (FA1). HFC-2 to 7 are stacked vertically to form a retrogradational succession that reflects evolution from barrier-fronted, fluvial-dominated, and tide-influenced inner estuaries (FA1 to FA3, FA5) in HFC-2 and 3 through tide-dominated estuaries (FA1 to FA5) in HFC-4 to wave-dominated barrier lagoons (FA6 to FA8) in HFC-5 to 7. The transgressive estuarine to lagoonal deposits accumulated below a wave-ravinement surface (WRS) but above a transgressively modified maximum regressive surface (MRS).
- (3)
- The funnel-shaped Linxing paleovalley coupled with an increased tidal prism induced by the upstepping and backstepping shoreline contributed to the enhancement of tidal currents in the newly created estuary and led to the transition of the falling-stage and/or lowstand fluvial channel in HFC-1 into a fluvial-dominated and tide-influenced inner estuary in HFC-2 and 3 and then a tide-dominated estuary in HFC-4.
- (4)
- The wide North China epeiric seaway lacking local coastline irregularities after the Linxing paleovalley fill supplied sufficient fetch to large storm waves, which led to the conversion of the tide-dominated estuary in HFC-4 into a southwestward retrograding wave-dominated barrier lagoon in HFC-5 to 7.
- (5)
- The incised-valley estuary exhibits a sediment dynamic change from traction-dominated in the deeper tidal–fluvial channel through mixed traction- and saltation-dominated and suspension-subordinated in the shallower tidal–fluvial channel to saltation-dominated in the sand flat, saltation-dominated and suspension-subordinated in the mixed flat, and suspension-dominated and saltation-subordinated in the mud flat. The suspension population exhibits a progressively increasing dispersion/flocculation ratio along this sediment routing system.
- (6)
- The wave-dominated barrier lagoon shows a sediment dynamic transition from suspended load-dominated and saltation-subordinated in the lagoonal tidal shoreface to suspended load-dominated in the back-barrier lagoon, in which the suspension population correspondingly shows a gradually increasing flocculation/dispersion ratio.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cowell, P.J.; Thom, B.G. Morphodynamics of coastal evolution. In Coastal Evolution: Late Quaternary Shoreline Morphodynamics; Carter, R.W.G., Woodroffe, C.D., Eds.; Cambridege University Press: Cambridege, UK, 1994; pp. 33–86. [Google Scholar]
- Wright, L.D.; Thom, B.G. Coastal depositional landforms: A morphodynamic approach. Prog. Phys. Geogr. 1977, 1, 412–459. [Google Scholar] [CrossRef]
- Miall, A.D. Sequence stratigraphy and geologic time. In Stratigraphy & Timescales, Volume 2: Advances in Sequence Stratigraphy; Montenari, M., Ed.; Academic Press: Cambridge, UK, 2017; pp. 59–83.S. [Google Scholar]
- Catuneanu, O. Scale in sequence stratigraphy. Mar. Pet. Geol. 2019, 106, 128–159. [Google Scholar] [CrossRef]
- Miall, A.D.; Holbrook, J.M.; Bhattacharya, J.P. The stratigraphy machine. J. Sediment. Res. 2021, 91, 595–610. [Google Scholar] [CrossRef]
- Catuneanu, O.; Zecchin, M. High-resolution sequence stratigraphy of clastic shelves II: Controls on sequence development. Mar. Pet. Geol. 2013, 39, 26–38. [Google Scholar] [CrossRef]
- Dalrymple, R.W. Introduction to siliciclastic facies models. In Facies Models 4; James, N.P., Dalrymple, R.W., Eds.; Geological Association of Canada: St. Johns, NL, Cananda, 2010; pp. 59–72. [Google Scholar]
- Miall, A.D. The Geology of Stratigraphic Sequences; Springer: Berlin, Germany, 2010; p. 522. [Google Scholar]
- Wang, P. Principles of sediment transport applicable in tidal environments. In Principles of Tidal Sedimentology; Davis, R.A., Jr., Dalrymple, R.W., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 19–34. [Google Scholar]
- Nichols, M.M.; Boon, J.D. Sediment transport processes in coastal lagoons. In Coastal Lagoon Processes; Kjerfve, B., Ed.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 157–219. [Google Scholar]
- Dyer, K.R. Estuarine sediment transport and deposition. In Sediment Transport and Depositional Processes; Pye, K., Ed.; Blackwell Scientific Publications: London, UK, 1994; pp. 193–218. [Google Scholar]
- Dyer, K.R. Sediment transport processes in estuaries. In Geomorphology and Sedimentology of Estuaries; Perillo, G.M.E., Ed.; Elsevier: Amsterdam, The Netherlands, 1995; pp. 423–449. [Google Scholar]
- Dalrymple, R.W.; Choi, K. Morphologic and facies trends through the fluvial–marine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence-stratigraphic interpretation. Earth-Sci. Rev. 2007, 81, 135–174. [Google Scholar] [CrossRef]
- Dalrymple, R.W.; Mackay, D.A.; Ichaso, A.A.; Choi, K.S. Processes, morphodynamics, and facies of tide-dominated estuaries. In Principles of Tidal Sedimentology; Davis, R.A., Jr., Dalrymple, R.W., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 79–107. [Google Scholar]
- Wells, J.T. Tide-dominated estuaries and tidal rivers. In Geomorphology and Sedimentology of Estuaries; Perillo, G.M.E., Ed.; Elsevier: Amsterdam, The Netherlands, 1995; pp. 179–205. [Google Scholar]
- Ainsworth, R.B.; Vakarelov, B.K.; Nanson, R.A. Dynamic spatial and temporal prediction of changes in depositional processes on clastic shorelines: Toward improved subsurface uncertainty reduction and management. AAPG Bull. 2011, 95, 267–297. [Google Scholar] [CrossRef]
- Lambiase, J.J. Hydraulic control of grain-size distributions in a macrotidal estuary. Sedimentology 1980, 27, 433–446. [Google Scholar] [CrossRef]
- Lambiase, J.J. Sediment dynamics in the macrotidal Avon River estuary, Bay of Fundy, Nova Scotia. Can. J. Earth Sci. 1980, 17, 1628–1641. [Google Scholar] [CrossRef]
- Dalrymple, R.W.; Knight, R.J.; Zaitlin, B.A.; Middleton, G.V. Dynamics and facies model of a macrotidal sand-bar complex, Cobequid Bay–Salmon River Estuary (Bay of Fundy). Sedimentology 1990, 37, 577–612. [Google Scholar] [CrossRef]
- Franz, G.; Pinto, L.; Ascione, I.; Mateus, M.; Fernandes, R.; Leitão, P.; Neves, R. Modelling of cohesive sediment dynamics in tidal estuarine systems: Case study of Tagus estuary, Portugal. Estuar. Coast. Shelf Sci. 2014, 151, 34–44. [Google Scholar] [CrossRef]
- Carbajal, N.; Ley, Y.M.; Osuna, F.P.; Macías, M.D.J.G. Sediment dynamics in altata ensenada del pabellón, a coastal lagoon located in the Gulf of California. J. Coast. Conserv. 2018, 22, 709–720. [Google Scholar] [CrossRef]
- Petti, M.; Bosa, S.; Pascolo, S. Lagoon sediment dynamics: A coupled model to study a medium-term silting of tidal channels. Water 2018, 10, 569. [Google Scholar] [CrossRef]
- Flemming, B.W. Particle shape-controlled sorting and transport behaviour of mixed siliciclastic/bioclastic sediments in a mesotidal lagoon, South Africa. Geo-Mar. Lett. 2017, 37, 397–410. [Google Scholar] [CrossRef]
- Montaño-Ley, Y.; Carbajal, N.; Páez-Osuna, F. Sediment dynamics in a complex coastal lagoon system of the Gulf of California. J. Coast. Conserv. 2015, 19, 295–306. [Google Scholar] [CrossRef]
- Molinaroli, E.; Guerzoni, S.; De Falco, G.; Sarretta, A.; Cucco, A.; Como, S.; Simeone, S.; Perilli, A.; Magni, P. Relationships between hydrodynamic parameters and grain size in two contrasting transitional environments: The Lagoons of Venice and Cabras, Italy. Sediment. Geol. 2009, 219, 196–207. [Google Scholar] [CrossRef]
- Bortolin, E.C.; Weschenfelder, J.; Fernandes, E.H.; Bitencourt, L.P.; Möller, O.O.; García-Rodríguez, F.; Toldo, E. Reviewing sedimentological and hydrodynamic data of large shallow coastal lagoons for defining mud depocenters as environmental monitoring sites. Sediment. Geol. 2020, 410, 105782. [Google Scholar] [CrossRef]
- Leitão, P.C.; Mateus, M.; Braunschweig, F.; Fernandes, L.; Neves, R. Modelling coastal systems: The MOHID water numerical lab. In Perspectives on Integrated Coastal Zone Management in South America; Neves, R., Baretta, J., Mateus, M., Eds.; IST Press: Lisbon, Portugal, 2008; pp. 77–88. [Google Scholar]
- Pye, K. Properties of sediment particles. In Sediment Transport and Depositional Processes; Pye, K., Ed.; Blackwell Scientific Publications: London, UK, 1994; pp. 1–24. [Google Scholar]
- Allen, P.A. Earth Surface Processes; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Hartmann, D.; Flemming, B. From particle size to sediment dynamics: An introduction. Sediment. Geol. 2007, 202, 333–336. [Google Scholar] [CrossRef]
- McLaren, P.; Bowles, D. The effects of sediment transport on grain-size distributions. J. Sediment. Petrol. 1985, 55, 457–470. [Google Scholar]
- Visher, G.S. Grain size distributions and depositional processes. J. Sediment. Petrol. 1969, 39, 1074–1106. [Google Scholar]
- Passega, R. Grain-size representation by CM patterns as a geological tool. J. Sediment. Petrol. 1964, 34, 830–847. [Google Scholar] [CrossRef]
- McCave, I.N.; Syvitski, J.P.M. Principles and methods of geological particle size analysis. In Principles, Methods and Application of Particle Size Analysis; Syvitski, J.P.M., Ed.; Cambridge University Press: Cambridge, UK, 1991; pp. 3–21. [Google Scholar]
- Xiao, J.; Chang, Z.; Fan, J.; Zhou, L.; Zhai, D.; Wen, R.; Qin, X. The link between grain-size components and depositional processes in a modern clastic lake. Sedimentology 2012, 59, 1050–1062. [Google Scholar] [CrossRef]
- Gammon, P.R.; Neville, L.A.; Patterson, R.T.; Savard, M.M.; Swindles, G.T. A log-normal spectral analysis of inorganic grain-size distributions from a Canadian boreal lake core: Towards refining depositional process proxy data from high latitude lakes. Sedimentology 2017, 64, 609–630. [Google Scholar] [CrossRef]
- Middleton, G.V. Hydraulic interpretation of sand size distributions. J. Geol. 1976, 84, 405–426. [Google Scholar] [CrossRef]
- Middleton, G.V.; Southard, J.B. Mechanics of Sediment Movement; SEPM Short Course Notes No. 3; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1984; p. 410. [Google Scholar]
- Dalrymple, R.W. Sediment Dynamics of Macrotidal Sand Bars, Bay of Fundy. Unpublished. Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 1977. [Google Scholar]
- Sun, D.; Bloemendal, J.; Rea, D.K.; Vandenberghe, J.; Jiang, F.; An, Z.; Su, R. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sediment. Geol. 2002, 152, 263–277. [Google Scholar] [CrossRef]
- Viard, J.P.; Breyer, J.A. Description and hydraulic interpretation of grain size cumulative curves from the Platte River system. Sedimentology 1979, 26, 427–439. [Google Scholar] [CrossRef]
- Liu, J.; Cao, D.; Zhang, Y.; Li, Y. Temporal changes in an epeiric paralic deposition during a third-order relative sea-level cycle (Late Pennsylvanian, western North China): Insights from integrated facies and sequence stratigraphic analysis. J. Asian Earth Sci. 2020, 196, 104349. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, Y.; Huang, B.; Dong, Y.; Li, S.; Zhang, G.; Yu, S. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Sci. Rev. 2018, 186, 262–286. [Google Scholar] [CrossRef]
- Ma, S.; Meng, Q.; Duan, L.; Wu, G. Reconstructing Late Paleozoic exhumation history of the Inner Mongolia Highland along the northern edge of the North China Craton. J. Asian Earth Sci. 2014, 87, 89–101. [Google Scholar] [CrossRef]
- Haq, B.U.; Schutter, S.R. A chronology of Paleozoic sea-level changes. Science 2008, 322, 64–68. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, G.; He, Z. Control of palaeoclimatic change on Late Palaeozoic coal accumulation of the North China Plate. Acta Geol. Sin. 1999, 73, 131–139, (In Chinese with English Abstract). [Google Scholar]
- Ma, S.; Meng, Q.; Wu, G.; Duan, L. Late Paleozoic exhumation of the Inner Mongolia Paleo-uplift: Evidences from sedimentary records. Acta Geol. Sin. 2014, 88, 1771–1789, (In Chinese with English Abstract). [Google Scholar]
- Chen, Q.; Li, W.; Liu, H.; Li, K.; Pang, J.; Guo, Y.; Yuan, Z. Provenance analysis of sandstone of the Upper Carboniferous to Middle Permian in Ordos Basin. J. Palaeogeogr. 2009, 11, 629–640. [Google Scholar]
- Chen, Q.; Li, W.; Hu, X.; Li, K.; Pang, J.; Guo, Y. Tectonic setting and provenance analysis of Late Paleozoic sedimentary rocks in the Ordos Basin. Acta Geol. Sin. 2012, 86, 1150–1162, (In Chinese with English Abstract). [Google Scholar]
- Wu, F.; Zhang, N. Sequence stratigraphic analysis of Late Paleozoic coal-bearing measures in North China. In The Depositional Environments and Coal-Accumulating Regularities of Late Paleozoic Coal-Bearing Measures in North China; Chen, Z., Wu, F., Zhang, S., Zhang, N., Ma, J., Ge, L., Eds.; Press of China University of Geosciences: Wuhan, China, 1993; pp. 124–134, (In Chinese with English Abstract). [Google Scholar]
- Wu, F.; Chen, Z.; Zhang, S.; Ge, L. Preliminary study on sequence stratigraphy of Late Paleozoic coal-bearing basin in North China. Coal Geol. China 1994, 6, 11–18. (In Chinese) [Google Scholar]
- Wang, C.Y.; Kang, P.Q. The base of the Permian System in China. Acta Micropalaeontol. Sin. 2000, 17, 378–387, (In Chinese with English Abstract). [Google Scholar]
- Wu, Q.; Ramezani, J.; Zhang, H.; Wang, J.; Zeng, F.; Zhang, Y.; Liu, F.; Chen, J.; Cai, Y.; Hou, Z.; et al. High-precision U-Pb age constraints on the Permian floral turnovers, paleoclimate change, and tectonics of the North China block. Geology 2021, 49, 677–681. [Google Scholar] [CrossRef]
- Sun, B.; Zeng, F.; Liu, C.; Cui, X.; Wang, W. Constraints on U-Pb dating of detrital zircon of the maximum depositional age for Upper Paleozoic coal-bearing strata in Xishan, Taiyuan and its stratigraphic significance. Acta Geol. Sin. 2014, 88, 185–197, (In Chinese with English Abstract). [Google Scholar]
- Liu, G. Permo-Carboniferous paleogeography and coal accumulation and their tectonic control in the North and South China continental plates. Int. J. Coal Geol. 1990, 16, 73–117. [Google Scholar] [CrossRef]
- Jin, Y.; Shang, Q. The Permian of China and its interregional correlation. In Permian-Triassic Evolution of Tethys and Western Circum-Pacific; Yin, H., Dickins, J.M., Shi, G.R., Tong, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 71–98. [Google Scholar]
- Lazar, O.R.; Bohacs, K.M.; Macquaker, J.H.S.; Schieber, J.; Demko, T.M. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines. J. Sediment. Res. 2015, 85, 230–246. [Google Scholar] [CrossRef]
- Dalrymple, R.W.; Zaitlin, B.A.; Boyd, R. Estuarine facies models: Conceptual basis and stratigraphic implications. J. Sediment. Petrol. 1992, 62, 1130–1146. [Google Scholar] [CrossRef]
- Van den Berg, J.H.; Martinius, A.W.; Houthuys, R. Breaching-related turbidites in fluvial and estuarine channels: Examples from outcrop and core and implications to reservoir models. Mar. Pet. Geol. 2017, 82, 178–205. [Google Scholar] [CrossRef]
- Rinke-Hardekopf, L.; Dashtgard, S.E.; MacEachern, J.A.; Gingras, M.K. Resolving stratigraphic architecture and constraining ages of paralic strata in a low-accommodation setting, Firebag Tributary, McMurray Formation, Canada. Depos. Rec. 2022, 8, 754–785. [Google Scholar] [CrossRef]
- Shiers, M.N.; Mountney, N.P.; Hodgson, D.M.; Colombera, L. Controls on the depositional architecture of fluvial point-bar elements in a coastal-plain succession. In Fluvial Meanders and Their Sedimentary Products in the Rock Record; Ghinassi, M., Colombera, L., Mountney, N.P., Reesink, A.J.H., Eds.; International Association of Sedimentologists Special Publication 48; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 15–46. [Google Scholar]
- Mutti, E.; Allen, G.P.; Rosell, J. Sigmoidal-cross stratification and sigmoidal bars: Depositional features diagnostic of tidal sandstones. In Proceedings of the 5th IAS European Regional Meeting, Marsiglia, France, 9–11 April 1984; pp. 312–313. [Google Scholar]
- Tinterri, R. Combined flow sedimentary structures and the genetic link between sigmoidal-and hummocky-cross stratification. GeoActa 2011, 10, 43–85. [Google Scholar]
- Ichaso, A.A.; Dalrymple, R.W. Tide-and wave-generated fluid mud deposits in the Tilje Formation (Jurassic), offshore Norway. Geology 2009, 37, 539–542. [Google Scholar] [CrossRef]
- Miall, A.D. Alluvial deposits. In Facies Models 4; James, N.P., Dalrymple, R.W., Eds.; Geological Association of Canada GEOtext 6: St. John’s, NL, Canada, 2010; pp. 105–137. [Google Scholar]
- Jablonski, B.V.J.; Dalrymple, R.W. Recognition of strong seasonality and climatic cyclicity in an ancient, fluvially dominated, tidally influenced point bar: Middle McMurray Formation, Lower Steepbank River, north-eastern Alberta, Canada. Sedimentology 2016, 63, 552–585. [Google Scholar] [CrossRef]
- Choi, K. Tidal rhythmites in a mixed-energy, macrotidal estuarine channel, Gomso Bay, west coast of Korea. Mar. Geol. 2011, 280, 105–115. [Google Scholar] [CrossRef]
- Pelletier, J.; Abouessa, A.; Schuster, M.; Duringer, P.; Rubino, J.L. Hierarchy of tidal rhythmites from semidiurnal to solstitial cycles: Origin of inclined heterolithic stratifications (IHS) in tidal channels from the Dur At Talah Formation (upper Eocene, Sirte Basin, Libya) and a facies comparison with modern Mont-Saint-Michel Bay deposits (France). In Contributions to Modern and Ancient Tidal Sedimentology: Proceedings of the Tidalites 2012 Conference; Tessier, B., Reynaud, J.-Y., Eds.; International Association of Sedimentologists, Special Publication 47; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 203–216. [Google Scholar]
- Mackay, D.A.; Dalrymple, R.W. Dynamic mud deposition in a tidal environment: The record of fluid-mud deposition in the Cretaceous Bluesky Formation, Alberta, Canada. J. Sediment. Res. 2011, 81, 901–920. [Google Scholar] [CrossRef]
- Choi, K. Rhythmic climbing-ripple cross-lamination in inclined heterolithic stratification (IHS) of a macrotidal estuarine channel, Gomso Bay, west coast of Korea. J. Sediment. Res. 2010, 80, 550–561. [Google Scholar] [CrossRef]
- Dalrymple, R.W. Tidal depositional systems. In Facies Models 4, James, N.P., Dalrymple, R.W., Eds.; Geological Association of Canada GEOtext 6: St. John’s, NL, Canada, 2010; pp. 201–231. [Google Scholar]
- Dalrymple, R.W.; Rhodes, R.N. Estuarine dunes and bars. In Geomorphology and Sedimentology of Estuaries. Developments in Sedimentology; Perillo, G.M.E., Ed.; Elsevier: Amsterdam, The Netherlands, 1995; Volume 53, pp. 359–422. [Google Scholar]
- Fenies, H.; Tastet, J.-P. Facies and architecture of an estuarine tidal bar (the Trompeloup bar, Gironde Estuary, SW France). Mar. Geol. 1998, 150, 149–169. [Google Scholar] [CrossRef]
- Allen, G.P.; Posamentier, H.W. Sequence stratigraphy and facies model of an incised valley fill: The Gironde Estuary, France. J. Sediment. Petrol. 1993, 63, 378–391. [Google Scholar]
- Allen, G.P. Sedimentary processes and facies in the Gironde estuary: A recent model for macrotidal estuarine systems. In Clastic Tidal Sedimentology; Smith, D.G., Reinson, G.E., Zaitlin, B.A., Rahmani, R.A., Eds.; Canadian Society of Petroleum Geologists Memoir 16: Calgary, AB, Canada, 1991; pp. 29–40. [Google Scholar]
- Dalrymple, R.W. Morphology and internal structure of sandwaves in the Bay of Fundy. Sedimentology 1984, 31, 365–382. [Google Scholar] [CrossRef]
- Olariu, C.; Steel, R.J.; Dalrymple, R.W.; Gingras, M.K. Tidal dunes versus tidal bars: The sedimentological and architectural characteristics of compound dunes in a tidal seaway, the lower Baronia Sandstone (Lower Eocene), Ager Basin, Spain. Sediment. Geol. 2012, 279, 134–155. [Google Scholar] [CrossRef]
- Dashtgard, S.E.; Gingras, M.K. Facies architecture and ichnology of recent salt-marsh deposits: Waterside Marsh, New Brunswick, Canada. J. Sediment. Res. 2005, 75, 596–607. [Google Scholar] [CrossRef]
- Dalrymple, R.W.; Makino, Y.; Zaitlin, B.A. Temporal and spatial patterns of rhythmite deposition on mud flats in the macrotidal Cobequid Bay-Salmon River estuary, Bay of Fundy, Canada. In Clastic Tidal Sedimentology; Smith, D.G., Reinson, G.E., Zaitlin, B.A., Rahmani, R.A., Eds.; Canadian Society of Petroleum Geologists, Memoir 16: Calgary, AB, Canada, 1991; pp. 137–160. [Google Scholar]
- Iseya, F. A depositional process of reverse graded bedding in flood deposits of the Sakura River, Ibaraki Prefecture, Japan. Geogr. Rev. Jpn. 1982, 55, 597–613. [Google Scholar] [CrossRef]
- Masuda, F.; Iseya, F. “Inverse grading”: A facies structure of flood deposits in meandering rivers. J. Sedimentol. Soc. Jpn. 1985, 22, 108–116. [Google Scholar]
- Fan, D. Classifications, sedimentary features and facies associations of tidal flats. J. Palaeogeogr. 2013, 2, 66–80. [Google Scholar]
- Dashtgard, S.E.; Vaucher, R.; Yang, B.; Dalrymple, R.W. Hutchison Medallist 1. Wave-Dominated to Tide-Dominated Coastal Systems: A Unifying Model for Tidal Shorefaces and Refinement of the Coastal-Environments Classification Scheme. Geosci. Can. 2021, 48, 5–22. [Google Scholar] [CrossRef]
- de Raaf, J.F.M.; Boersma, J.R.; van Gelder, A. Wave-generated structures and sequences from a shallow marine succession, Lower Carboniferous, County Cork, Ireland. Sedimentology 1977, 24, 451–483. [Google Scholar] [CrossRef]
- Plint, A.G. Wave- and storm-dominated shoreline and shallow-marine systems. In Facies Models 4; James, N.P., Dalrymple, R.W., Eds.; Geological Association of Canada GEOtext 6: St. John’s, NL, Canada, 2010; pp. 167–200. [Google Scholar]
- Allen, J.L.; Johnson, C.L. Architecture and formation of transgressive–regressive cycles in marginal marine strata of the John Henry Member, Straight Cliffs Formation, Upper Cretaceous of Southern Utah, USA. Sedimentology 2011, 58, 1486–1513. [Google Scholar] [CrossRef]
- Olsen, T.R.; Mellere, D.; Olsen, T. Facies architecture and geometry of landward-stepping shoreface tongues: The Upper Cretaceous Cliff House Sandstone (Mancos Canyon, south-west Colorado). Sedimentology 1999, 46, 603–625. [Google Scholar] [CrossRef]
- Chentnik, B.M.; Johnson, C.L.; Mulhern, J.S.; Stright, L. Valleys, estuaries, and lagoons: Paleoenvironments and regressive–transgressive architecture of the Upper Cretaceous Straight Cliffs Formation, Utah, USA. J. Sediment. Res. 2015, 85, 1166–1196. [Google Scholar] [CrossRef]
- Bridges, P.H. Lower Silurian transgressive barrier islands, southwest Wales. Sedimentology 1976, 23, 347–362. [Google Scholar] [CrossRef]
- Schwartz, R.K. Bedform and stratification characteristics of some modern small-scale washover sand bodies. Sedimentology 1982, 29, 835–849. [Google Scholar] [CrossRef]
- Noe-Nygaard, N.; Surlyk, F. Washover fan and brackish bay sedimentation in the Berriasian-Valanginian of Bornholm, Denmark. Sedimentology 1988, 35, 197–217. [Google Scholar] [CrossRef]
- Donselaar, M.E.; Nio, S.D. An Eocene tidal inlet/washover type barrier island complex in the South Pyrenean marginal basin, Spain. Geol. En Mijnb. 1982, 61, 343–353. [Google Scholar]
- Blum, M.; Martin, J.; Milliken, K.; Garvin, M. Paleovalley systems: Insights from Quaternary analogs and experiments. Earth-Sci. Rev. 2013, 116, 128–169. [Google Scholar] [CrossRef]
- Boyd, R.; Dalrymple, R.W.; Zaitlin, B.A. Estuarine and incised-valley facies models. In Facies Models Revisited; Posamentier, H.W., Walker, R.G., Eds.; SEPM Special Publication 84; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 2006; pp. 171–235. [Google Scholar]
- Reinson, G.E. Transgressive barrier island and estuarine systems. In Facies Models: Response to Sea Level Change; Walker, R.G., James, N.P., Eds.; Geological Association of Canada: St. John’s, NL, Canada, 1992; pp. 179–194. [Google Scholar]
- Boyd, R. Transgressive wave-dominated coasts. In Facies Models 4; James, N.P., Dalrymple, R.W., Eds.; Geological Association of Canada GEOtext 6: St. John’s, NL, Canada, 2010; pp. 265–294. [Google Scholar]
- Yoshida, S.; Steel, R.J.; Dalrymple, R.W. Changes in depositional processes—An ingredient in a new generation of sequence-stratigraphic models. J. Sediment. Res. 2007, 77, 447–460. [Google Scholar] [CrossRef]
- Weleschuk, Z.P.; Dashtgard, S.E. Evolution of an ancient (Lower Cretaceous) marginal-marine system from tide-dominated to wave-dominated deposition, McMurray Formation. Sedimentology 2019, 66, 2354–2391. [Google Scholar] [CrossRef]
- Galli, C.P.; Cagliari, J.; Lavina, E.L.C. Evolution of an estuarine valley to barrier-lagoon system promoted by tidal prism change during a transgressive event (Lower Permian, Paraná Basin). J. South Am. Earth Sci. 2021, 110, 103398. [Google Scholar] [CrossRef]
- Tessier, B. Stratigraphy of tide-dominated estuaries. In Principles of Tidal Sedimentology; Davis, R.A., Jr., Dalrymple, R.W., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 109–128. [Google Scholar]
- Ericksen, M.C.; Slingerland, R. Numerical simulations of tidal and wind-driven circulation in the Cretaceous Interior Seaway of North America. Geol. Soc. Am. Bull. 1990, 102, 1499–1516. [Google Scholar] [CrossRef]
- Slingerland, R.L.; Keen, T.R. Sediment transport in the Western Interior Seaway of North America: Predictions from a climate-ocean-sediment model. In Isolated Shallow Marine Sand Bodies: Sequence Stratigraphic Analysis and Sedimentologic Interpretation; Bergman, K.M., Snedden, J.W., Eds.; SEPM Special Publication No. 64; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1999; pp. 179–190. [Google Scholar]
- Bein, A.; Sass, E. Analysis of log-probability plots of recent Atlantic sediments and its analogy with simulated mixtures. Sedimentology 1978, 25, 575–581. [Google Scholar] [CrossRef]
- Inman, D.L. Sorting of sediments in the light of fluid mechanics. J. Sediment. Petrol. 1949, 19, 51–70. [Google Scholar]
- Allen, J.R.L. Fundamental properties of fluids and their relation to sediment transport processes. In Sediment Transport and Depositional Processes; Pye, K., Ed.; Blackwell Scientific Publications: London, UK, 1994; pp. 25–60. [Google Scholar]
- Singer, J.K.; Anderson, J.B. Use of total grain-size distributions to define bed erosion and transport for poorly sorted sediment undergoing simulated bioturbation. Mar. Geol. 1984, 57, 335–359. [Google Scholar] [CrossRef]
- Bagnold, R.A. The nature of saltation and of ‘bed-load’ transport in water. Proc. R. Soc. Lond. A 1973, 332, 473–504. [Google Scholar]
- Fuller, A.O. Size distribution characteristics of shallow marine sands from the Cape of Good Hope, South Africa. J. Sediment. Petrol. 1961, 31, 256–261. [Google Scholar] [CrossRef]
- Dyer, K.R. Coastal and Estuarine Sediment Dynamics; John Wiley & Sons, Inc.: Chichester, UK, 1986; p. 342. [Google Scholar]
- Whitehouse, R.; Soulsby, R.; Roberts, W.; Mitchener, H. Dynamics of Estuarine Muds: A Manual for Practical Applications; Thomas Telford Publishing: London, UK, 2000; p. 210. [Google Scholar]
- Van Ledden, M.; Van Kesteren, W.G.M.; Winterwerp, J.C. A conceptual framework for the erosion behaviour of sand–mud mixtures. Cont. Shelf Res. 2004, 24, 1–11. [Google Scholar] [CrossRef]
- Mikkelsen, O.; Pejrup, M. Comparison of flocculated and dispersed suspended sediment in the Dollard estuary. In Sedimentary Processes in the Intertidal Zone; Black, K.S., Paterson, D.M., Cramp, A., Eds.; Special Publication 139; Geological Society: London, UK, 1998; pp. 199–209. [Google Scholar]
- Chang, T.S.; Flemming, B.W.; Bartholomä, A. Distinction between sortable silts and aggregated particles in muddy intertidal sediments of the East Frisian Wadden Sea, southern North Sea. Sediment. Geol. 2007, 202, 453–463. [Google Scholar] [CrossRef]
- McCave, I.N.; Manighetti, B.; Robinson, S.G. Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and palaeoceanography. Paleoceanography 1995, 10, 593–610. [Google Scholar] [CrossRef]
- Yawar, Z.; Schieber, J. On the origin of silt laminae in laminated shales. Sediment. Geol. 2017, 360, 22–34. [Google Scholar] [CrossRef]
Code | Lithofacies | Sedimentary Structures | Process Interpretation |
---|---|---|---|
Gcm | Granule- to pebble-sized, clast-supported conglomerate | Massive | Hyperconcentrated flow |
Sm, mSm | Sandstone, muddy sandstone | Massive or faint lamination, locally spaced lamination, parallel oriented coal and/or carbonaceous mud clasts | Turbidity flow or hyperconcentrated flow |
Sx, mSx, Sxd | Sandstone, muddy sandstone | Unidirectional crossbedding with or without mud drapes | Migration of 2D or 3D dunes under unidirectional currents. Drapes indicate periods of reduced energy in the system, possibly due to tidal fluctuations |
Sbx, mSbx, Sbd | Sandstone, muddy sandstone | Bidirectional crossbedding with or without mud drapes | Migration of 2D or 3D dunes under bidirectional currents. Drapes indicate periods of reduced energy in the system, possibly due to tidal fluctuations |
mSs | Muddy sandstone | Sigmoidal crossbedding | Lateral juxtaposition of laminated sandy units with sigmoidal geometry |
Sp, mSp, sMp | Sandstone, muddy sandstone, sandy mudstone | Parallel lamination | Plane-bed flow (upper flow regime) |
Sl | Sandstone | Low-angle lamination | Migration of straight or high wavelength bedforms in a transitional upper flow regime |
mSl | Muddy sandstone | Fine lamination, small ripples | Overbank, abandoned channel, or waning flood deposits |
Sr, Srd, mSrd, sMr | Sandstone, muddy sandstone, sandy mudstone | Current-ripple or climbing-ripple cross-lamination with or without mud drapes | Ripples (lower flow regime). Drapes indicate periods of reduced energy in the system, possibly due to tidal fluctuations |
mSrn, mSin | Muddy sandstone | Rhythmic or irregular stacking of normally graded beds | Waning tidal currents with high suspended-sediment concentrations. Rhythmic stacking indicates spring–neap tidal cycles |
Hrc | Sand-dominated heterolith | Rhythmic climbing-ripple cross-lamination | Unidirectional migration of ripples by lower flow regime currents under sustained high suspended-sediment concentration. The climbing ripples indicate rapid deposition from decelerating flows |
Hrl | Sand-dominated or silt-dominated heterolith | Rhythmic lamination, locally strong bioturbation, or root casts | Bedload transport by tidal currents and waves alternating with suspension deposition by gravitational settling from slack water |
Hh | Mixed sand (or coarse silt)–mud heterolith | Horizontal lamination | Bedload transport by upper flow regime currents alternating with suspension deposition during slack water conditions |
Hi | Mixed sandstone–mudstone heterolith | Cm-scale interbedding | Bedload transport by steady flows alternating with suspension deposition by dynamic settling |
sMhx | Sandy mudstone | Hummocky cross-lamination | High-intensity, storm-wave-produced oscillatory flows or oscillatory-dominated combined flows with high aggradation rates |
sMpl | Sandy mudstone | Planar-parallel to low-angle cross-lamination with stacked, normal, and inverse grading | Sustained lateral sediment transport by waning and/or waxing tidal currents, waves, or turbulent currents |
sMc | Sandy mudstone | Convolute lamination | Entrapped air |
sMm | Sandy mudstone | Homogeneous or faint lamination locally with mud clast | High-intensity oscillatory-dominated combined flows with high depositional rates suppressing grain traction. Significant reworking of the substrate with production of coarse-grained detritus |
sMri | Sandy mudstone | Rhythmic stacking of inversely graded beds with fine lamination | Waxing tidal currents with high suspended-sediment concentrations |
sMwr, sMcf, sMl | Sandy mudstone | Wave-ripple cross-lamination, combined-flow-ripple cross-lamination, low-angle lamination | Storm-wave-produced oscillatory flows or oscillatory-dominated combined-flows |
mMh | Medium mudstone | Homogeneous and unbioturbated | Fluid mud deposits |
mMl | Medium mudstone | Fine lamination | Gravitational particle-by-particle fallout and migrating floccule ripples |
mMm | Medium mudstone | Massive to faint lamination, sparse to moderate bioturbation | Gravitational particle-by-particle fallout and migrating floccule ripples. Primary sedimentary structures destroyed by bioturbation |
sMs | Sandy mudstone | Silt or sand streaks | Gravitational particle-by-particle fallout frequently interrupted by sand, silt, and fluid mud deposition from low-intensity, storm-wave-produced oscillatory flows, and oscillatory-dominated combined-flows |
cbMl, cbMm, | Carbonaceous mudstone | Fine lamination, massive or faint lamination, | Limnotrophic pond |
mC | Muddy coal | Mud (30 to 60%) either in intimate mixture with coal or in separate thin (<5 mm) bands | Limnotrophic mire |
bC | Bright coal | Dominantly bright coal containing thin (<5 mm) dull coal bands (<10%) | Ombrotrophic mire |
baC | Banded coal | Contains bright and dull coal bands (<5 mm; 40% to 60%) | Transitional rheotrophic mire |
dC | Dull coal | Dominantly dull coal containing thin (<5 mm) bright coal bands (<10%) | Rheotrophic mire |
Depositional Environments (FA) | Depositional Subenvironments | Constituent Lithofacies |
---|---|---|
Fluvial channel (FA1) | Channel fill | mSm |
Channel fill or lower point bar | mSx | |
Tidal–fluvial channel (FA2) | Channel fill | Gcm, Sm, mSm, mMh |
Channel fill or lower intertidal point bar | Sx, mSx, Sbx, mSbx, Sxd, Sbd, mSs | |
Lower to middle intertidal point bar | Srd, Sxd, Sbd, Sp, Sl | |
Middle intertidal point bar | Hrl, Hi | |
Upper intertidal point bar | Hrc | |
Upper flow regime sand flat (FA4) | None | mSp, mMh |
Estuarine tidal bar (FA3) | Estuary-head tidal bar (bayhead delta) | mSx |
Tidal dune (compound dune) | mSx | |
Elongate tidal bar | mSx, mSrd | |
Fringing tidal flat (FA5) | Sand flat | mSrd, mSxd, mSin |
Mixed flat | mSrn | |
Mud flat | sMl, sMm, sMri | |
Salt marsh | Hrl | |
Lagoonal tidal shoreface (FA6) | Lagoonal mud flat | Hrl, mMl |
Lagoonal beach | mSm, mSp | |
Lagoonal upper shoreface and/or beachface | sMwr, sMp | |
Lagoonal lower shoreface | mMl, sMs, sMwr, sMhx, mMm, sMm, sMp, sMr | |
Back-barrier lagoon (FA7) | Lagoonal fines | mMl, mMm |
Washover fan | sMp | |
Flood-tidal delta | sMs, sMp, sMr | |
Secondary tidal channel | sMp, sMr | |
Washover channel | sMm, sMc | |
Back-barrier tidal flat | Hh | |
Lagoonal coastal mire (FA8) | None | cbMl, mC, bC, baC, dC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, Y.; Tan, J. Coastal Depositional Responses to Relative Sea-Level Rise: Insights from a Superimposed Sandstone–Shale–Coal Reservoir in the Linxing Gas Field, China. Energies 2023, 16, 4144. https://doi.org/10.3390/en16104144
Liu J, Zhang Y, Tan J. Coastal Depositional Responses to Relative Sea-Level Rise: Insights from a Superimposed Sandstone–Shale–Coal Reservoir in the Linxing Gas Field, China. Energies. 2023; 16(10):4144. https://doi.org/10.3390/en16104144
Chicago/Turabian StyleLiu, Jincheng, Yan Zhang, and Jingqiang Tan. 2023. "Coastal Depositional Responses to Relative Sea-Level Rise: Insights from a Superimposed Sandstone–Shale–Coal Reservoir in the Linxing Gas Field, China" Energies 16, no. 10: 4144. https://doi.org/10.3390/en16104144
APA StyleLiu, J., Zhang, Y., & Tan, J. (2023). Coastal Depositional Responses to Relative Sea-Level Rise: Insights from a Superimposed Sandstone–Shale–Coal Reservoir in the Linxing Gas Field, China. Energies, 16(10), 4144. https://doi.org/10.3390/en16104144