Analytical and Numerical Estimation of Fracture Initiation and Propagation Regions around Large-Diameter, Deep Boreholes for Disposal of Long-Lived Intermediate-Level Waste
Abstract
:1. Introduction
2. Two-Dimensional Analytical Stress Solutions for Prediction of Fracturing Zones
2.1. Stresses around a Borehole under Biaxial Compressions and Internal Pressure
2.2. Extensional Strain Criterion for Fracture Initiation
2.3. Shear Stress Criterion for Fracture Initiation
2.4. Fracturing Regions around Boreholes
3. Is It Possible to Have In Situ Horizontal Fractures?
4. Two-Dimensional Numerical Prediction of Fracturing
5. Thermal Effect on Fracturing Regions around Boreholes
5.1. Qualitative Analytical Evaluation
5.2. Numerical Simulation
6. Three-Dimensional Numerical Prediction of Fracturing with FRACOD3D
7. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- IAEA. Classification of Radioactive Waste: General Safety Guide; IAEA Safety Standards Series No GSG-1, IAEA (2003); International Atomic Energy Agency: Vienna, Austria, 2009. [Google Scholar]
- Birkholzer, J.; Houseworth, J.; Tsang, C.F. Geologic Disposal of High-Level Radioactive Waste: Status, Key Issues, and Trends. Annu. Rev. Environ. Resour. 2012, 37, 79–106. [Google Scholar] [CrossRef]
- MacKinnon, R.J.; Mayer, S.J.; Sevougian, S.D.; van Luik, A. Need for and Use of Generic and Site-Specific Underground Research Laboratories to Support Siting, Design and Safety Assessment Developments. In Proceedings of the WM2015 Conference, Phoenix, AR, USA, 15–19 March 2015. [Google Scholar]
- NWTRB. Filling the Gaps: The Critical Role of Underground Research Laboratories in the US Department of Energy Geological Disposal Research and Development Program; A Report to the US Congress and the Secretary of Energy; US Nuclear Waste Technical Review Board (NWTRB): Arlington, VA, USA, 2020. [Google Scholar]
- NWTRB. Survey of National Programs for Managing High-Level Radioactive Waste and Spent Nuclear Fuel: Update; A Report to the US Congress and the Secretary of Energy; Nuclear Waste Technical Review Board (NWTRB): Arlington, VA, USA, 2016. [Google Scholar]
- Haapalehto, S. Geological Mapping of Borehole Breakouts Observed in Acoustical and Optical Borehole Imagery of Deep Drillholes of Olkiluoto, Finland. Master’s Thesis, University of Helsinki, Helsinki, Finland, 2017. [Google Scholar]
- Chapman, N.A. Who Might Be Interested in a Deep Borehole Disposal Facility for Their Radioactive Waste? Energies 2019, 12, 1542. [Google Scholar] [CrossRef] [Green Version]
- Freeze, G.A.; Stein, E.; Brady, P.V.; Lopez, C.; Sassani, D.; Travis, K.; Gibb, F.; Beswick, J. Deep Borehole Disposal Safety Case. Energies 2019, 12, 2141. [Google Scholar] [CrossRef] [Green Version]
- Mallants, D.; Travis, K.; Chapman, N.; Brady, P.V.; Griffiths, H. The State of the Science and Technology in Deep Borehole Disposal of Nuclear Waste. Energies 2020, 13, 833. [Google Scholar] [CrossRef] [Green Version]
- Åhäll, K.I. Final Deposition of High-Level Nuclear Waste in Very Deep Boreholes; Report 2; Swedish NGO Office of Nuclear Waste Review (MKG): Göteborg, Sweden, 2006; p. 28. [Google Scholar]
- Juhlin, C.; Sandstedt, H. Storage of Nuclear Waste in Very Deep Boreholes: Feasibility Study and Assessment of Economic Potential. In SKB Tech. Report, 89-39; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 1989. [Google Scholar]
- Pusch, R. SKB Technical Report 89-32: Influence of Various Excavation Techniques on the Structure and Physical Properties of “Near-Field” Rock around Large Boreholes; Technical Report for SKB: Stockholm, Sweden, 1989. [Google Scholar]
- SKB. Choice of Method—Evaluation of Strategies and Systems for Disposal of Spent Nuclear Fuel; Swedish Nuclear Fuel and Waste Management Company P-10-47: Stockholm, Sweden, 2010; p. 87. [Google Scholar]
- Brady, P.V.; Arnold, B.W.; Freeze, G.A.; Swift, P.N.; Bauer, S.J.; Kanney, J.L.; Rechard, R.P.; Stein, J.S. Deep Borehole Disposal of High-Level Radioactive Waste; Sandia National Laboratories: Albuquerque, NM, USA, 2009. [Google Scholar]
- Brady, P.V.; Freeze, G.A.; Kuhlman, K.L.; Hardin, E.L.; Sassani, D.C.; MacKinnon, R.J. Deep Borehole Disposal of Nuclear Waste: US perspective. In Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, 2nd ed.; Apted, M., Ahn, J., Eds.; Woodhead Publishing: Duxford, UK, 2017; pp. 89–112. [Google Scholar]
- Finsterle, S.; Muller, R.A.; Baltzer, R.; Payer, J.; Rector, J.W. Thermal Evolution Near Heat-generating nuclear waste canisters disposed in horizontal drillholes. Energies 2019, 12, 596. [Google Scholar] [CrossRef] [Green Version]
- Beswick, J. Status of Technology for Deep Borehole Disposal NP 01185; EPS International for the Nuclear Decommissioning Authority: London, UK, 2008. [Google Scholar]
- Gibb, F.G.F.; Travis, K.P.; Hesketh, K.W. Deep Borehole Disposal of Higher Burn up Spent Nuclear Fuels. Mineral. Mag. 2012, 76, 3003–3017. [Google Scholar] [CrossRef]
- Bracke, G.; Kudla, W.; Rosenzweig, T. Status of Deep Borehole Disposal of High-Level Radioactive Waste in Germany. Energies 2019, 12, 2580. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.H.; Ko, Y.K.; Choi, J.W. The State-of-the Art of the Borehole Disposal Concept for High Level Radioactive Waste. J. Korean Radioact. Waste Soc. 2012, 10, 55–62. [Google Scholar] [CrossRef]
- Kim, J.M. Deep Borehole Disposal of High-Level Radioactive Waste and Spent Nuclear Fuel. J. Geol. Soc. Korea 2015, 51, 425–431. [Google Scholar] [CrossRef]
- Park, B.; Kwon, S.; Min, K.-B.; Bona, B.; Sae-ha, K.; Min, U. The Status and Outlook of High-Level Radioactive Waste Disposal in Deep Borehole Focusing on Behaviour of Large-diameter Deep Borehole. J. Korean Soc. Miner. Energy Resour. Eng. 2017, 377–388. [Google Scholar]
- Kochkin, B.; Malkovsky, V.; Yudintsev, S.; Petrov, V.; Ojovan, M. Problems and Perspectives of Borehole Disposal of Radioactive Waste. Prog. Nucl. Energy 2021, 139, 103867. [Google Scholar] [CrossRef]
- Beswick, A.J.; Gibb, F.G.F.; Travis, K.P. Deep Borehole Disposal of Nuclear Waste: Engineering Challenges. Proc. Inst. Civ. Eng. Energy 2014, 167, 47–66. [Google Scholar] [CrossRef] [Green Version]
- Freeze, G.; Sassani, D.; Brady, P.V.; Hardin, E.; Mallants, D. The Need for a Borehole Disposal Field Test for Operations and Emplacement–# 21220. In Proceedings of the Waste Management 2021 Symposium, Phoenix, AR, USA, 7–11 March 2021. [Google Scholar]
- Rigali, M.J.; Hardin, E.L.; Stein, E.; Su, J.C. Large Diameter Deep Borehole Disposal Concept for HLW Glass; SAND2017-0130C; Sandia National Lab: Albuquerque, NM, USA, 2017. [Google Scholar]
- Brady, P.V.; Arnold, A.; Altman, S.; Vaughn, P. Deep Borehole Disposal of Nuclear Waste: Final Report; SAND2012-7789; Sandia National Lab: Albuquerque, NM, USA, 2012. [Google Scholar]
- Mallants, D.; Beiraghdar, Y. Radionuclide Transport and Deep Borehole Disposal: Preliminary Safety Assessments 21202. In Proceedings of the Waste Management 2021 Symposium, Phoenix, AR, USA, 7–11 March 2021. [Google Scholar]
- Klee, G.; Bunger, A.; Meyer, G.; Rummel, F.; Shen, B. In Situ Stresses in Borehole Blanche-1/South Australia Derived from Breakouts, Core Discing and Hydraulic Fracturing to 2 km Depth. Rock Mech. Rock Eng. 2011, 44, 531–540. [Google Scholar] [CrossRef]
- Shen, B.; Barton, N. Rock Fracturing Mechanisms around Underground Openings. Geomech. Eng. 2018, 16, 35–47. [Google Scholar] [CrossRef]
- Lin, H.; Oh, J.; Canbulat, I.; Stacey, T.R. Experimental and Analytical Investigations of the Effect of Hole Size on Borehole Breakout Geometries for Estimation of In Situ Stresses. Rock Mech. Rock Eng. 2020, 53, 781–798. [Google Scholar] [CrossRef]
- Pusch, R.; Ramqvist, G.; Kasbohm, J.; Knutsson, S.; Mohammed, M.H. The Concept of Highly Radioactive Waste (HLW) Disposal in Very Deep Boreholes in a New Perspective. J. Earth Sci. Geotech. Eng. 2012, 2, 1–24. [Google Scholar]
- Bradley, W.B. Failure of Inclined Boreholes. J. Energy Resour. Tech. 1979, 101, 232–239. [Google Scholar] [CrossRef]
- Haimson, B. Micromechanisms of Borehole Instability Leading to Breakouts in Rocks. Int. J. Rock Mech. Min. Sci. 2007, 44, 157–173. [Google Scholar] [CrossRef]
- Hu, H.G.; Guan, X.C.; Shor, R.; Xu, Y.Q.; Han, C.; Liu, Y.W.; Lu, B.P. Dynamic Response and Strength Failure Analysis of Bottomhole Underbalanced Drilling Condition. J. Petro. Sci. Eng. 2020, 194, 107561. [Google Scholar] [CrossRef]
- Ito, T.; Kurosawa, K.; Hayashi, K. Stress Concentration at the Bottom of a Borehole and Its Effect on Borehole Breakout Formation. Rock Mech. Rock Eng. 1998, 31, 153–168. [Google Scholar] [CrossRef]
- Lin, H.S.; Oh, J.; Canbulat, I.; Hebblewhite, B.; Hasoumi, H.; Walsh, S. Experimental Study on Borehole Size Effect and Prediction of Breakout Initiation Stress. Int. J. Rock Mech. Min. Sci. 2021, 142, 104762. [Google Scholar] [CrossRef]
- Shalev, E.; Bauer, S.J.; Homel, M.A.; Antoun, T.H.; Herbold, E.B.; Vorobiev, O.Y.; Levin, H.; Oren, G. Borehole Breakouts Modelling in Arkose and Granite Rocks. Geomech. Geophys. Feo-energ. Geo. Res. 2021, 7, 15. [Google Scholar]
- Liu, W.J.; Zhou, Y.L.; Zhu, X.H.; Meng, X.N.; Liu, M.; Abdel Wahab, M. Numerical Modelling of Bottom-Hole Rock in Underbalanced Drilling Using Thermo-Poroelasto-Plasticity Model. Struct. Eng. Mech. 2019, 69, 537–545. [Google Scholar] [CrossRef]
- Shen, B.; Shi, J.; Khanal, M.; Mallants, D. Geomechanical Modelling of Borehole Stability for Deep Borehole Radioactive Waste Disposal. In Proceedings of the Waste Management Symposium 2022, Phoenix, AR, USA, 6–10 March 2022. [Google Scholar]
- Barton, N.; Shen, B. Extension Strain and Rock Strength Limits for Deep Tunnels, Cliffs, Mountain Walls and the Highest Mountains. Rock Mech. Rock Eng. 2018, 51, 3945–3962. [Google Scholar] [CrossRef]
- Sokolnikoff, I.S. Mathematical Theory of Elasticity, 2nd ed.; McGraw-Hill: New York, NY, USA, 1956; pp. 286–292. [Google Scholar]
- Stacey, T.R. A Simple Extension Strain Criterion for Fracture of Brittle Rock. Int. J. Rock Mech. Min. Sci. Abstr. 1981, 18, 469–474. [Google Scholar] [CrossRef]
- Chang, K.J. On the Maximum Strain Criterion—A New Approach to the Angled Crack Problem. Eng. Fract. Mech. 1981, 14, 107–124. [Google Scholar] [CrossRef]
- Diederichs, M.S. Rock Fracture and Collapse under Low Confinement Conditions. Rock Mech. Rock Eng. 2003, 36, 339–381. [Google Scholar] [CrossRef]
- Diederichs, M.S. The 2003 Canadian Geotechnical Colloquium: Mechanistic Interpretation and Practical Application of Damage and Spalling Prediction Criteria for Deep Tunnelling. Can. Geotech. J. 2007, 44, 1082–1116. [Google Scholar] [CrossRef]
- Martin, C.D.; Kaiser, P.K.; McCreath, D.R. Hoek-Brown Parameters for Predicting the Depth of Brittle Failure Around Tunnels. Can. Geotech. J. 1999, 36, 136–151. [Google Scholar] [CrossRef]
- Perras, M.A.; Diederichs, M.S. Predicting Excavation Damage Zone Depths in Brittle Rocks. J. Rock Mech. Geotech. Eng. 2016, 8, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Brady, B.H.G.; Brown, E.T. Rock Mechanics for Underground Mining; George Allen and Unwin: London, UK, 1985; p. 527. [Google Scholar]
- Cai, M. Practical Estimates of Tensile Strength and Hoek–Brown Strength Parameter mi of Brittle Rocks. Rock Mech. Rock Eng. 2010, 43, 167–184. [Google Scholar] [CrossRef]
- Zang, A.; Stephansson, O. Stress Field of the Earth’s Crust; Springer: Dordrecht, The Netherlands, 2010; p. 324. [Google Scholar]
- Holzhausen, G.R. Origin of Sheet Structure, 1. Morphology and Boundary Conditions. Eng. Geology 1989, 27, 225–278. [Google Scholar] [CrossRef]
- Mallants, D.; Jeffrey, R.; Zhang, X.; Wu, B.; Kear, J.; Chen, Z.; Wu, B.; Bekele, E.; Raiber, M.; Apte, S.; et al. Review of plausible chemical migration pathways in Australian coal seam gas basins. Int. J. Coal Geol. 2018, 195, 280–303. [Google Scholar] [CrossRef]
- Flottmann, T.; Campagna, D.J.; Hillis, R.; Warner, D. Horizontal Microfractures and Core Discing in Sandstone Reservoirs, Cooper Basin, Australia. In Proceedings of the PESA Eastern Australasian Basins Symposium II, Adelaide, Australia, 19–22 September 2004; pp. 689–694. [Google Scholar]
- Pitman, J.K.; Price, L.C.; Lefever, J.A. Diagenesis and Fracture Development in the Bakken Formation, Williston Basin: Implications for Reservoir Quality; U.S. Geological Survey Professional Paper 1653; U.S. Department of the Interior, U.S. Geological Survey: Washington, DC, USA, 2001. [Google Scholar]
- Fattahi, S.; Hopkins, J.; Putman, P. Paragenetic evolution of the Mississippian Pekisko Formation at Minnehik0-Buck Lake, Alberta, Canada. In Proceedings of the GeoCanada 2000 Core Workshop, Canadian Society of Exploration Geophysicists National Convention, Calgary, Canada, 1–2 June 2002. [Google Scholar]
- Shen, B.; Stephansson, O.; Rinne, M. Modelling Rock Fracturing Processes, A Fracture Mechanics Approach Using FRACOD.; Springer: Dordrecht, The Netherlands, 2014; ISBN 978-94-007-6903-8. [Google Scholar]
- Shen, B.; Stephansson, O.; Rinne, M. Modelling Rock Fracturing Processes with FRACOD. In Modelling Rock Fracturing Processes—Theories, Methods and Applications, 2nd ed.; Shen, I., Stephansson, O., Rinne, M., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 105–134. [Google Scholar]
- Geomechanica, Inc. Irazu 2D Geomechanical Simulation Software. 2021. Available online: https://www.geomechanica.com/ (accessed on 1 April 2021).
- Mallants, D.; Phalen, J.; Griffiths, H. Deep borehole disposal of intermediate-level waste. Saf. Nucl. Waste Disposal 2021, 1, 263–264. [Google Scholar] [CrossRef]
- Mallants, D.; Beiraghdar, Y. Heat transport in the near field of a deep vertical disposal borehole: Preliminary performance assessments–21195. In Proceedings of the WM2021 Conference, Phoenix, AR, USA, 7–11 March 2021. [Google Scholar]
- Shi, J.; Shen, B. FRACOD3D: A Three-Dimensional Crack Growth Simulator Code. In Modelling Rock Fracturing Processes–Theories, Methods and Applications, 2nd ed.; Shen, B., Stephansson, O., Rinne, M., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 135–172. [Google Scholar]
- Shi, J.; Shen, B.; Stephansson, O.; Rinne, M. A Three-Dimensional Crack Growth Simulator with Displacement Discontinuity Method. Engng. Anal. Boun. Elem. 2014, 48, 73–86. [Google Scholar] [CrossRef]
- Ortiz, L.; Volckaert, G.; Mallants, D. Gas generation and migration in Boom Clay, a potential host rock formation for nuclear waste storage. Eng. Geol. 2002, 64, 287–296. [Google Scholar] [CrossRef]
- Finsterle, S.; Cooper, C.; Muller, R.A.; Grimsich, J.; Apps, J. Sealing of a Deep Horizontal Borehole Repository for Nuclear Waste. Energies 2020, 14, 91. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, B. Thermal stress analysis of underground openings. Int. J. Num. Anal. Meth. Geomech. 1989, 13, 411–425. [Google Scholar] [CrossRef]
Density | Young’s Modulus: E | Poisson’s | |||
---|---|---|---|---|---|
2650 kg/m3 | 70.8 GPa | 0.24 | 11.2 MPa | 112 MPa | 35° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Shen, B.; Khanal, M.; Mallants, D. Analytical and Numerical Estimation of Fracture Initiation and Propagation Regions around Large-Diameter, Deep Boreholes for Disposal of Long-Lived Intermediate-Level Waste. Energies 2022, 15, 2445. https://doi.org/10.3390/en15072445
Shi J, Shen B, Khanal M, Mallants D. Analytical and Numerical Estimation of Fracture Initiation and Propagation Regions around Large-Diameter, Deep Boreholes for Disposal of Long-Lived Intermediate-Level Waste. Energies. 2022; 15(7):2445. https://doi.org/10.3390/en15072445
Chicago/Turabian StyleShi, Jingyu, Baotang Shen, Manoj Khanal, and Dirk Mallants. 2022. "Analytical and Numerical Estimation of Fracture Initiation and Propagation Regions around Large-Diameter, Deep Boreholes for Disposal of Long-Lived Intermediate-Level Waste" Energies 15, no. 7: 2445. https://doi.org/10.3390/en15072445
APA StyleShi, J., Shen, B., Khanal, M., & Mallants, D. (2022). Analytical and Numerical Estimation of Fracture Initiation and Propagation Regions around Large-Diameter, Deep Boreholes for Disposal of Long-Lived Intermediate-Level Waste. Energies, 15(7), 2445. https://doi.org/10.3390/en15072445