Thermal Simulation of Ice Cellars as a Basis for Food Security and Energy Sustainability of Isolated Indigenous Communities in the Arctic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Natural Environment of the Study Site
2.2. Modeling Object
2.3. Study Materials
2.3.1. Ice Cellar Geometry and Topography Data
2.3.2. Boundary Conditions Data
2.3.3. Soil Parameters Data
2.3.4. Mathematical Model
3. Results
- 3D geological model of soils with the dimensions: length 145 m, width 95 m and depth 30 m (see Figure 2);
- Finite difference mesh with the size 6.35 millions of nodes, where the min. and max. mesh step is equal to 0.2 and 1 m, respectively;
- Results of simulation of thermal states of the soils on the 15th of each month, as follows.
- ○
- From 2014 to 2019 according to the reported weather data (see Section 3.1);
- ○
- From 2020 to 2050 according to the averaged weather data for the last 20 years and to three scenarios of global warming (see Section 3.2).
3.1. Computer Model of Thermal Regime of the Ice Cellar
3.2. Thermal State of Permafrost around the Ice Cellar by the Middle of the 21st Century
- 1.18 to 2.16 m for the RCP 2.6 scenario;
- 1.19 to 2.53 m for the RCP 8.5 scenario.
4. Discussion
4.1. Future of the Ice Cellar in Lorino
4.2. Issues and Limitations of the Computer Model
4.3. Ensuring Energy Sustainability and Food Security for Lorino
4.4. Further Development of the Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandes, J.; Mateus, R.; Gervásio, H.; Silva, S.M.; Bragança, L. Passive strategies used in Southern Portugal vernacular rammed earth buildings and their influence in thermal performance. Renew. Energy 2019, 142, 345–363. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, A.T.; Tran, Q.B.; Tran, D.Q.; Reiter, S. An investigation on climate responsive design strategies of vernacular housing in Vietnam. Build. Environ. 2011, 46, 2088–2106. [Google Scholar] [CrossRef] [Green Version]
- Nocera, F.; Caponetto, R.; Giuffrida, G.; Detommaso, M. Energetic retrofit strategies for traditional sicilian wine cellars: A case study. Energies 2020, 13, 3237. [Google Scholar] [CrossRef]
- Montazeri, H.; Montazeri, F.; Azizian, R.; Mostafavi, S. Two-sided wind catcher performance evaluation using experimental, numerical and analytical modeling. Renew. Energy 2010, 35, 1424–1435. [Google Scholar] [CrossRef]
- Krupnik, I. Arctic Ethnoecology; Nauka: Moscow, Russia, 1989; 272p. [Google Scholar]
- Yoshikawa, K.; Maslakov, A.A.; Kraev, G.N.; Ikuta, H.; Romanovsky, V.E.; Craig, J.G.; Klene, A.E.; Nyland, K.E. Food Storage in Permafrost and Seasonally Frozen Ground in Chukotka/Alaska communities. Arctic 2022, in press. [Google Scholar]
- Melnikov, V.P.; Fedorov, R.Y. The role of natural cryogenic resources in the traditional life support systems of the peoples of Siberia and the Far East. Bull. Tomsk State Univ. 2018, 426, 133–141. [Google Scholar] [CrossRef]
- Yurtsev, B.A. Beringia and its biota in the Late Cenozoic: Synthesis. In Beringia in the Cenozoic: Materials of the All-Union Symposium “Beringian Land and Its Significance for the Development of Holarctic Flora and Fauna in the Cenozoic”; Kontrimavichus, V., Ed.; DVNTs of the USSR Academy of Sciences: Khabarovsk, Russia, 1973; pp. 202–212. [Google Scholar]
- Elias, S.A.; Short, S.K.; Nelson, C.H.; Birks, H.H. Life and times of the Bering land bridge. Nature 1996, 382, 60–63. [Google Scholar] [CrossRef]
- Maslakov, A.A.; Nyland, K.E.; Komova, N.N.; Yurov, F.D.; Yoshikawa, K.; Kraev, G.N. Community ice cellars in eastern Chukotka: Climatic and anthropogenic influences on structural stability. Geogr. Environ. Sustain. 2020, 13, 49–56. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, X.; Zhang, Q.; Lin, Y.; Hao, M.; Luo, Y.; Zhao, Z.; Yao, Y.; Chen, X.; Wang, L.; et al. Recently amplified arctic warming has contributed to a continual global warming trend. Nat. Clim. Chang. 2017, 7, 875–879. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022; in press; Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Citation.pdf (accessed on 25 January 2022).
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [Green Version]
- Abramov, A.; Davydov, S.; Ivashchenko, A.; Karelin, D.; Kholodov, A.; Kraev, G.; Lupachev, A.; Maslakov, A.; Ostroumov, V.; Rivkina, E.; et al. Two decades of active layer thickness monitoring in northeastern Asia. Polar Geogr. 2021, 44, 186–202. [Google Scholar] [CrossRef]
- Kintisch, E. These Ice Cellars Fed Arctic People for Generations. Now They’re Melting. Available online: https://www.nationalgeographic.com/news/2015/10/151030-ice-cellar-arctic-melting-climate-change/ (accessed on 26 January 2022).
- Klene, A.E.; Yoshikawa, K.; Streletskiy, D.A.; Shiklomanov, N.I.; Brown, J.; Nelson, F.E. Temperature regimes in traditional Iñupiat ice cellars, Barrow, Alaska, USA. In Proceedings of the Tenth International Conference on Permafrost, Salekhard, Russia, 25–29 June 2012; The Northern Publisher: Salekhard, Russia, 2012; Volume 4, pp. 268–269. [Google Scholar]
- Yoshikawa, K.; Osipov, D.; Serikov, S.; Permyakov, P.; Stanilovskaya, J.; Gagarin, L.; Kholodov, A. Traditional ice cellars (Lednik, Bulus) in Yakutia: Characteristics, temperature monitoring, and Distribution. Arct. XXI Century Environ. Sci. 2016, 1, 15–22. [Google Scholar]
- Nyland, K.E.; Klene, A.E.; Brown, J.; Shiklomanov, N.I.; Nelson, F.E.; Streletskiy, D.A.; Yoshikawa, K. Traditional Iñupiat ice cellars (SIĠḷUAQ) in Barrow, Alaska: Characteristics, temperature monitoring, and distribution. Geogr. Rev. 2017, 107, 143–158. [Google Scholar] [CrossRef]
- The Number of Permanent Population of the Russian Federation by Municipalities on 1 January 2021. Available online: https://rosstat.gov.ru/storage/mediabank/MZmdFJyI/chisl_%D0%9C%D0%9E_Site_01-01-2021.xlsx (accessed on 27 April 2021).
- Goncharov, R.V.; Dankin, M.A.; Zamyatina, N.Y.; Molodtsova, V.A. Cathedrals in the desert or support bases? Typology of settlements in the Russian Arctic by the nature of the relationship with the surrounding area. Urban Stud. Pract. 2020, 5, 33–56. [Google Scholar]
- Weingartner, K.A.; Antonov, E.V.; Maslakov, A.A. Assessing Energy Security in Nome and Lavrentiya. In Urban Sustainability in the Arctic: Measuring Progress in Circumpolar Cities; Berghahn Books: Providence, RI, USA, 2020; pp. 165–195. [Google Scholar]
- Kobysheva, N.V. Climate of Russia; Gidrometeoizdat: Saint-Petersburg, Russia, 2001; p. 651. [Google Scholar]
- Altynov, A.I.; Alyabina, I.O.; Arakcheev, A.N.; Ashik, A.M.; Baburin, V.L.; Badina, S.V.; Barsova, N.Y.; Baryshev, I.B.; Belousov, S.K.; Berdnikov, N.M.; et al. National Atlas of the Arctic; JSC “Roskartografiya”: Moscow, Russia, 2017. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Kolesnikov, S.; Plakht, I. Chukchi region. In Regional Cryolithology; Popov, A., Ed.; MSU: Moscow, Russia, 1989; pp. 201–217. [Google Scholar]
- Obu, J.; Westermann, S.; Bartsch, A.; Berdnikov, N.; Christiansen, H.H.; Dashtseren, A.; Delaloye, R.; Elberling, B.; Etzelmüller, B.; Kholodov, A.; et al. Northern Hemisphere Permafrost Map Based on TTOP Modelling for 2000–2016 at 1 km2 Scale. Earth-Sci. Rev. 2019, 193, 299–316. [Google Scholar] [CrossRef]
- Chukotka Complex Department SevVostTISIZ. Object: “Adjustment of the layout and development project of the village of Lorino—The central estate of the state farm named after Lenin of the Chukotka district”. In Technical Report on Engineering and Construction Surveys; Chukotka Complex Department SevVostTISIZ: Anadyr, Russia, 1979; 54p. [Google Scholar]
- Chukotka Complex Department SevVostTISIZ. Object:“Point for processing and disposal of marine mammal products in the village of Lorino—The central estate of the state farm named after Lenin of the Chukotka district”. In Technical Report on Engineering and Construction Surveys; Chukotka Complex Department SevVostTISIZ: Anadyr, Russia, 1984; 46p. [Google Scholar]
- Maslakov, A.; Zotova, L.; Komova, N.; Grishchenko, M.; Zamolodchikov, D.; Zelensky, G. Vulnerability of the Permafrost Landscapes in the Eastern Chukotka Coastal Plains to Human Impact and Climate Change. Land 2021, 10, 445. [Google Scholar] [CrossRef]
- Federal State Statistics Service. Available online: www.gks.ru (accessed on 31 March 2020).
- Bulygina, O.N.; Razuvayev, V.N.; Trofimenko, L.T.; Shvets, N.V. Automated Information System for Processing Regime Information (AISPRI). Available online: http://aisori.meteo.ru/ClimateR (accessed on 4 February 2021).
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.D.; Dasqupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Climate Change in Russia in the 21st Century (models CMIP5). Available online: http://voeikovmgo.ru/?option=com_content&view=article&id=613&Itemid=236&lang=ru (accessed on 20 October 2021).
- Gosstroy of Russia. The Set of Rules of the Joint Venture 25.13330.2012. Bases and Foundations on Permafrost Soils; Gosstroy of Russia: Moscow, Russia, 2012; 64p. [Google Scholar]
- Software Package for Thermal Calculations of Grounds FROST 3D. Available online: http://www.frost3d.ru (accessed on 15 October 2021).
- Samarsky, A.A.; Gulin, A.B. Numerical Methods of Mathematical Physics; Nauchny Mir: Moscow, Russia, 2003; 316p. [Google Scholar]
- Samarsky, A.A. Theory of Difference Schemes, 3rd ed.; Nauka: Moscow, Russia, 1989; p. 616. [Google Scholar]
- Tsytovich, N.A. Mechanics of Frozen Soils; High School: Moscow, Russia, 1973; p. 448. [Google Scholar]
- Methodical Recommendations for the Use of Large-Diameter Metal Pipes in Conditions of Icing and Permafrost Soils. Available online: https://docs.cntd.ru/document/1200035466 (accessed on 15 October 2021).
- Kurtener, D.A.; Chudnovsky, A.F. Calculation and Regulation of Thermal Regime in Open and Protected Ground; Hydrometeoizdat: Leningrad, Russia, 1969; 299p. [Google Scholar]
- The Set of Rules for Thermal Performance of the Buildings. Available online: https://docs.cntd.ru/document/1200095525 (accessed on 15 October 2021).
- Pavlov, A.V.; Perlstein, G.Z.; Tipenko, G.S. Actual aspects of modeling and forecasting the thermal state of the cryolithozone in a changing climate. Cryosphere Earth 2010, 14, 3–12. [Google Scholar]
- High-Temperature Hydrotermals of Chukotka. Institute of Volcanic Geology and Geochemistry. Available online: http://www.kscnet.ru/ivs/publication/volc_day/2003/art7.pdf (accessed on 20 October 2021).
- On the Approval of the State Program of the Chukotka Autonomous Okrug Energy Efficiency and Energy Development of the Chukotka Autonomous Okrug for 2016–2020. Government of the Chukotka Autonomous Okrug. Available online: http://чукотка.рф/power/priority_areas/open-budget/government-programs/programma-energoeffektivnost-i-razvitie-energetiki-chukotskogo-avtonomnogo-okruga.rtf (accessed on 25 October 2020).
- Russian-Japanese Cooperation in the Field of Renewable Energy and Energy Efficiency. Ministry of Energy of the Russian Federation Russian Energy Agency. Available online: https://www.erina.or.jp/wp-content/uploads/2017/10/B-UMAKHANOV.pdf (accessed on 20 October 2021).
- Bogoslovskaya, L.; Krupnik, I. Our Ice, Snow and Winds. Indigenous and Academic Knowledge on Ice-Scapes and Climate of Eastern Chukotka; Institut Naslediya: Moscow, Russia, 2013; 360p. [Google Scholar]
- DeWitt, M.; Stefánsson, H.; Valfells, Á. Energy security in the Arctic. In Routledge Handbook of Arctic Security; Routledge: London, UK, 2020; pp. 91–101. [Google Scholar]
- Ravasio, L.; Riise, R.; Sveen, S. Green Buildings in the Arctic region: A literature review. E3S Web Conf. 2020, 172, 16002. [Google Scholar] [CrossRef]
- Moon, T.A.; Overeem, I.; Druckenmiller, M.; Holland, M.; Huntington, H.; Kling, G.; Lovecraft, A.L.; Miller, G.; Scambos, T.; Schädel, C.; et al. The expanding footprint of rapid Arctic change. Earth’s Future 2019, 7, 212–218. [Google Scholar] [CrossRef] [Green Version]
- López-Blanco, E.; Exbrayat, J.F.; Lund, M.; Christensen, T.R.; Tamstorf, M.P.; Slevin, D.; Hugelius, G.; Bloom, A.A.; Williams, M. Evaluation of terrestrial pan-Arctic carbon cycling using a data-assimilation system. Earth Syst. Dyn. 2019, 10, 233–255. [Google Scholar] [CrossRef] [Green Version]
- Nuttall, M. An environment at risk: Arctic indigenous peoples, local livelihoods and climate change. In Arctic Alpine Ecosystems and People in a Changing Environment; Springer: Berlin/Heidelberg, Germany, 2007; pp. 19–35. [Google Scholar]
Month | Date | Temperature Text, °C | Wind Speed v, m/s | Snow Depth d, m |
---|---|---|---|---|
January | 1st | −19.3 | 6.3 | 0.28 |
15th | 0.33 | |||
February | 1st | −18.4 | 5.9 | 0.40 |
15th | 0.44 | |||
March | 1st | −18.22 | 5.4 | 0.52 |
15th | 0.54 | |||
April | 1st | −11.79 | 5.7 | 0.59 |
15th | 0.61 | |||
May | 1st | −2.44 | 5.0 | 0.63 |
15th | 0.56 | |||
June | 1st | 3.53 | 5.4 | 0.28 |
15th | 0 | |||
July | 1st | 7.24 | 7.1 | 0 |
15th | 0 | |||
August | 1st | 7.00 | 6.4 | 0 |
15th | 0 | |||
September | 1st | 4.58 | 7.1 | 0 |
15th | 0 | |||
October | 1st | 0.40 | 8.2 | 0 |
15th | 0.02 | |||
November | 1st | −5.61 | 8.4 | 0.05 |
15th | 0.12 | |||
December | 1st | −13.3 | 6.3 | 0.16 |
15th | 0.20 |
Ground Types | Thermal Conductivity, W/(m·°C) | Heat Capacity, kJ/(m·°C) | Water Content wtot, p.u. | Dry Soil Density ρ, kg/m3 | Ground Freezing Point Tbf, °C | ||
---|---|---|---|---|---|---|---|
Thawed λth | Frozen λf | ||||||
Peat (Unit 1) | 1.04 | 1.67 | 3444 | 3150 | 0.5 | 93 | −0.4 |
Backfill (Unit 2) | 2.41 | 2.61 | 2990 | 2276 | 0.2 | 1680 | −0.6 |
Sand (Unit 3) | 2.03 | 2.32 | 3024 | 2184 | 0.29 | 1340 | −0.6 |
Sand with pebbles (Unit 4) | 1.80 | 2.00 | 3024 | 2184 | 0.29 | 1340 | −0.6 |
Clay (Unit 5) | 1.39 | 1.40 | 2780 | 2260 | 0.14 | 1770 | −0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maslakov, A.; Sotnikova, K.; Gribovskii, G.; Evlanov, D. Thermal Simulation of Ice Cellars as a Basis for Food Security and Energy Sustainability of Isolated Indigenous Communities in the Arctic. Energies 2022, 15, 972. https://doi.org/10.3390/en15030972
Maslakov A, Sotnikova K, Gribovskii G, Evlanov D. Thermal Simulation of Ice Cellars as a Basis for Food Security and Energy Sustainability of Isolated Indigenous Communities in the Arctic. Energies. 2022; 15(3):972. https://doi.org/10.3390/en15030972
Chicago/Turabian StyleMaslakov, Alexey, Ksenia Sotnikova, Gleb Gribovskii, and Dmitry Evlanov. 2022. "Thermal Simulation of Ice Cellars as a Basis for Food Security and Energy Sustainability of Isolated Indigenous Communities in the Arctic" Energies 15, no. 3: 972. https://doi.org/10.3390/en15030972