Management of Plastic Waste and a Circular Economy at the End of the Supply Chain: A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Mapping of Articles
3.2. Analysis and Discussion of the Categories Found
4. Research Propositions and Opportunities
5. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stromberg, J. When Will We Hit Peak Garbage? Smithsonian.com. 2013. Available online: http://www.smithsonianmag.com/science-nature/when-will-we-hit-peak-garbage-7074398/ (accessed on 9 September 2021).
- ECYCLE. O que São Resíduos Sólidos Urbanos (RSUs), Quais Seus Impactos e Como Amenizá-los? 2019. Available online: https://www.ecycle.com.br/component/content/article/63/3129-residuos-solidos-urbanos-conceito-definicao-lixo-atividades-domesti-cas-poluicao-contaminacao-perigosos-impactos-danos-ambiental-social-economico-cidades-coleta-seletiva-materiais-selecao-classificacao-destinaca-descarte-reciclagem-tratamento-gerenciamento.html (accessed on 9 September 2021).
- Appolloni, A.; D’Adamo, I.; Gastaldi, M.; Santibanez-Gonzalez, E.D.; Settembre-Blundo, D. Growing e-waste management risk awareness points toward new recycling scenarios: The view of the Big Four’s youngest consultants. Environ. Technol. Innov. 2021, 23, 101716. [Google Scholar] [CrossRef]
- Briassoulis, D.; Pikasi, A.; Hiskakis, M. Recirculation potential of post-consumer/industrial bio-based plastics through mechanical recycling—Techno-economic sustainability criteria and indicators. Polym. Degrad. Stab. 2021, 183, 109217. [Google Scholar] [CrossRef]
- Stahel, W.R. The circular economy. Nat. News 2016, 531, 435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellen MacArthur Foundation Reuse: Rethinking Packaging. 2019. Available online: https://www.ellenmacarthurfoundation.org/assets/downloads/Reuse.pdf (accessed on 9 September 2021).
- Korhonen, J. Industrial ecology in the strategic sustainable development model: Strategic applications of industrial ecology. J. Clean. Prod. 2004, 12, 809–823. [Google Scholar] [CrossRef]
- Manahan, S.E. Industrial Ecology: Environmental Chemistry and Hazardous Waste; Routledge: Oxfordshire, UK, 2017. [Google Scholar]
- Jeswani, H.; Krüger, C.; Russ, M.; Horlacher, M.; Antony, F.; Hann, S.; Azapagic, A. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery. Sci. Total Environ. 2021, 769, 144483. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.F.; Guevara, A.J.H.; Gonzalez, E.D.S.; Oliveira, P.S.G. Evolution toward environment sustainable behavior: Search for survival in the plastic industry in Brazil. Environ. Dev. Sustain. 2019, 21, 1291–1320. [Google Scholar] [CrossRef]
- Joachimiak-Lechman, K.; Garstecki, D.; Konopczyński, M.; Lewandowska, A. Implementation of Life Cycle Based Tools in the Circular Economy Context—Case Study of Plastic Waste. Sustainability 2020, 12, 9938. [Google Scholar] [CrossRef]
- Erkman, S. Industrial ecology: A new perspective on the future of the industrial system. Swiss Med. Wkly. 2001, 131, 531–538. [Google Scholar]
- Andersen, M.S. An introductory note on the environmental economics of the circular economy. Sustain. Sci. 2007, 2, 133–140. [Google Scholar] [CrossRef]
- Resnitzky, M.H.C.; Grander, G.; da Silva, L.F.; Gonzalez, E.D.R.S. Innovation projects of packaging recycling to a circular economy. Sustain. Oper. Comput. 2021, 2, 115–121. [Google Scholar] [CrossRef]
- Hake, S.; Damgir, R.; Awsarmal, P. Utilization of Plastic waste in Bitumen Mixes for Flexible Pavement. Transp. Res. Procedia 2020, 48, 3779–3785. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. European Commission 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52018DC0028&from=PT (accessed on 22 January 2022).
- Calero, M.; Godoy, V.; Quesada, L.; Martín-Lara, M.Á. Green strategies for microplastics reduction. Curr. Opin. Green Sustain. Chem. 2021, 100442. [Google Scholar] [CrossRef]
- Bassi, S.A.; Boldrin, A.; Faraca, G.; Astrup, T.F. Extended producer responsibility: How to unlock the environmental and economic potential of plastic packaging waste? Resour. Conserv. Recycl. 2020, 162, 105030. [Google Scholar] [CrossRef]
- de Sousa, F.D.B. Pros and Cons of Plastic during the COVID-19 Pandemic. Recycling 2020, 5, 27. [Google Scholar] [CrossRef]
- World Economic Forum. As Canada Bans Bags and More, This is What’s Happening with Single-Use Plastics Around the World. 2020. Available online: https://www.weforum.org/agenda/2020/10/canada-bans-single-use-plastics/ (accessed on 9 September 2021).
- Plastics Europe. Plastics–The Facts 2019. An Analysis of European Plastics Production, Demand and Waste Data. 2019. Available online: https://www.plasticseurope.org/application/files/9715/7129/9584/FINAL_web_version_Plastics_the_facts2019_14102019.pdf (accessed on 9 September 2021).
- Lameh, M.; Abbas, A.; Azizi, F.; Zeaiter, J. A simulation-based analysis for the performance of thermal solar energy for pyrolysis applications. Int. J. Energy Res. 2021, 45, 15022–15035. [Google Scholar] [CrossRef]
- Trokanas, N.; Cecelja, F.; Raafat, T. Semantic approach for pre-assessment of environmental indicators in Industrial Symbiosis. J. Clean. Prod. 2015, 96, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Conti, D.D.M.; Guevara, A.J.D.H.; Heinrichs, H.; Silva, L.F.; Quaresma, C.C.; Beté, T.D.S. Governança colaborativa para a transição da sustentabilidade nas cidades. URBE Rev. Bras. Gestão Urbana 2019, 13, 138–156. [Google Scholar] [CrossRef] [Green Version]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Pollock, A.; Berge, E. How to do a systematic review. Int. J. Stroke 2018, 13, 138–156. [Google Scholar] [CrossRef]
- de Sousa, F.D.B. Management of plastic waste: A bibliometric mapping and analysis. Waste Manag. Res. 2021, 0734242X21992422. [Google Scholar] [CrossRef]
- Cook, D.J.; Mulrow, C.D.; Haynes, R.B. Systematic Reviews: Synthesis of Best Evidence for Clinical Decisions. Ann. Intern. Med. 1997, 126, 376–380. [Google Scholar] [CrossRef]
- Ncube, L.; Ude, A.; Ogunmuyiwa, E.; Zulkifli, R.; Beas, I. An Overview of Plastic Waste Generation and Management in Food Packaging Industries. Recycling 2021, 6, 12. [Google Scholar] [CrossRef]
- Schwabl, D.; Bauer, M.; Lehner, M. Advancing Plastic Recycling by Wet-Mechanical Processing of Mixed Waste Fractions. Processes 2021, 9, 493. [Google Scholar] [CrossRef]
- Selina, M.; Markus, B.; Daniel, S.; Renato, S. Wet-mechanical processing of a plastic-rich two-dimensional-fraction from mixed wastes for chemical recycling. Waste Manag. Res. 2021, 39, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Kranzinger, L.; Pomberger, R.; Schwabl, D.; Flachberger, H.; Bauer, M.; Lehner, M.; Hofer, W. Output-oriented analysis of the wet mechanical processing of polyolefin-rich waste for feedstock recycling. Waste Manag. Res. 2018, 36, 445–453. [Google Scholar] [CrossRef]
- Woidasky, J.; Moesslein, J.; Wendler, P.; Kirchenbauer, D.; Wacker, D.; Gao, G.; Lang-Koetz, C. Identification and Sorting of Polymers in a Circular Economy Using Fluorescent Tracer Materials. Chem. Ing. Tech. 2020, 92, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Faraca, G.; Astrup, T. Plastic waste from recycling centres: Characterisation and evaluation of plastic recyclability. Waste Manag. 2019, 95, 388–398. [Google Scholar] [CrossRef]
- Larrain, M.; Van Passel, S.; Thomassen, G.; Van Gorp, B.; Nhu, T.T.; Huysveld, S.; Van Geem, K.M.; De Meester, S.; Billen, P. Techno-economic assessment of mechanical recycling of challenging post-consumer plastic packaging waste. Resour. Conserv. Recycl. 2021, 170, 105607. [Google Scholar] [CrossRef]
- Antonopoulos, I.; Faraca, G.; Tonini, D. Recycling of post-consumer plastic packaging waste in EU: Process efficiencies, material flows, and barriers. Waste Manag. 2021, 126, 694–705. [Google Scholar] [CrossRef]
- Cappucci, G.M.; Avolio, R.; Carfagna, C.; Cocca, M.; Gentile, G.; Scarpellini, S.; Ferrari, A.M. Environmental life cycle as-sessment of the recycling processes of waste plastics recovered by landfill mining. Waste Manag. 2020, 118, 68–78. [Google Scholar] [CrossRef]
- Möllnitz, S.; Feuchter, M.; Duretek, I.; Schmidt, G.; Pomberger, R.; Sarc, R. Processability of Different Polymer Fractions Re-covered from Mixed Wastes and Determination of Material Properties for Recycling. Polymers 2021, 13, 457. [Google Scholar] [CrossRef]
- Möllnitz, S.; Küppers, B.; Curtis, A.; Khodier, K.; Sarc, R. Influence of pre-screening on down-stream processing for the pro-duction of plastic enriched fractions for recycling from mixed commercial and municipal waste. Waste Manag. 2021, 119, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Wielgosiński, G.; Czerwińska, J.; Szufa, S. Municipal Solid Waste Mass Balance as a Tool for Calculation of the Possibility of Implementing the Circular Economy Concept. Energies 2021, 14, 1811. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, C.; Li, F.; Liu, H.; Yang, J. Stocks and flows of polyvinyl chloride (PVC) in China: 1980–2050. Resour. Conserv. Recycl. 2019, 154, 104584. [Google Scholar] [CrossRef]
- Olatayo, K.I.; Mativenga, P.T.; Marnewick, A.L. Comprehensive evaluation of plastic flows and stocks in South Africa. Resour. Conserv. Recycl. 2021, 170, 105567. [Google Scholar] [CrossRef]
- Pincelli, I.P.; Júnior, A.B.D.C.; Matias, M.S.; Rutkowski, E.W. Post-consumer plastic packaging waste flow analysis for Brazil: The challenges moving towards a circular economy. Waste Manag. 2021, 126, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Vingwe, E.; Towa, E.; Remmen, A. Danish Plastic Mass Flows Analysis. Sustainability 2020, 12, 9639. [Google Scholar] [CrossRef]
- Moretti, C.; Hamelin, L.; Jakobsen, L.G.; Junginger, M.H.; Steingrimsdottir, M.M.; Høibye, L.; Shen, L. Cradle-to-grave life cycle assessment of single-use cups made from PLA, PP and PET. Resour. Conserv. Recycl. 2021, 169, 105508. [Google Scholar] [CrossRef]
- Schwarz, A.E.; Ligthart, T.N.; Bizarro, D.G.; De Wild, P.; Vreugdenhil, B.; van Harmelen, T. Plastic recycling in a circular economy; determining environmental performance through an LCA matrix model approach. Waste Manag. 2021, 121, 331–342. [Google Scholar] [CrossRef]
- Antelava, A.; Jablonska, N.; Constantinou, A.; Manos, G.; Salaudeen, S.A.; Dutta, A.; Al-Salem, S.M. Energy Potential of Plastic Waste Valorization: A Short Comparative Assessment of Pyrolysis versus Gasification. Energy Fuels 2021, 35, 3558–3571. [Google Scholar] [CrossRef]
- Canopoli, L.; Fidalgo, B.; Coulon, F.; Wagland, S. Physico-chemical properties of excavated plastic from landfill mining and current recycling routes. Waste Manag. 2018, 76, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Mangesh, V.; Tamizhdurai, P.; Krishnan, P.S.; Narayanan, S.; Umasankar, S.; Padmanabhan, S.; Shanthi, K. Green energy: Hydroprocessing waste polypropylene to produce transport fuel. J. Clean. Prod. 2020, 276, 124200. [Google Scholar] [CrossRef]
- Faussone, G.C. Transportation fuel from plastic: Two cases of study. Waste Manag. 2018, 73, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Gracida-Alvarez, U.R.; Winjobi, O.; Sacramento-Rivero, J.C.; Shonnard, D.R. System Analyses of High-Value Chemicals and Fuels from a Waste High-Density Polyethylene Refinery. Part 1: Conceptual Design and Techno-Economic Assessment. ACS Sustain. Chem. Eng. 2019, 7, 18254–18266. [Google Scholar] [CrossRef]
- Joshi, C.A.; Seay, J.R. Total generation and combustion emissions of plastic derived fuels: A trash to tank approach. Environ. Prog. Sustain. Energy 2019, 39. [Google Scholar] [CrossRef]
- Román-Ramírez, L.A.; Powders, M.; McKeown, P.; Jones, M.D.; Wood, J. Ethyl lactate production from the catalytic depoly-merisation of post-consumer poly (lactic acid). J. Polym. Environ. 2020, 28, 2956–2964. [Google Scholar] [CrossRef]
- McKeown, P.; Kamran, M.; Davidson, M.G.; Jones, M.D.; Román-Ramírez, L.A.; Wood, J. Organocatalysis for versatile polymer degradation. Green Chem. 2020, 22, 3721–3726. [Google Scholar] [CrossRef]
- Kawashima, N.; Yagi, T.; Kojima, K. Pilot-Scale Composting Test of Polylactic Acid for Social Implementation. Sustainability 2021, 13, 1654. [Google Scholar] [CrossRef]
- Bucknall, D.G. Plastics as a materials system in a circular economy. Philos. Trans. R. Soc. A 2020, 378, 20190268. [Google Scholar] [CrossRef]
- Platnieks, O.; Barkane, A.; Ijudina, N.; Gaidukova, G.; Thakur, V.K.; Gaidukovs, S. Sustainable tetra pak recycled cellulose/Poly(Butylene succinate) based woody-like composites for a circular economy. J. Clean. Prod. 2020, 270, 122321. [Google Scholar] [CrossRef]
- Wojnowska-Baryła, I.; Kulikowska, D.; Bernat, K. Effect of Bio-Based Products on Waste Management. Sustainability 2020, 12, 2088. [Google Scholar] [CrossRef] [Green Version]
- Lonca, G.; Lesage, P.; Majeau-Bettez, G.; Bernard, S.; Margni, M. Assessing scaling effects of circular economy strategies: A case study on plastic bottle closed-loop recycling in the USA PET market. Resour. Conserv. Recycl. 2020, 162, 105013. [Google Scholar] [CrossRef]
- Adefila, A.; Abuzeinab, A.; Whitehead, T.; Oyinlola, M. Bottle house: Utilising appreciative inquiry to develop a user acceptance model. Built Environ. Proj. Asset Manag. 2020, 10, 567–583. [Google Scholar] [CrossRef]
- Allam, Z.; Jones, D.S. Towards a Circular Economy: A Case Study of Waste Conversion into Housing Units in Cotonou, Benin. Urban Sci. 2018, 2, 118. [Google Scholar] [CrossRef] [Green Version]
- Tafreshi, S.N.M.; Omran, M.P.; Rahimi, M.; Dawson, A. Experimental investigation of the behavior of soil reinforced with waste plastic bottles under cyclic loads. Transp. Geotech. 2020, 26, 100455. [Google Scholar] [CrossRef]
- Juan, R.; Domínguez, C.; Robledo, N.; Paredes, B.; García-Muñoz, R.A. Incorporation of recycled high-density polyethylene to polyethylene pipe grade resins to increase close-loop recycling and Underpin the circular economy. J. Clean. Prod. 2020, 276, 124081. [Google Scholar] [CrossRef]
- Karakoti, M.; Pandey, S.; Jangra, R.; Dhapola, P.S.; Singh, P.K.; Mahendia, S.; Abbas, A.; Sahoo, N.G. Waste plastics derived graphene nanosheets for supercapacitor application. Mater. Manuf. Process. 2020, 36, 171–177. [Google Scholar] [CrossRef]
- Tramis, O.; Garnier, C.; Yus, C.; Irusta, S.; Chabert, F. Enhancement of the fatigue life of recycled PP by incorporation of recycled opaque PET collected from household milk bottle wastes. Waste Manag. 2021, 125, 49–57. [Google Scholar] [CrossRef]
- Nunes, B.F.S.; Oliveira, M.C.; Fernandes, A.C. Dioxomolybdenum complex as an efficient and cheap catalyst for the reductive depolymerization of plastic waste into value-added compounds and fuels. Green Chem. 2020, 22, 2419–2425. [Google Scholar] [CrossRef]
- Mumladze, T.; Yousef, S.; Tatariants, M.; Kriūkienė, R.; Makarevicius, V.; Lukošiūtė, S.I.; Denafas, G. Sustainable approach to recycling of multilayer flexible packaging using switchable hydrophilicity solvents. Green Chem. 2018, 20, 3604–3618. [Google Scholar] [CrossRef]
- Shin, S.-K.; Um, N.; Kim, Y.-J.; Cho, N.-H.; Jeon, T.-W. New Policy Framework with Plastic Waste Control Plan for Effective Plastic Waste Management. Sustainability 2020, 12, 6049. [Google Scholar] [CrossRef]
- Ma, X.; Park, C.; Moultrie, J. Factors for eliminating plastic in packaging: The European FMCG experts’ view. J. Clean. Prod. 2020, 256, 120492. [Google Scholar] [CrossRef]
- Berwald, A.; Dimitrova, G.; Feenstra, T.; Onnekink, J.; Peters, H.; Vyncke, G.; Ragaert, K. Design for Circularity Guidelines for the EEE Sector. Sustainability 2021, 13, 3923. [Google Scholar] [CrossRef]
- Wohner, B.; Schwarzinger, N.; Gürlich, U.; Heinrich, V.; Tacker, M. Technical emptiability of dairy product packaging and its environmental implications in Austria. PeerJ 2019, 7, e7578. [Google Scholar] [CrossRef] [PubMed]
- Radusin, T.; Nilsen, J.; Larsen, S.; Annfinsen, S.; Waag, C.; Eikeland, M.S.; Pettersen, M.K.; Fredriksen, S.B. Use of recycled materials as mid layer in three layered structures-new possibility in design for recycling. J. Clean. Prod. 2020, 259, 120876. [Google Scholar] [CrossRef]
- Gall, M.; Steinbichler, G.; Lang, R.W. Learnings about design from recycling by using post-consumer polypropylene as a core layer in a co-injection molded sandwich structure product. Mater. Des. 2021, 202, 109576. [Google Scholar] [CrossRef]
- Civancik-Uslu, D.; Puig, R.; Voigt, S.; Walter, D.; Fullana-I-Palmer, P. Improving the production chain with LCA and eco-design: Application to cosmetic packaging. Resour. Conserv. Recycl. 2019, 151, 104475. [Google Scholar] [CrossRef]
- Czarnecka-Komorowska, D.; Wiszumirska, K. Sustainability design of plastic packaging for the Circular Economy. Polimery 2020, 65, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Foschi, E.; Zanni, S.; Bonoli, A. Combining Eco-Design and LCA as Decision-Making Process to Prevent Plastics in Packaging Application. Sustainability 2020, 12, 9738. [Google Scholar] [CrossRef]
- Shi, P.; Wan, Y.; Grandjean, A.; Lee, J.-M.; Tay, C.Y. Clarifying the in-situ cytotoxic potential of electronic waste plastics. Chemosphere 2020, 269, 128719. [Google Scholar] [CrossRef]
- Suponik, T.; Franke, D.; Nuckowski, P.; Matusiak, P.; Kowol, D.; Tora, B. Impact of Grinding of Printed Circuit Boards on the Efficiency of Metal Recovery by Means of Electrostatic Separation. Minerals 2021, 11, 281. [Google Scholar] [CrossRef]
- Sommerhuber, P.F.; Wang, T.; Krause, A. Wood–plastic composites as potential applications of recycled plastics of electronic waste and recycled particleboard. J. Clean. Prod. 2016, 121, 176–185. [Google Scholar] [CrossRef]
- Wagner, F.; Peeters, J.; De Keyzer, J.; Janssens, K.; Duflou, J.; Dewulf, W. Towards a more circular economy for WEEE plastics—Part B: Assessment of the technical feasibility of recycling strategies. Waste Manag. 2019, 96, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Butturi, M.A.; Marinelli, S.; Gamberini, R.; Rimini, B. Ecotoxicity of Plastics from Informal Waste Electric and Electronic Treatment and Recycling. Toxics 2020, 8, 99. [Google Scholar] [CrossRef]
- DePalma, K.; Walluk, M.; Murtaugh, A.; Hilton, J.; McConky, S.; Hilton, B. Assessment of 3D printing using fused deposition modeling and selective laser sintering for a circular economy. J. Clean. Prod. 2020, 264, 121567. [Google Scholar] [CrossRef]
- Garmulewicz, A.; Holweg, M.; Veldhuis, H.; Yang, A. Disruptive Technology as an Enabler of the Circular Economy: What Potential Does 3D Printing Hold? Calif. Manag. Rev. 2018, 60, 112–132. [Google Scholar] [CrossRef]
- Chidepatil, A.; Bindra, P.; Kulkarni, D.; Qazi, M.; Kshirsagar, M.; Sankaran, K. From trash to cash: How blockchain and multi-sensor-driven artificial intelligence can transform circular economy of plastic waste? Adm. Sci. 2020, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Van Engelshoven, Y.; Wen, P.; Bakker, M.; Balkenende, R.; Rem, P. An Innovative Route to Circular Rigid Plastics. Sustainability 2019, 11, 6284. [Google Scholar] [CrossRef] [Green Version]
- Celauro, C.; Teresi, R.; Graziano, F.; La Mantia, F.P.; Protopapa, A. Preliminary Evaluation of Plasmix Compound from Plastics Packaging Waste for Reuse in Bituminous Pavements. Sustainability 2021, 13, 2258. [Google Scholar] [CrossRef]
- Anwar, M.; Shah, S.; Alhazmi, H. Recycling and Utilization of Polymers for Road Construction Projects: An Application of the Circular Economy Concept. Polymers 2021, 13, 1330. [Google Scholar] [CrossRef]
- Mohammadhosseini, H.; Alyousef, R.; Tahir, M.M. Towards Sustainable Concrete Composites through Waste Valorisation of Plastic Food Trays as Low-Cost Fibrous Materials. Sustainability 2021, 13, 2073. [Google Scholar] [CrossRef]
- Mondal, M.; Bose, B.; Bansal, P. Recycling waste thermoplastic for energy efficient construction materials: An experimental investigation. J. Environ. Manag. 2019, 240, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Roche Cerasi, I.; Sánchez, F.V.; Gallardo, I.; Górriz, M.Á.; Torrijos, P.; Aliaga, C.; Franco, J. Household plastic waste habits and attitudes: A pilot study in the city of Valencia. Waste Manag. Res. 2021, 39, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Šuškevičė, V.; Kruopienė, J. Improvement of Packaging Circularity through the Application of Reusable Beverage Cup Reuse Models at Outdoor Festivals and Events. Sustainability 2021, 13, 247. [Google Scholar] [CrossRef]
- Cottafava, D.; Riccardo, L.E.; Cristian, D.A. From flow to stock. new circular business models for integrated systems: A case study on reusable plastic cups. Procedia Environ. Sci. Eng. Manag. 2019, 6, 81–94. [Google Scholar]
- Horvath, B.; Mallinguh, E.; Fogarassy, C. Designing Business Solutions for Plastic Waste Management to Enhance Circular Transitions in Kenya. Sustainability 2018, 10, 1664. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Chen, W.-Q.; Jiang, D.; Zhang, C.; Ma, Z.; Ren, Y.; Shi, L. Evolution of the global polyethylene waste trade system. Ecosyst. Heal. Sustain. 2020, 6. [Google Scholar] [CrossRef] [Green Version]
- Dijkstra, H.; van Beukering, P.; Brouwer, R. Business models and sustainable plastic management: A systematic review of the literature. J. Clean. Prod. 2020, 258, 120967. [Google Scholar] [CrossRef]
- Thunman, H.; Vilches, T.B.; Seemann, M.; Maric, J.; Vela, I.C.; Pissot, S.; Nguyen, H.N. Circular use of plastics-transformation of existing petrochemical clusters into thermochemical recycling plants with 100% plastics recovery. Sustain. Mater. Technol. 2019, 22, e00124. [Google Scholar] [CrossRef]
- Curtzwiler, G.W.; Schweitzer, M.; Li, Y.; Jiang, S.; Vorst, K.L. Mixed post-consumer recycled polyolefins as a property tuning material for virgin polypropylene. J. Clean. Prod. 2019, 239, 117978. [Google Scholar] [CrossRef]
- Ghisellini, P.; Ulgiati, S. Circular economy transition in Italy. Achievements, perspectives and constraints. J. Clean. Prod. 2019, 243, 118360. [Google Scholar] [CrossRef]
- Chen, Z.; Tan, A. Exploring the circular supply chain to reduce plastic waste in singapore. LogForum 2021, 17, 271–286. [Google Scholar] [CrossRef]
Journal | 2014 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Total |
---|---|---|---|---|---|---|---|---|
Waste Management | 0 | 0 | 1 | 7 | 6 | 5 | 5 | 24 |
Resources, Conservation and Recycling | 0 | 0 | 1 | 1 | 3 | 8 | 5 | 18 |
Journal of Cleaner Production | 0 | 1 | 0 | 0 | 3 | 11 | 2 | 17 |
Sustainability | 0 | 0 | 0 | 1 | 1 | 7 | 6 | 15 |
Science of the Total Environment | 0 | 0 | 0 | 1 | 0 | 3 | 3 | 7 |
Waste Management and Research | 0 | 0 | 2 | 1 | 0 | 0 | 3 | 6 |
Green Chemistry | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 5 |
Materials | 0 | 0 | 0 | 1 | 1 | 2 | 0 | 4 |
Procedia Environmental Science | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 4 |
ACS Sustainable Chemistry and E | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 3 |
Environmental Engineering and M | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 3 |
Polymers | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 3 |
Recycling | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 3 |
Total | 1 | 4 | 5 | 20 | 39 | 77 | 55 | 201 |
% | 0.5 | 2.0 | 2.5 | 9.95 | 19.40 | 38.31 | 27.36 | 100% |
Methods | Number |
---|---|
Laboratory experiment | 95 |
Case study | 48 |
Theoretical | 33 |
Statistical modeling | 19 |
Survey | 3 |
Interview | 3 |
Total | 201 |
Study Category | Number |
---|---|
Mechanical processes | 37 |
Assessment and prediction model | 32 |
Pyrolysis/thermal cracking | 30 |
Biodegradable plastics | 30 |
Upcycling/downcycling | 24 |
Addition of materials for depolymerization | 21 |
Extending producer/consumer responsibility | 19 |
Ecodesign | 16 |
Plastic electronic waste | 11 |
Industry 4.0 | 11 |
Construction | 9 |
Business models | 7 |
Energy generation | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, L.F.; Resnitzkyd, M.H.C.; Santibanez Gonzalez, E.D.R.; de Melo Conti, D.; da Costa, P.R. Management of Plastic Waste and a Circular Economy at the End of the Supply Chain: A Systematic Literature Review. Energies 2022, 15, 976. https://doi.org/10.3390/en15030976
da Silva LF, Resnitzkyd MHC, Santibanez Gonzalez EDR, de Melo Conti D, da Costa PR. Management of Plastic Waste and a Circular Economy at the End of the Supply Chain: A Systematic Literature Review. Energies. 2022; 15(3):976. https://doi.org/10.3390/en15030976
Chicago/Turabian Styleda Silva, Luciano Ferreira, Maria Helena Costa Resnitzkyd, Ernesto Del Rosario Santibanez Gonzalez, Diego de Melo Conti, and Priscila Rezende da Costa. 2022. "Management of Plastic Waste and a Circular Economy at the End of the Supply Chain: A Systematic Literature Review" Energies 15, no. 3: 976. https://doi.org/10.3390/en15030976
APA Styleda Silva, L. F., Resnitzkyd, M. H. C., Santibanez Gonzalez, E. D. R., de Melo Conti, D., & da Costa, P. R. (2022). Management of Plastic Waste and a Circular Economy at the End of the Supply Chain: A Systematic Literature Review. Energies, 15(3), 976. https://doi.org/10.3390/en15030976