# Investigation of Biomass Integrated Air Gasification Regenerative Gas Turbine Power Plants

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

## Abstract

**:**

_{2}mole fraction depicted a value of 1.25%, 0.85% of CO, and 10.50% of CH

_{4}for a lower heating value of 38 MJ/kg syngas. It is shown that the gasification air entered into the gasifier decreases amid the increase in the biomass moisture content. At different syngas rates (3–10 kg/s) and optimum ER, the results predicted that the Wood Chip biomass flow rates decrease when the gasifier efficiency increases. The simulation model revealed that ER growths at lower levels have a significant effect on increasing the power of the RGT plant.

## 1. Introduction

_{4}), along with carbon dioxide (CO

_{2}), hydrogen (H

_{2}), and nitrogen (N

_{2}) [17,21]. Nitrogen is not an inflammable gas; thus, it is not preferred as a component in the producer gas, as it dilutes the syngas and has no energy value. The proportion of the thick biomass stage to the total reactor volume is an important factor in classifying the biomass gasifiers. According to this procedure, the gasifier can be categorized into (a) thick-phase gasifiers and (b) lean-phase gasifiers. In the lean-phase gasifier, such as the fluidized bed, the volume occupied by the biomass is very limited to about 0.05–0.20 m

^{3}. Most of the gasifiers used for heavy-duty utilization, particularly in the progressing countries, are the dense-phase reactors, such as the fixed bed reactors, with a dense factor of 0.30–0.08 m

^{3}. Other factors that affect the choice gasifier are the fuel, reactor size, ash content, and moisture. The fixed bed gasifiers have reasonably limited scope power age units and industrial heating applications [22].

## 2. Materials and Methods

## 3. Modeling of Components

_{1}to x

_{6}will be calculated using atomic balancing and equilibrium constant equations. The following are the steps to take [3,42]:

_{gasif}) as follows [54]:

^{3}/s), is calculated by subtracting its lower heating value, LHVg (MJ/Nm

^{3}), from its ideal higher heating value, LHVg (MJ/Nm

^{3}) [17].

_{i}), according to [17]:

_{i}), according to [17]:

_{f}, the needed power output, is divided by the LHV of the biomass (LHV

_{bm}) and by the gasifier efficiency (η

_{gef}) [17]:

_{th}, called the stoichiometric air requirement. Equation (16) [15] shows how to calculate it:

_{a}, is shown below [17]:

_{fa}, at a fuel feed rate of M

_{f}is the amount of actual air [17]:

_{f}is the solid fuel’s lower heating value (LHV). The hot-gas efficiency, abbreviated as η

_{hg}, is defined as [17]:

_{0}is the fuel temperature entering the gasifier, and T

_{f}is the gas temperature at the gasifier egress or the burner’s access [17]. Accordingly, the intake pressure at the compressor inlet was modeled with the following equation [16]:

_{1}and P

_{2}are the compressor’s inlet and outlet air pressure, respectively [18]. The isentropic outlet temperature leaving the compressor is modeled by the equation [35,57,58]:

_{1}and T

_{2}are the compressor inlet and outlet air temperatures, respectively, and T

_{2s}is the compressor isentropic outlet temperature. The specific work required to run the compressor work (W

_{C}) is modeled with the following equation [60]:

_{it}is the turbine inlet temperature, ${\mathrm{C}}_{{\mathrm{P}}_{\mathrm{f}}}$ is the specific heat of fuel, and T

_{f}is the temperature of the fuel. The specific heat of the flue gas was modeled with ${\mathrm{C}}_{{\mathrm{P}}_{\mathrm{g}}}=1.07\mathrm{kJ}/\mathrm{kg}\xb7\mathrm{K}$; efficiency was set at 95%, and a pressure drop of $\Delta {\mathrm{P}}_{\mathrm{C},\mathrm{C}}=0.4785\mathrm{bar}$ was set in the combustor. Accordingly, the efficiency of the combustor is modeled as [35]:

## 4. Results and Discussion

_{2}, water vapor, nitrogen, and a massive decrease in the lower heating value of the syngas. The point of inflection can be regarded as the point of the optimal design of the system to derive the required biomass rate for the necessary air gasification to produce the assigned syngas rates. The produced syngas composition varies with the amount of supplied air to the process.

_{2}and H

_{2}O production rate increases [65]. The increase in the gasification pressure has influenced the RGT thermal efficiency and the syngas LHV due to enhancement of the gasification reactions and the growth of the major constituents of the syngas product. Figure 4 shows the variation of the equivalence ratio (ER) with syngas lower heating value at different wood chips syngas rates (5–25 kg/s), at gasification pressure of 20 bar, the temperature of 1500 K, and moisture content of 12%. The profile exhibited an increase in the syngas LHV with the ER, till an optimum amount of the ER, subsequently the further increase in the ER has led to slow down the syngas LHV.

_{2}concentrations and the decrease in the CH

_{4}concentration in the syngas [67]. The increase in the temperature results in primary and secondary water–gas shift reactions, secondary cracking, and reforming of heavy hydrocarbons activity. Thus this results in increasing the concentration of the H

_{2}in the syngas [54,68]. The activity of water gas shift reaction and Boudouard reactions will significantly increase due to temperature growth.

_{2}O vapor produces a lot of CO. However, the further temperature growth promotes combustion reactions and thus decreases of CH

_{4}amount at the syngas [54,68] final products. Figure 6 presents the variation of the equivalence ratio (ER) and the percentage mole fractions of the syngas at a gasification temperature of 1500 K, pressure of 20 bar, regenerator effectiveness of 95%, gasifier efficiency of 95%, moisture content of 12%, and a produced amount of 5 kg/s syngas. The influence of the significant parameter, ER, is displayed and observed.

_{2}and H

_{2}O vapor formation increase with the increase in the ER, while the formation of CO

_{2}, CH

_{4}, H

_{2,}and CO exhibited decreases upon increasing the ER. At the optimum ER, the H

_{2}mole fraction depicted a value of 1.25%, 0.85% of CO, and 10.50% of CH

_{4}, for a lower heating value of 38 MJ/kg syngas. The highest value of the syngas composition is depicted by N

_{2}since air is the gasification medium. Although a higher syngas energy content is observed, the amount of N

_{2}in the produced gas could be reduced by using steam or oxygen as oxidizing agents [11].

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Nomenclature

T | Temperature | (K) |

S | Entropy | (kJ/kg·K) |

P | Pressure | (kPa) |

${\mathrm{r}}_{\mathrm{P}}$ | Compression Ratio | - |

$\mathsf{\gamma}$ | Specific Heat Ratio | - |

${\mathsf{\eta}}_{\mathrm{C}}$ | Isentropic Compressor Efficiency | - |

${\mathsf{\eta}}_{\mathrm{g}\mathrm{e}\mathrm{f}}$ | Gasifier Efficiency | - |

${\mathrm{T}}_{\mathrm{S}}$ | Compressor Isentropic Temperature | (K) |

${\dot{\mathrm{W}}}_{\mathrm{C}}$ | Specific Compressor Work | (MW) |

${\dot{\mathrm{m}}}_{\mathrm{a}}$ | Air Mass | (kgair) |

${\dot{\mathrm{m}}}_{\mathrm{f}}$ | Fuel Mass | (kg·fuel) |

${\dot{\mathrm{m}}}_{\mathrm{g}}$ | Gas Mass | (kg·gas) |

${\mathrm{M}}_{\mathrm{t}\mathrm{h}}$ | Gasifier Stoichiometric Air Flow Rate | (kg air/kg dry fuel) |

CC | Combustion Chamber | - |

ER | Equivalence Ratio | - |

RGT | Regenerative Gas Turbine | - |

IBG | Integrated Biomass Gasification | - |

Mech | Mechanical | - |

Gen | Generator | - |

EES | Engineering Equation Solver | - |

${\mathrm{T}}_{\mathrm{x}}$ | Combustor Inlet Temperature | (K) |

$\Delta {\mathrm{P}}_{\mathrm{C},\mathrm{C}}$ | Combustor Pressure Drop | (bar) |

${\mathsf{\eta}}_{\mathrm{C},\mathrm{C}}$ | Combustor Efficiency | - |

$\mathsf{\epsilon}$ | Regenerator Effectiveness | - |

${\dot{\mathrm{W}}}_{\mathrm{G}\mathrm{T}}$ | Turbine Shaft Work | (MW) |

${\mathsf{\eta}}_{\mathrm{T}}$ | Turbine Efficiency | - |

${\mathrm{y}}_{\mathrm{i}}$ | Syngas Mole Fraction | - |

${\mathrm{P}}_{\mathrm{G}\mathrm{T}}$ | GT Power | (MW) |

${\dot{\mathrm{Q}}}_{\mathrm{a}\mathrm{d}\mathrm{d}}$ | Heat Supplied | (kW) |

${\mathrm{C}}_{{\mathrm{P}}_{\mathrm{a}}}$ | Heat Capacity of Air | (kJ/kg·K) |

${\mathrm{C}}_{{\mathrm{P}}_{\mathrm{f}}}$ | Heat Capacity of Fuel | (kJ/kg·K) |

${\mathrm{C}}_{\mathrm{P}\mathrm{g}}$ | Heat Capacity of Flue Gas | (kJ/kg·K) |

${\mathrm{M}}_{\mathrm{f}\mathrm{a}}$ | Gasifier Actual Air Flow Rate | (kg air) |

ATM | Atmospheric | - |

HHV | Higher Heating Value | (kJ/kg) |

LHV | Lower HeatingValue | (kJ/kg) |

TIT | Turbine Inlet Temperature | (K) |

ASH | Ash Content | (wt%) |

HR | Heat Rate | (MW) |

SFC | Specific Fuel Consumption | (kg/kW·hr) |

## References

- Mahgoub, F. Current Status of Agriculture and Future Challenges in Sudan; Nordiska Afrikainstitutet: Uppsala, Sweden, 2014. [Google Scholar]
- Naqvi, S.R.; Naqvi, M.; Taqvi, S.A.A.; Iqbal, F.; Inayat, A.; Khoja, A.H.; Mehran, M.T.; Ayoub, M.; Shahbaz, M.; Amin, N.A.S. Agro-Industrial residue gasification feasibility in captive power plants: A South-Asian case study. Energy
**2021**, 214, 118952. [Google Scholar] [CrossRef] - Seitarides, T.; Athanasiou, C.; Zabaniotou, A. Modular biomass gasification-based solid oxide fuel cells (SOFC) for sustainable development. Renew. Sustain. Energy Rev.
**2008**, 12, 1251–1276. [Google Scholar] [CrossRef] - Sanjay, Y.; Singh, O.; Prasad, B. Energy and exergy analysis of steam cooled reheat gas–steam combined cycle. Appl. Therm. Eng.
**2007**, 27, 2779–2790. [Google Scholar] [CrossRef] - Ioannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production—A review. Renew. Sustain. Energy Rev.
**2007**, 11, 1966–2005. [Google Scholar] [CrossRef] - Chandra, H.; Arora, A.; Kaushik, S.C.; Tripathi, A.; Rai, A. Thermodynamic analysis and parametric study of an intercooled–reheat closed-cycle gas turbine on the basis of a new isentropic exponent. Int. J. Sustain. Energy
**2011**, 30, 82–97. [Google Scholar] [CrossRef] - Parvez, M.; Khalid, F. Thermodynamic investigation on sawdust and rice husk biomass integrated gasification for combined power and ejector cooling cycle. Curr. Altern. Energy
**2017**, 2, 19–26. [Google Scholar] [CrossRef] - Rashid, T.; Taqvi, S.A.A.; Sher, F.; Rubab, S.; Thanabalan, M.; Bilal, M.; Islam, B. Enhanced lignin extraction and optimisation from oil palm biomass using neural network modelling. Fuel
**2021**, 293, 120485. [Google Scholar] [CrossRef] - Beig, B.; Riaz, M.; Naqvi, S.R.; Hassan, M.; Zheng, Z.; Karimi, K.; Pugazhendhi, A.; Atabani, A.E.; Chi, N.T.L. Current challenges and innovative developments in pretreatment of lignocellulosic residues for biofuel production: A review. Fuel
**2021**, 287, 119670. [Google Scholar] [CrossRef] - Shahbaz, M.; Al-Ansari, T.; Aslam, M.; Khan, Z.; Inayat, A.; Athar, M.; Naqvi, S.R.; Ahmed, M.A.; McKay, G. A state of the art review on biomass processing and conversion technologies to produce hydrogen and its recovery via membrane separation. Int. J. Hydrog. Energy
**2020**, 45, 15166–15195. [Google Scholar] [CrossRef] - Ibrahim, T.K.; Rahman, M. Thermal impact of operating conditions on the performance of a combined cycle gas turbine. J. Appl. Res. Technol.
**2012**, 10, 567–577. [Google Scholar] [CrossRef] - Littlewood, K. Gasification: Theory and application. Prog. Energy Combust. Sci.
**1977**, 3, 35–71. [Google Scholar] [CrossRef] - Naqvi, S.R.; Taqvi, S.A.A.; Mehran, T.; Khoja, A.H.; Naqvi, M.; Bokhari, A.; Amin, N.A.S. Catalytic pyrolysis of biomass using shape-selective zeolites for bio-oil enhancement. In Bioenergy Resources and Technologies; Elsevier: Amsterdam, The Netherlands, 2021; pp. 39–60. [Google Scholar]
- French, R.; Czernik, S. Catalytic pyrolysis of biomass for biofuels production. Fuel Process. Technol.
**2010**, 91, 25–32. [Google Scholar] [CrossRef] - Garcia-Perez, M.; Wang, X.S.; Shen, J.; Rhodes, M.J.; Tian, F.; Lee, W.J.; Wu, H.; Li, C.-Z. Fast pyrolysis of oil mallee woody biomass: Effect of temperature on the yield and quality of pyrolysis products. Ind. Eng. Chem. Res.
**2008**, 47, 1846–1854. [Google Scholar] [CrossRef] - Elliott, C.D.; Neuenschwander, G.G.; Hart, T.R. Hydroprocessing bio-oil and products separation for coke production. Acs Sustain. Chem. Eng.
**2013**, 1, 389–392. [Google Scholar] [CrossRef] - Basu, P. Biomass Gasification and Pyrolysis: Practical Design and Theory; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Kollmann, F.F.; Côté, W.A., Jr. Principles of Wood Science and Technology. Volume I Solid Wood; Springer: Cham, Switzerland, 1968. [Google Scholar]
- Naqvi, S.R.; Tariq, R.; Hameed, Z.; Ali, I.; Naqvi, M.; Chen, W.-H.; Ceylan, S.; Rashid, H.; Ahmad, J.; Taqvi, S.A.; et al. Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method. Renew. Energy
**2019**, 131, 854–860. [Google Scholar] [CrossRef] - Naqvi, S.R.; Jamshaid, S.; Naqvi, M.; Farooq, W.; Niazi, M.B.K.; Aman, Z.; Zubair, M.; Ali, M.; Shahbaz, M.; Inayat, A.; et al. Potential of biomass for bioenergy in Pakistan based on present case and future perspectives. Renew. Sustain. Energy Rev.
**2018**, 81, 1247–1258. [Google Scholar] [CrossRef] [Green Version] - Naqvi, S.R.; Hameed, Z.; Tariq, R.; Taqvi, S.A.; Ali, I.; Niazi, M.B.K.; Noor, T.; Hussain, A.; Iqbal, N.; Shahbaz, M. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network. Waste Manag.
**2019**, 85, 131–140. [Google Scholar] [CrossRef] - Khanmohammadi., S.; Atashkari, K.; Kamali, R.K. Performance assessment and multi-objective optimization of a trrigeneration system with a modified biomass gasification model. Modares Mech. Eng.
**2015**, 15, 209–222. [Google Scholar] - Hoque, M.E.; Rashid, F. Gasification Process Using Downdraft Fixed-Bed Gasifier for Different Feedstock. In Gasification; IntechOpen: London, UK, 2021. [Google Scholar]
- Kumar, R.M.D.; Anand, R. Production of biofuel from biomass downdraft gasification and its applications. In Advanced Biofuels; Elsevier: Amsterdam, The Netherlands, 2019; pp. 129–151. [Google Scholar]
- Kamble, A.D.; Saxena, V.K.; Chavan, P.D.; Mendhe, V.A. Co-Gasification of coal and biomass an emerging clean energy technology: Status and prospects of development in Indian context. Int. J. Min. Sci. Technol.
**2019**, 29, 171–186. [Google Scholar] [CrossRef] - Hameed, Z.; Hameed, Z.; Naqvi, S.R.; Naqvi, M.; Ali, I.; Taqvi, S.A.A.; Gao, N.; Hussain, S.A.; Hussain, S. A comprehensive review on thermal coconversion of biomass, sludge, coal, and their blends using thermogravimetric analysis. J. Chem.
**2020**, 2020, 5024369. [Google Scholar] [CrossRef] - Shahbaz, M.; Taqvi, S.A.; Loy, A.C.M.; Inayat, A.; Uddin, F.; Bokhari, A.; Naqvi, S.R. Artificial neural network approach for the steam gasification of palm oil waste using bottom ash and CaO. Renew. Energy
**2019**, 132, 243–254. [Google Scholar] [CrossRef] - Dayton, D. Review of the Literature on Catalytic Biomass Tar Destruction: Milestone Completion Report; National Renewable Energy Laboratory: Golden, CO, USA, 2002. [Google Scholar]
- Knoef, H. Inventory of Biomass Gasifier Manufacturers and Installations, Final Report to European Commission; Contract DIS/1734/98-NL; Biomass Technology Group BV, University of Twente: Enschede, The Netherlands, 2000. [Google Scholar]
- Saxena, A.N.; Panwar, A.; Mishra, S.; Shukla, A.K.; Sahu, M.K. Parametric Investigation of Basic and Evaporative Inlet Air-Cooled Gas Turbine Cycle. In Advances in Engineering Design; Springer: Singapore, 2021; pp. 751–768. [Google Scholar]
- Mohapatra, A.K.; Sanjay, L.P. Parametric analysis of cooled gas turbine cycle with evaporative inlet air cooling. Int. J. Sci. Eng. Res.
**2012**, 3, h-2012. [Google Scholar] - Farouk, N.; Sheng, L. Effect of Fuel Types on the Performance of Gas Turbines. Int. J. Comput. Sci. Issues (IJCSI)
**2013**, 10, 436. [Google Scholar] - Mohapatra, A.K. Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance. Energy
**2014**, 68, 191–203. [Google Scholar] [CrossRef] - ISO. Natural Gas–Calculation of Calorific Values, Density, Relative Density and Wobbe Index from Composition; ISO: Geneve, Switzerland, 2005. [Google Scholar]
- Nag, P. Engineering Thermodynamics; Tata McGraw-Hill Education: New York, NY, USA, 2013. [Google Scholar]
- Naqvi, S.R.; Tariq, R.; Hameed, Z.; Ali, I.; Taqvi, S.A.; Naqvi, M.; Niazi, M.B.K.; Noor, T.; Farooq, W. Pyrolysis of high-ash sewage sludge: Thermo-kinetic study using TGA and artificial neural networks. Fuel
**2018**, 233, 529–538. [Google Scholar] [CrossRef] - Rahman, M.; Ibrahim, T.K.; Kadirgama, K.; Mamat, R.; Bakar, R.A. Influence of operation conditions and ambient temperature on performance of gas turbine power plant. In Advanced Materials Research; Trans Tech Publications: Zurich, Switzerland, 2011. [Google Scholar]
- Gill, P.W.; Smith, J.H. Fundamentals of Internal Combustion Engines; Oxford and IBH Publishing Company: Delhi, India, 1972. [Google Scholar]
- Taylor, C.F. The Internal-Combustion Engine in Theory and Practice: Combustion, Fuels, Materials, Design; MIT Press: Cambridge, MA, USA, 1985; Volume 2. [Google Scholar]
- Johnke, T.; Mast, M. Power boosters—Technologies to enhance gas turbine power output on demand. Siemens Power Gener. Siemens Power J.
**2002**. Available online: https://www.cleanenergy.co.th/Article%20Boosting%20GT%20PowerN.html (accessed on 5 July 2021). - Omar, H.; Kamel, A.; Alsanousi, M. Performance of Regenerative Gas Turbine Power Plant. Energy Power Eng.
**2017**, 9, 136. [Google Scholar] [CrossRef] [Green Version] - Rh, P.; Green, D. Perry’s Chemical Engineers’ Handbook; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- La Villetta, M.; Costa, M.; Massarotti, N. Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method. Renew. Sustain. Energy Rev.
**2017**, 74, 71–88. [Google Scholar] [CrossRef] - Ptasinski, K.J.; Prins, M.J.; Pierik, A. Exergetic evaluation of biomass gasification. Energy
**2007**, 32, 568–574. [Google Scholar] [CrossRef] - Abdalla, M.E.; Pannir, S.; Hussein Ahmed, A.; Mahyob, A.; Abdalla, S.A. Regenerative Gas Turbine Power Plant: Performance & Evaluation; Purdue University: West Lafayette, IN, USA, 2021. [Google Scholar]
- Jones, R.; Goldmeer, J.; Monetti, B. Addressing Gas Turbine Fuel Flexibility; GE Energy Report GER4601 rev. B; SE Energy: Boston, MA, USA, 2011; Volume 29, p. 2012. [Google Scholar]
- Wei, L.; Xu, S.; Zhang, L.; Liu, C.; Zhu, H.; Liu, S. Steam gasification of biomass for hydrogen-rich gas in a free-fall reactor. Int. J. Hydrog. Energy
**2007**, 32, 24–31. [Google Scholar] [CrossRef] - Erlich, C.; Fransson, T.H. Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: Experimental study. Appl. Energy
**2011**, 88, 899–908. [Google Scholar] [CrossRef] - Saleem, M.; Ali, M.; Siddiqi, Z.; Al Qahtani, A. Preparation of activated carbon from acacia (Vachellia seyal) Tree Branches and application to treat wastewater containing methylene blue dye. Mod. Appl. Sci.
**2017**, 11, 102–108. [Google Scholar] [CrossRef] [Green Version] - Khanmohammadi, S.; Atashkari, K.; Kouhikamali, R. Exergoeconomic multi-objective optimization of an externally fired gas turbine integrated with a biomass gasifier. Appl. Therm. Eng.
**2015**, 91, 848–859. [Google Scholar] [CrossRef] - Karimi, M.H.; Chitgar, N.; Emadi, M.A.; Ahmadi, P.; Rosend, M.A. Performance assessment and optimization of a biomass-based solid oxide fuel cell and micro gas turbine system integrated with an organic Rankine cycle. Int. J. Hydrogen Energy
**2020**, 45, 6262–6277. [Google Scholar] [CrossRef] - Javidmehr, M.; Joda, F.; Mohammadi, A. Thermodynamic and economic analyses and optimization of a multi-generation system composed by a compressed air storage, solar dish collector, micro gas turbine, organic Rankine cycle, and desalination system. Energy Convers. Manag.
**2018**, 168, 467–481. [Google Scholar] [CrossRef] - Behzadi, A.; Houshfar, E.; Gholamian, E.; Ashjaee, M.; Habibollahzade, A. Multi-Criteria optimization and comparative performance analysis of a power plant fed by municipal solid waste using a gasifier or digester. Energy Convers. Manag.
**2018**, 171, 863–878. [Google Scholar] [CrossRef] - Olgun, H.; Ozdogan, S.; Yinesor, G. Results with a bench scale downdraft biomass gasifier for agricultural and forestry residues. Biomass Bioenergy
**2011**, 35, 572–580. [Google Scholar] [CrossRef] - Rajput, R. A Textbook of Power Plant Engineering; Laxmi Publications: New Delhi, India, 2005. [Google Scholar]
- Pode, R.; Diouf, B.; Pode, G. Sustainable rural electrification using rice husk biomass energy: A case study of Cambodia. Renew. Sustain. Energy Rev.
**2015**, 44, 530–542. [Google Scholar] [CrossRef] - Moran, M.J.; Shapiro, H.N.; Boettner, D.D.; Bailey, M.B. Fundamentals of Engineering Thermodynamics; John Wiley & Sons: Hoboke, NJ, USA, 2010. [Google Scholar]
- Rahman, M.; Ibrahim, T.K.; Abdalla, A.N. Thermodynamic performance analysis of gas-turbine power-plant. Int. J. Phys. Sci.
**2011**, 6, 3539–3550. [Google Scholar] - Saravanamuttoo, H.I.; Rogers, G.F.C.; Cohen, H. Gas Turbine Theory; Pearson Education: London, UK, 2009. [Google Scholar]
- Shi, H.; Si, W.; Li, X. The concept, design and performance of a novel rotary kiln type air-staged biomass gasifier. Energies
**2016**, 9, 67. [Google Scholar] [CrossRef] [Green Version] - Alauddin, Z.A.Z. Performance and Characteristics of a Biomass Gasifier System. Ph.D. Thesis, University of Wales, Cardiff, UK, 1996. [Google Scholar]
- McKendry, P. Energy production from biomass (part 3): Gasification technologies. Bioresour. Technol.
**2002**, 83, 55–63. [Google Scholar] [CrossRef] - Bridgwater, A.V. Progress in Thermochemical Biomass Conversion; John Wiley & Sons: Hoboke, NJ, USA, 2008. [Google Scholar]
- Kirsanovs, V.; Blumberga, D.; Veidenbergs, I.; Rochas, C.; Vigants, E.; Vigants, G. Experimental investigation of downdraft gasifier at various conditions. Energy Procedia
**2017**, 128, 332–338. [Google Scholar] [CrossRef] - Taba, L.E.; Irfan, M.F.; Wan Daud, W.A.M.; Chakrabarti, M.H. The effect of temperature on various parameters in coal, biomass and CO-gasification: A review. Renew. Sustain. Energy Rev.
**2012**, 16, 5584–5596. [Google Scholar] [CrossRef] - El-Emam, R.S.; Dincer, I. Thermal modeling and efficiency assessment of an integrated biomass gasification and solid oxide fuel cell system. Int. J. Hydrogen Energy
**2015**, 40, 7694–7706. [Google Scholar] [CrossRef] - Zhang, X.; Li, H.; Liu, L.; Bai, C.; Wang, S.; Zeng, J.; Liu, X.; Li, N.; Zhang, G. Thermodynamic and economic analysis of biomass partial gasification process. Appl. Therm. Eng.
**2018**, 129, 410–420. [Google Scholar] [CrossRef] - Jarungthammachote, S.; Dutta, A. Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy
**2007**, 32, 1660–1669. [Google Scholar] [CrossRef] - Das, B.K.; Hoque, S. Assessment of the potential of biomass gasification for electricity generation in Bangladesh. J. Renew. Energy
**2014**, 2014, 429518. [Google Scholar] [CrossRef] [Green Version] - Chen, W.-H.; Chen, C.-J.; Hung, C.-I.; Shen, C.-H.; Hsu, H.-W. A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor. Appl. Energy
**2013**, 112, 421–430. [Google Scholar] [CrossRef] - Arpia, A.A.; Nguyen, T.-B.; Chen, W.-C.; Dong, C.-D.; Ok, Y.S. Microwave-assisted gasification of biomass for sustainable and energy-efficient biohydrogen and biosyngas production: A state-of-the-art review. Chemosphere
**2022**, 287, 132014. [Google Scholar] [CrossRef] [PubMed]

**Figure 2.**Variation of the equivalence ratio with gasifier’s biomass mass flow rate at different Wood Chip syngas rates.

**Figure 3.**Variation of biomass moisture content with RGT thermal efficiency at different gasification pressures.

**Figure 5.**Effect of the equivalence ratio on the RGT thermal efficiency for different gasification temperatures.

**Figure 7.**Effect of biomass moisture content on the gasifier’s airflow rate at different gasification temperatures.

**Figure 8.**Variation of biomass moisture content with the gasifier’s airflow rate at different gasification pressures.

**Figure 9.**Variation of gasifier efficiency with biomass flow rate at different Wood Chip syngas rates.

**Figure 10.**Variation of equivalence ratio with the specific fuel consumption at different gasification temperatures.

Proximate Analysis (wt%) | Ultimate Analysis (wt%) | Lower Value of Heat (kJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|

Water | Ash | Volatile | Fixed Carbon | C | H | O | N | S | |

37.88 | 1.43 | 68.49 | 30.08 | 48 | 6 | 44 | 0.40 | - | 19,094.94 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Abdalla, M.E.; Abdalla, S.A.; Taqvi, S.A.A.; Naqvi, S.R.; Chen, W.-H.
Investigation of Biomass Integrated Air Gasification Regenerative Gas Turbine Power Plants. *Energies* **2022**, *15*, 741.
https://doi.org/10.3390/en15030741

**AMA Style**

Abdalla ME, Abdalla SA, Taqvi SAA, Naqvi SR, Chen W-H.
Investigation of Biomass Integrated Air Gasification Regenerative Gas Turbine Power Plants. *Energies*. 2022; 15(3):741.
https://doi.org/10.3390/en15030741

**Chicago/Turabian Style**

Abdalla, Momin Elhadi, Salah Ahmed Abdalla, Syed Ali Ammar Taqvi, Salman Raza Naqvi, and Wei-Hsin Chen.
2022. "Investigation of Biomass Integrated Air Gasification Regenerative Gas Turbine Power Plants" *Energies* 15, no. 3: 741.
https://doi.org/10.3390/en15030741