Investigation of Biomass Integrated Air Gasification Regenerative Gas Turbine Power Plants
Abstract
:1. Introduction
2. Materials and Methods
3. Modeling of Components
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
T | Temperature | (K) |
S | Entropy | (kJ/kg·K) |
P | Pressure | (kPa) |
Compression Ratio | - | |
Specific Heat Ratio | - | |
Isentropic Compressor Efficiency | - | |
Gasifier Efficiency | - | |
Compressor Isentropic Temperature | (K) | |
Specific Compressor Work | (MW) | |
Air Mass | (kgair) | |
Fuel Mass | (kg·fuel) | |
Gas Mass | (kg·gas) | |
Gasifier Stoichiometric Air Flow Rate | (kg air/kg dry fuel) | |
CC | Combustion Chamber | - |
ER | Equivalence Ratio | - |
RGT | Regenerative Gas Turbine | - |
IBG | Integrated Biomass Gasification | - |
Mech | Mechanical | - |
Gen | Generator | - |
EES | Engineering Equation Solver | - |
Combustor Inlet Temperature | (K) | |
Combustor Pressure Drop | (bar) | |
Combustor Efficiency | - | |
Regenerator Effectiveness | - | |
Turbine Shaft Work | (MW) | |
Turbine Efficiency | - | |
Syngas Mole Fraction | - | |
GT Power | (MW) | |
Heat Supplied | (kW) | |
Heat Capacity of Air | (kJ/kg·K) | |
Heat Capacity of Fuel | (kJ/kg·K) | |
Heat Capacity of Flue Gas | (kJ/kg·K) | |
Gasifier Actual Air Flow Rate | (kg air) | |
ATM | Atmospheric | - |
HHV | Higher Heating Value | (kJ/kg) |
LHV | Lower HeatingValue | (kJ/kg) |
TIT | Turbine Inlet Temperature | (K) |
ASH | Ash Content | (wt%) |
HR | Heat Rate | (MW) |
SFC | Specific Fuel Consumption | (kg/kW·hr) |
References
- Mahgoub, F. Current Status of Agriculture and Future Challenges in Sudan; Nordiska Afrikainstitutet: Uppsala, Sweden, 2014. [Google Scholar]
- Naqvi, S.R.; Naqvi, M.; Taqvi, S.A.A.; Iqbal, F.; Inayat, A.; Khoja, A.H.; Mehran, M.T.; Ayoub, M.; Shahbaz, M.; Amin, N.A.S. Agro-Industrial residue gasification feasibility in captive power plants: A South-Asian case study. Energy 2021, 214, 118952. [Google Scholar] [CrossRef]
- Seitarides, T.; Athanasiou, C.; Zabaniotou, A. Modular biomass gasification-based solid oxide fuel cells (SOFC) for sustainable development. Renew. Sustain. Energy Rev. 2008, 12, 1251–1276. [Google Scholar] [CrossRef]
- Sanjay, Y.; Singh, O.; Prasad, B. Energy and exergy analysis of steam cooled reheat gas–steam combined cycle. Appl. Therm. Eng. 2007, 27, 2779–2790. [Google Scholar] [CrossRef]
- Ioannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production—A review. Renew. Sustain. Energy Rev. 2007, 11, 1966–2005. [Google Scholar] [CrossRef]
- Chandra, H.; Arora, A.; Kaushik, S.C.; Tripathi, A.; Rai, A. Thermodynamic analysis and parametric study of an intercooled–reheat closed-cycle gas turbine on the basis of a new isentropic exponent. Int. J. Sustain. Energy 2011, 30, 82–97. [Google Scholar] [CrossRef]
- Parvez, M.; Khalid, F. Thermodynamic investigation on sawdust and rice husk biomass integrated gasification for combined power and ejector cooling cycle. Curr. Altern. Energy 2017, 2, 19–26. [Google Scholar] [CrossRef]
- Rashid, T.; Taqvi, S.A.A.; Sher, F.; Rubab, S.; Thanabalan, M.; Bilal, M.; Islam, B. Enhanced lignin extraction and optimisation from oil palm biomass using neural network modelling. Fuel 2021, 293, 120485. [Google Scholar] [CrossRef]
- Beig, B.; Riaz, M.; Naqvi, S.R.; Hassan, M.; Zheng, Z.; Karimi, K.; Pugazhendhi, A.; Atabani, A.E.; Chi, N.T.L. Current challenges and innovative developments in pretreatment of lignocellulosic residues for biofuel production: A review. Fuel 2021, 287, 119670. [Google Scholar] [CrossRef]
- Shahbaz, M.; Al-Ansari, T.; Aslam, M.; Khan, Z.; Inayat, A.; Athar, M.; Naqvi, S.R.; Ahmed, M.A.; McKay, G. A state of the art review on biomass processing and conversion technologies to produce hydrogen and its recovery via membrane separation. Int. J. Hydrog. Energy 2020, 45, 15166–15195. [Google Scholar] [CrossRef]
- Ibrahim, T.K.; Rahman, M. Thermal impact of operating conditions on the performance of a combined cycle gas turbine. J. Appl. Res. Technol. 2012, 10, 567–577. [Google Scholar] [CrossRef]
- Littlewood, K. Gasification: Theory and application. Prog. Energy Combust. Sci. 1977, 3, 35–71. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Taqvi, S.A.A.; Mehran, T.; Khoja, A.H.; Naqvi, M.; Bokhari, A.; Amin, N.A.S. Catalytic pyrolysis of biomass using shape-selective zeolites for bio-oil enhancement. In Bioenergy Resources and Technologies; Elsevier: Amsterdam, The Netherlands, 2021; pp. 39–60. [Google Scholar]
- French, R.; Czernik, S. Catalytic pyrolysis of biomass for biofuels production. Fuel Process. Technol. 2010, 91, 25–32. [Google Scholar] [CrossRef]
- Garcia-Perez, M.; Wang, X.S.; Shen, J.; Rhodes, M.J.; Tian, F.; Lee, W.J.; Wu, H.; Li, C.-Z. Fast pyrolysis of oil mallee woody biomass: Effect of temperature on the yield and quality of pyrolysis products. Ind. Eng. Chem. Res. 2008, 47, 1846–1854. [Google Scholar] [CrossRef]
- Elliott, C.D.; Neuenschwander, G.G.; Hart, T.R. Hydroprocessing bio-oil and products separation for coke production. Acs Sustain. Chem. Eng. 2013, 1, 389–392. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification and Pyrolysis: Practical Design and Theory; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Kollmann, F.F.; Côté, W.A., Jr. Principles of Wood Science and Technology. Volume I Solid Wood; Springer: Cham, Switzerland, 1968. [Google Scholar]
- Naqvi, S.R.; Tariq, R.; Hameed, Z.; Ali, I.; Naqvi, M.; Chen, W.-H.; Ceylan, S.; Rashid, H.; Ahmad, J.; Taqvi, S.A.; et al. Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method. Renew. Energy 2019, 131, 854–860. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Jamshaid, S.; Naqvi, M.; Farooq, W.; Niazi, M.B.K.; Aman, Z.; Zubair, M.; Ali, M.; Shahbaz, M.; Inayat, A.; et al. Potential of biomass for bioenergy in Pakistan based on present case and future perspectives. Renew. Sustain. Energy Rev. 2018, 81, 1247–1258. [Google Scholar] [CrossRef][Green Version]
- Naqvi, S.R.; Hameed, Z.; Tariq, R.; Taqvi, S.A.; Ali, I.; Niazi, M.B.K.; Noor, T.; Hussain, A.; Iqbal, N.; Shahbaz, M. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network. Waste Manag. 2019, 85, 131–140. [Google Scholar] [CrossRef]
- Khanmohammadi., S.; Atashkari, K.; Kamali, R.K. Performance assessment and multi-objective optimization of a trrigeneration system with a modified biomass gasification model. Modares Mech. Eng. 2015, 15, 209–222. [Google Scholar]
- Hoque, M.E.; Rashid, F. Gasification Process Using Downdraft Fixed-Bed Gasifier for Different Feedstock. In Gasification; IntechOpen: London, UK, 2021. [Google Scholar]
- Kumar, R.M.D.; Anand, R. Production of biofuel from biomass downdraft gasification and its applications. In Advanced Biofuels; Elsevier: Amsterdam, The Netherlands, 2019; pp. 129–151. [Google Scholar]
- Kamble, A.D.; Saxena, V.K.; Chavan, P.D.; Mendhe, V.A. Co-Gasification of coal and biomass an emerging clean energy technology: Status and prospects of development in Indian context. Int. J. Min. Sci. Technol. 2019, 29, 171–186. [Google Scholar] [CrossRef]
- Hameed, Z.; Hameed, Z.; Naqvi, S.R.; Naqvi, M.; Ali, I.; Taqvi, S.A.A.; Gao, N.; Hussain, S.A.; Hussain, S. A comprehensive review on thermal coconversion of biomass, sludge, coal, and their blends using thermogravimetric analysis. J. Chem. 2020, 2020, 5024369. [Google Scholar] [CrossRef]
- Shahbaz, M.; Taqvi, S.A.; Loy, A.C.M.; Inayat, A.; Uddin, F.; Bokhari, A.; Naqvi, S.R. Artificial neural network approach for the steam gasification of palm oil waste using bottom ash and CaO. Renew. Energy 2019, 132, 243–254. [Google Scholar] [CrossRef]
- Dayton, D. Review of the Literature on Catalytic Biomass Tar Destruction: Milestone Completion Report; National Renewable Energy Laboratory: Golden, CO, USA, 2002. [Google Scholar]
- Knoef, H. Inventory of Biomass Gasifier Manufacturers and Installations, Final Report to European Commission; Contract DIS/1734/98-NL; Biomass Technology Group BV, University of Twente: Enschede, The Netherlands, 2000. [Google Scholar]
- Saxena, A.N.; Panwar, A.; Mishra, S.; Shukla, A.K.; Sahu, M.K. Parametric Investigation of Basic and Evaporative Inlet Air-Cooled Gas Turbine Cycle. In Advances in Engineering Design; Springer: Singapore, 2021; pp. 751–768. [Google Scholar]
- Mohapatra, A.K.; Sanjay, L.P. Parametric analysis of cooled gas turbine cycle with evaporative inlet air cooling. Int. J. Sci. Eng. Res. 2012, 3, h-2012. [Google Scholar]
- Farouk, N.; Sheng, L. Effect of Fuel Types on the Performance of Gas Turbines. Int. J. Comput. Sci. Issues (IJCSI) 2013, 10, 436. [Google Scholar]
- Mohapatra, A.K. Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance. Energy 2014, 68, 191–203. [Google Scholar] [CrossRef]
- ISO. Natural Gas–Calculation of Calorific Values, Density, Relative Density and Wobbe Index from Composition; ISO: Geneve, Switzerland, 2005. [Google Scholar]
- Nag, P. Engineering Thermodynamics; Tata McGraw-Hill Education: New York, NY, USA, 2013. [Google Scholar]
- Naqvi, S.R.; Tariq, R.; Hameed, Z.; Ali, I.; Taqvi, S.A.; Naqvi, M.; Niazi, M.B.K.; Noor, T.; Farooq, W. Pyrolysis of high-ash sewage sludge: Thermo-kinetic study using TGA and artificial neural networks. Fuel 2018, 233, 529–538. [Google Scholar] [CrossRef]
- Rahman, M.; Ibrahim, T.K.; Kadirgama, K.; Mamat, R.; Bakar, R.A. Influence of operation conditions and ambient temperature on performance of gas turbine power plant. In Advanced Materials Research; Trans Tech Publications: Zurich, Switzerland, 2011. [Google Scholar]
- Gill, P.W.; Smith, J.H. Fundamentals of Internal Combustion Engines; Oxford and IBH Publishing Company: Delhi, India, 1972. [Google Scholar]
- Taylor, C.F. The Internal-Combustion Engine in Theory and Practice: Combustion, Fuels, Materials, Design; MIT Press: Cambridge, MA, USA, 1985; Volume 2. [Google Scholar]
- Johnke, T.; Mast, M. Power boosters—Technologies to enhance gas turbine power output on demand. Siemens Power Gener. Siemens Power J. 2002. Available online: https://www.cleanenergy.co.th/Article%20Boosting%20GT%20PowerN.html (accessed on 5 July 2021).
- Omar, H.; Kamel, A.; Alsanousi, M. Performance of Regenerative Gas Turbine Power Plant. Energy Power Eng. 2017, 9, 136. [Google Scholar] [CrossRef][Green Version]
- Rh, P.; Green, D. Perry’s Chemical Engineers’ Handbook; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- La Villetta, M.; Costa, M.; Massarotti, N. Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method. Renew. Sustain. Energy Rev. 2017, 74, 71–88. [Google Scholar] [CrossRef]
- Ptasinski, K.J.; Prins, M.J.; Pierik, A. Exergetic evaluation of biomass gasification. Energy 2007, 32, 568–574. [Google Scholar] [CrossRef]
- Abdalla, M.E.; Pannir, S.; Hussein Ahmed, A.; Mahyob, A.; Abdalla, S.A. Regenerative Gas Turbine Power Plant: Performance & Evaluation; Purdue University: West Lafayette, IN, USA, 2021. [Google Scholar]
- Jones, R.; Goldmeer, J.; Monetti, B. Addressing Gas Turbine Fuel Flexibility; GE Energy Report GER4601 rev. B; SE Energy: Boston, MA, USA, 2011; Volume 29, p. 2012. [Google Scholar]
- Wei, L.; Xu, S.; Zhang, L.; Liu, C.; Zhu, H.; Liu, S. Steam gasification of biomass for hydrogen-rich gas in a free-fall reactor. Int. J. Hydrog. Energy 2007, 32, 24–31. [Google Scholar] [CrossRef]
- Erlich, C.; Fransson, T.H. Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: Experimental study. Appl. Energy 2011, 88, 899–908. [Google Scholar] [CrossRef]
- Saleem, M.; Ali, M.; Siddiqi, Z.; Al Qahtani, A. Preparation of activated carbon from acacia (Vachellia seyal) Tree Branches and application to treat wastewater containing methylene blue dye. Mod. Appl. Sci. 2017, 11, 102–108. [Google Scholar] [CrossRef][Green Version]
- Khanmohammadi, S.; Atashkari, K.; Kouhikamali, R. Exergoeconomic multi-objective optimization of an externally fired gas turbine integrated with a biomass gasifier. Appl. Therm. Eng. 2015, 91, 848–859. [Google Scholar] [CrossRef]
- Karimi, M.H.; Chitgar, N.; Emadi, M.A.; Ahmadi, P.; Rosend, M.A. Performance assessment and optimization of a biomass-based solid oxide fuel cell and micro gas turbine system integrated with an organic Rankine cycle. Int. J. Hydrogen Energy 2020, 45, 6262–6277. [Google Scholar] [CrossRef]
- Javidmehr, M.; Joda, F.; Mohammadi, A. Thermodynamic and economic analyses and optimization of a multi-generation system composed by a compressed air storage, solar dish collector, micro gas turbine, organic Rankine cycle, and desalination system. Energy Convers. Manag. 2018, 168, 467–481. [Google Scholar] [CrossRef]
- Behzadi, A.; Houshfar, E.; Gholamian, E.; Ashjaee, M.; Habibollahzade, A. Multi-Criteria optimization and comparative performance analysis of a power plant fed by municipal solid waste using a gasifier or digester. Energy Convers. Manag. 2018, 171, 863–878. [Google Scholar] [CrossRef]
- Olgun, H.; Ozdogan, S.; Yinesor, G. Results with a bench scale downdraft biomass gasifier for agricultural and forestry residues. Biomass Bioenergy 2011, 35, 572–580. [Google Scholar] [CrossRef]
- Rajput, R. A Textbook of Power Plant Engineering; Laxmi Publications: New Delhi, India, 2005. [Google Scholar]
- Pode, R.; Diouf, B.; Pode, G. Sustainable rural electrification using rice husk biomass energy: A case study of Cambodia. Renew. Sustain. Energy Rev. 2015, 44, 530–542. [Google Scholar] [CrossRef]
- Moran, M.J.; Shapiro, H.N.; Boettner, D.D.; Bailey, M.B. Fundamentals of Engineering Thermodynamics; John Wiley & Sons: Hoboke, NJ, USA, 2010. [Google Scholar]
- Rahman, M.; Ibrahim, T.K.; Abdalla, A.N. Thermodynamic performance analysis of gas-turbine power-plant. Int. J. Phys. Sci. 2011, 6, 3539–3550. [Google Scholar]
- Saravanamuttoo, H.I.; Rogers, G.F.C.; Cohen, H. Gas Turbine Theory; Pearson Education: London, UK, 2009. [Google Scholar]
- Shi, H.; Si, W.; Li, X. The concept, design and performance of a novel rotary kiln type air-staged biomass gasifier. Energies 2016, 9, 67. [Google Scholar] [CrossRef][Green Version]
- Alauddin, Z.A.Z. Performance and Characteristics of a Biomass Gasifier System. Ph.D. Thesis, University of Wales, Cardiff, UK, 1996. [Google Scholar]
- McKendry, P. Energy production from biomass (part 3): Gasification technologies. Bioresour. Technol. 2002, 83, 55–63. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Progress in Thermochemical Biomass Conversion; John Wiley & Sons: Hoboke, NJ, USA, 2008. [Google Scholar]
- Kirsanovs, V.; Blumberga, D.; Veidenbergs, I.; Rochas, C.; Vigants, E.; Vigants, G. Experimental investigation of downdraft gasifier at various conditions. Energy Procedia 2017, 128, 332–338. [Google Scholar] [CrossRef]
- Taba, L.E.; Irfan, M.F.; Wan Daud, W.A.M.; Chakrabarti, M.H. The effect of temperature on various parameters in coal, biomass and CO-gasification: A review. Renew. Sustain. Energy Rev. 2012, 16, 5584–5596. [Google Scholar] [CrossRef]
- El-Emam, R.S.; Dincer, I. Thermal modeling and efficiency assessment of an integrated biomass gasification and solid oxide fuel cell system. Int. J. Hydrogen Energy 2015, 40, 7694–7706. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Liu, L.; Bai, C.; Wang, S.; Zeng, J.; Liu, X.; Li, N.; Zhang, G. Thermodynamic and economic analysis of biomass partial gasification process. Appl. Therm. Eng. 2018, 129, 410–420. [Google Scholar] [CrossRef]
- Jarungthammachote, S.; Dutta, A. Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy 2007, 32, 1660–1669. [Google Scholar] [CrossRef]
- Das, B.K.; Hoque, S. Assessment of the potential of biomass gasification for electricity generation in Bangladesh. J. Renew. Energy 2014, 2014, 429518. [Google Scholar] [CrossRef][Green Version]
- Chen, W.-H.; Chen, C.-J.; Hung, C.-I.; Shen, C.-H.; Hsu, H.-W. A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor. Appl. Energy 2013, 112, 421–430. [Google Scholar] [CrossRef]
- Arpia, A.A.; Nguyen, T.-B.; Chen, W.-C.; Dong, C.-D.; Ok, Y.S. Microwave-assisted gasification of biomass for sustainable and energy-efficient biohydrogen and biosyngas production: A state-of-the-art review. Chemosphere 2022, 287, 132014. [Google Scholar] [CrossRef] [PubMed]
Proximate Analysis (wt%) | Ultimate Analysis (wt%) | Lower Value of Heat (kJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|
Water | Ash | Volatile | Fixed Carbon | C | H | O | N | S | |
37.88 | 1.43 | 68.49 | 30.08 | 48 | 6 | 44 | 0.40 | - | 19,094.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdalla, M.E.; Abdalla, S.A.; Taqvi, S.A.A.; Naqvi, S.R.; Chen, W.-H. Investigation of Biomass Integrated Air Gasification Regenerative Gas Turbine Power Plants. Energies 2022, 15, 741. https://doi.org/10.3390/en15030741
Abdalla ME, Abdalla SA, Taqvi SAA, Naqvi SR, Chen W-H. Investigation of Biomass Integrated Air Gasification Regenerative Gas Turbine Power Plants. Energies. 2022; 15(3):741. https://doi.org/10.3390/en15030741
Chicago/Turabian StyleAbdalla, Momin Elhadi, Salah Ahmed Abdalla, Syed Ali Ammar Taqvi, Salman Raza Naqvi, and Wei-Hsin Chen. 2022. "Investigation of Biomass Integrated Air Gasification Regenerative Gas Turbine Power Plants" Energies 15, no. 3: 741. https://doi.org/10.3390/en15030741