Monitoring and Analysis of Geotemperature during the Tunnel Construction
Abstract
:1. Introduction
2. Tunnel Engineering Geological Conditions
3. Geotemperature Test Scheme and Instrument Selection
3.1. Geotemperature Test Scheme
3.2. Instrument Selection for Geotemperature Testing
4. Analysis of the Geotemperature Test Results
4.1. Variation Laws of the Geotemperature in the High Water Temperature Section
4.2. Variation Laws of the Geotemperature in the High Rock Temperature Section
4.3. The Variation Characteristics of the Rock Temperature and the Air Temperature with the Horizontal Distance under Various Construction Conditions
4.4. Results and Analysis of the Rock Temperature Measurement in Advanced Drilling
5. Discussion
5.1. The Mathematical Relationship between the Temperature and the Time during Construction
5.2. Mathematical Model of the Air Temperature and the Time during Construction
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.Y.; Mao, X.B.; Lu, A.H. Experimental study on the mechanical properties of rocks at high temperature. Sci. China Ser. E Technol. Sci. 2009, 52, 641–646. [Google Scholar] [CrossRef]
- Chen, G.Q.; Li, T.B.; Zhang, G.F.; Yin, H.Y.; Zhang, H. Temperature effect of rock burst for hard rock in deep-buried tunnel. Nat. Hazards 2014, 72, 915–926. [Google Scholar] [CrossRef]
- Zeng, Y.H.; Tao, L.L.; Ye, X.Q.; Zhou, X.H.; Fang, Y.; Fan, L.; Liu, X.R.; Yang, Z.X. Temperature reduction for extra-long railway tunnel with high geotemperature by longitudinal ventilation. Tunn. Undergr. Space Technol. 2020, 99, 103381. [Google Scholar] [CrossRef]
- Guo, Q.H. Hydrogeochemistry of high-temperature geothermal systems in China: A review. Appl. Geochem. 2012, 27, 1887–1898. [Google Scholar] [CrossRef]
- Meng, W.; He, C. Back analysis of the Initial geo-stress field of rock masses in high geo-temperature and high geo-stress. Energies 2020, 13, 363. [Google Scholar] [CrossRef] [Green Version]
- Ozgener, O.; Ozgener, L.; Tester, J.W. A practical approach to predict soil temperature variations for geothermal (ground) heat exchangers applications. Int. J. Heat Mass Tran. 2013, 62, 473–480. [Google Scholar] [CrossRef]
- Kästner, F.; Giese, R.; Planke, S.; Millett, J.; Flóvenz, Ó.G. Seismic imaging in the Krafla high-temperature geothermal field, NE Iceland, using zero- and far-offset vertical seismic profiling (VSP) data. J. Volcanol. Geoth. Res. 2020, 391, 106315. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.P.; Wang, M.N.; Wang, Q.L.; Liu, D.G.; Tong, J.J. Field test of thermal environment and thermal adaptation of workers in high geothermal tunnel. Build. Environ. 2019, 160, 106174. [Google Scholar]
- Qarinur, M.; Ogata, S.; Kinoshita, N.; Yasuhara, H. Predictions of Rock Temperature Evolution at the Lahendong Geothermal Field by Coupled Numerical Model with Discrete Fracture Model Scheme. Energies 2020, 13, 3282. [Google Scholar] [CrossRef]
- Shankar, V.K.; Kunar, B.M.; Murthy, C.S.N. ANN model for prediction of bit-rock interface temperature during rotary drilling of limestone using embedded thermocouple technique. J. Therm. Anal. Calorim. 2020, 139, 2273–2282. [Google Scholar] [CrossRef]
- Dwivedi, R.D.; Goel, R.K.; Prasad, V.V.R.; Sinha, A. Thermo-mechanical properties of Indian and other granites. Int. J. Rock Mech. Min. 2008, 45, 303–315. [Google Scholar] [CrossRef]
- Ortlepp, W.D.; Stacey, T. Rockburst Mechanisms in Tunnels and Shafts. Tunn. Undergr. Space Technol. 1994, 9, 59–65. [Google Scholar] [CrossRef]
- Vacek, J.; Chocholoušová, J. Rock Burst Mechanics: Insight from Physical and Mathematical Modelling. Acta Polytech. 2008, 48, 1–7. [Google Scholar] [CrossRef]
- Kaiser, P.K.; Cai, M. Design of rock support system under rockburst condition. J. Rock Mech. Geotech. Eng. 2012, 4, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Rybach, L.; Busslinger, A. Verification of rock temperature prediction along the Gotthard base tunnel—A prospect for coming tunnel projects. In Proceedings of the World Tunnel Congress, Geneva, Switzerland, 31 May–7 June 2013; pp. 1–8. [Google Scholar]
- Zhou, F.Z.; Xiong, Y.C.; Tian, M. Predicting initial formation temperature for deep well engineering with a new method. J. Earth Sci. 2015, 26, 108–115. [Google Scholar] [CrossRef]
- Yang, S.Q.; Ranjith, P.G.; Jing, H.W.; Tian, W.L.; Ju, Y. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics 2017, 65, 180–197. [Google Scholar] [CrossRef]
- Cui, S.G.; Liu, P.; Cui, E.Q.; Su, J.; Huang, B. Experimental study on mechanical property and pore structure of concrete for shotcrete use in a hot-dry environment of high geothermal tunnels. Constr. Build. Mater. 2018, 173, 124–135. [Google Scholar] [CrossRef]
- Lau, J.S.O.; Jackson, R. The effects of temperature and water-saturation on mechanical properties of Lac duBonnet pink granite. In Proceedings of the 8th International Congress on Rock Mechanics, Tokyo, Japan, 25–29 September 1995; pp. 1167–1172. [Google Scholar]
- Lin, Q.X.; Liu, Y.M.; Tham, L.G.; Tang, C.A.; Lee, P.K.K.; Wang, J. Time-dependent strength degradation of granite. Int. J. Rock Mech. Min. 2009, 46, 1103–1114. [Google Scholar] [CrossRef]
- Lan, H.X.; Martin, C.D.; Andersson, J.C. Evolution of in situ rock mass damage Induced by mechanical-thermal loading. Rock Mech. Rock Eng. 2013, 46, 153–168. [Google Scholar] [CrossRef]
- Wang, M.N.; Hu, Y.P.; Wang, Q.L.; Tian, H.T.; Liu, D.G. A study on strength characteristics of concrete under variable temperature curing conditions in ultra-high geothermal tunnels. Constr. Build. Mater. 2019, 229, 116989. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, T.; Hu, Z.; Wang, Y.; Zhang, Z.; Sun, J. Monitoring and Analysis of Geotemperature during the Tunnel Construction. Energies 2022, 15, 736. https://doi.org/10.3390/en15030736
Wen T, Hu Z, Wang Y, Zhang Z, Sun J. Monitoring and Analysis of Geotemperature during the Tunnel Construction. Energies. 2022; 15(3):736. https://doi.org/10.3390/en15030736
Chicago/Turabian StyleWen, Tao, Zheng Hu, Yankun Wang, Zihan Zhang, and Jinshan Sun. 2022. "Monitoring and Analysis of Geotemperature during the Tunnel Construction" Energies 15, no. 3: 736. https://doi.org/10.3390/en15030736
APA StyleWen, T., Hu, Z., Wang, Y., Zhang, Z., & Sun, J. (2022). Monitoring and Analysis of Geotemperature during the Tunnel Construction. Energies, 15(3), 736. https://doi.org/10.3390/en15030736