Promotion of the NO-to-NO2 Conversion of a Biofueled Diesel Engine with Nonthermal Plasma-Assisted Low-Temperature Soot Incineration of a Diesel Particulate Filter
Abstract
1. Introduction
2. Experimental Design
2.1. Schematic Diagram of the Experimental Setup
2.2. NTP System Setup
Reactor Effective Volume
2.3. Experimental Method
3. Results and Discussion
3.1. Combustion and Emission
In-Cylinder Pressure and Heat Release Rate
3.2. Effect of NTP on Emissions
3.2.1. Effect of NTP on The CO-to-CO2 Conversion
3.2.2. Effect of NTP on Hydrocarbon (HC)
3.2.3. Effect of NTP on NO-to-NO2 Composition
3.2.4. Energy Density in Converting NO to NO2
3.3. Soot Composition
3.4. Activation Energy
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hoekman, S.K.; Robbins, C. Review of the effects of biodiesel on NOx emissions. Fuel Process. Technol. 2012, 96, 237–249. [Google Scholar] [CrossRef]
- Jaroonjitsathian, S.; Noomwongs, N.; Boonchukosol, K. Comprehensive Experimental Study on the Effect of Biodiesel/Diesel Blended Fuel on Common-rail DI Diesel Engine Technology. Int. J. Automot. Technol. 2016, 17, 289–298. [Google Scholar] [CrossRef]
- Serhan, N.; Tsolakis, A.; Wahbi, A.; Martos, F.J.; Golunski, S. Modifying catalytically the soot morphology and nanostructure in diesel exhaust: Influence of silver De-NOx catalyst (Ag/Al2O3). Appl. Catal. B Environ. 2019, 241, 471–482. [Google Scholar] [CrossRef]
- Promhuad, P.; Sawatmongkhon, B. Soot Oxidation in Diesel Exhaust on Silver Catalyst Supported by Alumina, Titanium and Zirconium. E3S Web Conferences EDP Sci. 2021, 302, 01008. [Google Scholar] [CrossRef]
- Deng, X.; Li, M.; Zhang, J.; Hu, X.; Zheng, J.; Zhang, N.; Chen, B. Constructing nano-structure on silver/ceria-zirconia towards highly active and stable catalyst for soot oxidation. Chem. Eng. J. 2017, 313, 544–555. [Google Scholar] [CrossRef]
- Christensen, J.; Grunwaldt, M.; Jensen, A.D. Effect of NO2 and water on the catalytic oxidation of soot. Appl. Catal. B Environ. 2017, 205, 182–188. [Google Scholar] [CrossRef]
- Yoshida, K.; Kuwahara, T.; Kuroki, T.; Okubo, M. Diesel NOx aftertreatment by combined process using temperature swing adsorption, NOx reduction by nonthermal plasma, and NOx recirculation: Improvement of the recirculation process. J. Hazard. Mater. 2012, 231–232, 8–25. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.O.; Frank, B.; Jentoft, R.E.; Schlögl, R.; Su, D.S. The oxidation of soot particulate in the presence of NO2. Catal Today 2012, 191, 106–111. [Google Scholar] [CrossRef]
- Tighe, C.J.; Twigg, M.V.; Hayhurst, A.N.; Dennis, J.S. The kinetics of oxidation of Diesel soots by NO2. Combust. Flame 2012, 159, 77–90. [Google Scholar] [CrossRef]
- Abián, M.; Martín, C.; Nogueras, P.; Sánchez-Valdepeñas, J.; Rodríguez-Fernández, J.; Lapuerta, M.; Alzuetaa, U. Interaction of diesel engine soot with NO2 and O2 at diesel exhaust conditions. Effect of fuel and engine operation mode. Fuel 2018, 212, 455–461. [Google Scholar] [CrossRef]
- Fernando, S.; Hall, C.; Jha, S. NOx reduction from biodiesel fuels. Energy Fuels 2006, 20, 376–382. [Google Scholar] [CrossRef]
- Sun, J.; Caton, J.A.; Jacobs, T.J. Oxides of nitrogen emissions from biodiesel-fuelled diesel engines. Prog. Energy Combust. Sci. 2010, 36, 677–695. [Google Scholar] [CrossRef]
- Bowman, C.T. Kinetics of Pollutant Formation and Destruction in Combustion. Prog. Energy Combust. Sci. 1975, 1, 33–45. [Google Scholar] [CrossRef]
- Moser, B.R.; Williams, A.; Haas, M.J.; McCormick, R.L. Exhaust emissions and fuel properties of partially hydrogenated soybean oil methyl esters blended with ultra low sulfur diesel fuel. Fuel Process. Technol. 2009, 90, 1122–1128. [Google Scholar] [CrossRef]
- John, B. Heywood, Internal Combustion Engine Fundamentals, 2nd ed.; McGraw Hill: New York, NY, USA, 1976. [Google Scholar]
- Andre, L.B.; Charles, G.C.M.; Mueller, J. An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel. SAE Int. Am. Univ. Beirut 2018, 8, 789–816. [Google Scholar]
- Fenimore, C.P. Formation of Nitric Oxide in Premixed Hydrocarbon Flames. Symp. Combust. 1971, 13, 1. [Google Scholar] [CrossRef]
- Ban-Weiss, G.A.; Chen, J.Y.; Buchholz, B.A.; Dibble, R.W. A numerical investigation into the anomalous slight NOx increase when burning biodiesel; A new (old) theory. Fuel Process. Technol. 2007, 88, 659–667. [Google Scholar] [CrossRef]
- Gomez, E.; Rani, D.A.; Cheeseman, C.R.; Deegan, D.; Wise, M.; Boccaccini, A.R. Thermal plasma technology for the treatment of wastes: A critical review. J. Hazard. Mater. 2009, 161, 614–626. [Google Scholar] [CrossRef] [PubMed]
- Tendero, C.; Tixier, C.; Tristant, P.; Desmaison, J.; Leprince, P. Atmospheric pressure plasmas: A review. Spectrochim. Acta Part B At. Spectrosc. 2006, 61, 2–30. [Google Scholar] [CrossRef]
- Babaie, M.; Davari, P.; Zare, F.; Rahman, M.; Rahimzadeh, H.; Ristovski, Z.; Brown, R. Effect of pulsed power on particle matter in diesel engine exhaust using a DBD plasma reactor. IEEE Trans. Plasma Sci. 2013, 41, 2349–2358. [Google Scholar] [CrossRef]
- Okubo, M.; Kuwahara, T. New Technologies for Emission Control in Marine Diesel, 1st ed; Butterworth-Heinemann: Oxford, UK, 2019. [Google Scholar]
- Wang, Z.; Kuang, H.; Zhang, J.; Chu, L.; Ji, Y. Nitrogen oxide removal by non-thermal plasma for marine diesel engines. RSC Adv. 2019, 9, 5402–5416. [Google Scholar] [CrossRef]
- Bernie, M.P.; Shirley, E.S. Non-Thermal Plasma Techniques for Pollution Control Part B: Electron Beam and Electrical Discharge Processing, 1st ed.; Nato ASI Subseries G; Springer Science & Business Media: Berlin, Germany, 1993; Volume 34. [Google Scholar]
- Penetrante, B.M.; Brusasco, R.M.; Merritt, B.T.; Vogtlin, G.E. Environmental applications of low-temperature plasmas. Pure Appl. Chem. 1999, 71, 1829–1835. [Google Scholar] [CrossRef]
- Yoshida, K. Diesel NOx aftertreatment by combined process using temperature swing adsorption, nonthermal plasma, and NOx recirculation: NOx removal accelerated by conversion of NO to NO2. J. Taiwan Inst. Chem. Eng. 2013, 44, 1054–1059. [Google Scholar] [CrossRef]
- Yoshida, K.; Kuroki, T.; Okubo, M. Diesel emission control system using combined process of nonthermal plasma and exhaust gas components’ recirculation. Thin Solid Films 2009, 518, 987–992. [Google Scholar] [CrossRef]
- Wang, P.; Gu, W.; Lei, L.; Cai, Y.; Li, Z. Micro-structural and components evolution mechanism of particular matter from diesel engines with non-thermal plasma technology. Appl. Therm. Eng. 2015, 91, 1–10. [Google Scholar] [CrossRef]
- Talebizadeh, P.; Babaie, M.; Brown, R.; Rahimzadeh, H.; Ristovski, Z.; Arai, M. The role of non-thermal plasma technique in NOx treatment: A review. Renew. Sustain. Energy Rev. 2014, 40, 886–901. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, J.; Oliva, F.; Vázquez, R.A. Characterization of the diesel soot oxidation process through an optimized thermogravimetric method. Energy Fuels 2011, 25, 2039–2048. [Google Scholar] [CrossRef]
- Khani, M.R.; Pour, E.B.; Rashnoo, S.; Xin, T.; Barat, G.; Babak, S.; Ali, K.; Seyed, I.H. Real diesel engine exhaust emission control: Indirect non-thermal plasma and comparison to direct plasma for NOx, THC, CO, and CO2. J. Environ. Health Sci. Eng. 2020, 2, 743–754. [Google Scholar] [CrossRef]
- Pu, X.; Cai, Y.; Shi, Y.; Wang, J.; Gu, L.; Tian, J.; Li, W. Diesel particulate filter (DPF) regeneration using non-thermal plasma induced by dielectric barrier discharge. J. Energy Inst. 2018, 91, 655–667. [Google Scholar] [CrossRef]
- Kossyi, I.A.; Kostinsky, A.Y.; Silakov, A.A.M.V.P. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Sci. Technol. 1992, 1, 3. [Google Scholar] [CrossRef]
- Sathiamoorthy, G.; Kalyana, S.; Finney, W.C.; Clark, R.J.; Locke, B.R. Chemical reaction kinetics and reactor modeling of NO(x) removal in a pulsed streamer corona discharge reactor. Ind. Eng. Chem. Res. 1999, 38, 1844–1855. [Google Scholar] [CrossRef]
- Zhao, G.B.; Hu, X.; Yeung, M.C.; Plumb, O.A.; Radosz, M. Nonthermal Plasma Reactions of Dilute Nitrogen Oxide Mixtures: NOx in Nitrogen. Ind. Eng. Chem. Res. 2004, 43, 2315–2323. [Google Scholar] [CrossRef]
- Rajanikanth, B.S.; Kumar, S.; Ravi, V. Unfiltered Diesel Engine Exhaust Treatment by Discharge Plasma: Effect of Soot Oxidation Related content A Cascaded Discharge Plasma-Adsorbent Technique for Engine Exhaust Treatment B S Rajanikanth, A D Srinivasan and B Arya Nandiny-Non-Conventional Plasma Assisted Catalysts for Diesel Exhaust Treatment: A Case Study. Plasma Sci. Technol. 2004, 6, 2475–2480. [Google Scholar]
- Williams, A.M.; Garner, C.P.; Harry, J.E.; Hoare, D.W. Low Power Autoselective Regeneration of Monolithic Wall Flow Diesel Particulate Filters. SAE Pap. 2009, 1, 1927. [Google Scholar] [CrossRef][Green Version]
- Kittelson, D.B. Engines and Nanoparticles: A Review. J. Aerosol Sci. 1998, 29, 5–6. [Google Scholar] [CrossRef]
Common-Rail Euro Stage V Diesel Engine | |
---|---|
N° of cylinder | 4 cylinders, In-line |
Fuel injection | Common-rail DI |
Displacement volume (cm3) | 2499 |
Bore × Stroke (mm) | 95.4 × 87.4 |
Compression ratio | 18.1 |
Maximum power (kW) | 87 @ 1800–2200 rpm |
Maximum torque (Nm) | 280 @ 1800–2200 rpm |
Indicated Mean Effective Pressure: IMEP (Bar) | 5 | 6 | 7 |
---|---|---|---|
Torque (Nm) | 16.3 | 25.2 | 32.6 |
Step | Temperature Program | Atmosphere |
---|---|---|
1 | Isothermal hold at 40 °C for 10 min. | Nitrogen 50 mL/min |
2 | Heating to 110 °C with a ramp rate of 10 °C/min. | Nitrogen 50 mL/min |
3 | Isothermal hold at 110 °C for 30 min. | Nitrogen 50 mL/min |
4 | Heating to 400 °C with a ramp rate of 10 °C/min. | Nitrogen 50 mL/min |
5 | Isothermal hold at 400 °C for 30 min. | Nitrogen 50 mL/min |
6 | Cooling to 200 °C with a ramp rate of 10 °C/min. | Nitrogen 50 mL/min |
7 | Heating to 600 °C with a ramp rate of 10 °C/min. | Oxygen 50 mL/min |
8 | Isothermal hold at 600 °C for 30 min. | Oxygen 50 mL/min |
High Voltage (kV) | Activation Energy (kJ/mol) |
---|---|
0 | 173.64 |
6 | 168.70 |
10 | 154.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iamcheerangkoon, T.; Chollacoop, N.; Sawatmongkhon, B.; Wongchang, T.; Sittichompoo, S.; Chuepeng, S.; Theinnoi, K. Promotion of the NO-to-NO2 Conversion of a Biofueled Diesel Engine with Nonthermal Plasma-Assisted Low-Temperature Soot Incineration of a Diesel Particulate Filter. Energies 2022, 15, 9330. https://doi.org/10.3390/en15249330
Iamcheerangkoon T, Chollacoop N, Sawatmongkhon B, Wongchang T, Sittichompoo S, Chuepeng S, Theinnoi K. Promotion of the NO-to-NO2 Conversion of a Biofueled Diesel Engine with Nonthermal Plasma-Assisted Low-Temperature Soot Incineration of a Diesel Particulate Filter. Energies. 2022; 15(24):9330. https://doi.org/10.3390/en15249330
Chicago/Turabian StyleIamcheerangkoon, Teerapong, Nuwong Chollacoop, Boonlue Sawatmongkhon, Thawatchai Wongchang, Sak Sittichompoo, Sathaporn Chuepeng, and Kampanart Theinnoi. 2022. "Promotion of the NO-to-NO2 Conversion of a Biofueled Diesel Engine with Nonthermal Plasma-Assisted Low-Temperature Soot Incineration of a Diesel Particulate Filter" Energies 15, no. 24: 9330. https://doi.org/10.3390/en15249330
APA StyleIamcheerangkoon, T., Chollacoop, N., Sawatmongkhon, B., Wongchang, T., Sittichompoo, S., Chuepeng, S., & Theinnoi, K. (2022). Promotion of the NO-to-NO2 Conversion of a Biofueled Diesel Engine with Nonthermal Plasma-Assisted Low-Temperature Soot Incineration of a Diesel Particulate Filter. Energies, 15(24), 9330. https://doi.org/10.3390/en15249330