Energy Consumption under Circular Economy Conditions in the EU Countries
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data Sources and Descriptive Statistics
3.2. Methodology
3.2.1. Panel Model Specification
a. Panel Unit Root Testing
b. Pooled Model
c. Fixed-Effect Model
d. Random-Effect Model
3.2.2. Panel Diagnostic
a. Hausman Test
b. Breusch and Pagan Lagrangian Multiplier Test
c. Cross-Sectional Dependence Test
d. Autocorrelation Test
e. Heteroscedasticity Test
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
EC | RENC | CMUR | DMCpc | ETAXM | ETAXP | FECHpc | FECpc | GHGIEC | GHGpc | GMWpc | IRDEB | IRDEG | RBW | PECpc | RGDPp | RGDPpc | TRM | SRECFC | RRMW | RP | RLP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 60.60 | 4.86 | 9.13 | 16.88 | 12,268.53 | 2.62 | 594.28 | 2.42 | 89.00 | 9.54 | 478.19 | 336.21 | 56.98 | 65.27 | 3.27 | 28,717.59 | 1.84 | 17,01536.00 | 21.09 | 35.23 | 1.70 | 99.70 |
Med | 27.81 | 2.28 | 7.6 | 15.67 | 5345.02 | 2.51 | 596 | 2.08 | 87.95 | 8.45 | 466 | 166 | 37.55 | 60 | 2.95 | 21,826.05 | 1.67 | 630,787 | 18.03 | 34.45 | 1.25 | 100 |
Max | 329.22 | 50.57 | 30 | 37.34 | 61,119 | 4.14 | 1084 | 8.54 | 124.5 | 26.6 | 931 | 1151.9 | 350.6 | 196 | 9.09 | 97,853.71 | 19.35 | 10,792,542 | 55.78 | 67.2 | 4.97 | 120.56 |
Min | 3.43 | 0.038 | 1.2 | 7.95 | 431.6 | 1.41 | 252 | 1.09 | 63.2 | 5.2 | 247 | 8.5 | 2.4 | 2 | 1.51 | 6871.97 | −11.13 | 17,383 | 2.852 | 4 | 0.29 | 76.58 |
SD. | 78.86 | 8.05 | 6.40 | 6.21 | 16,837.50 | 0.65 | 184.51 | 1.30 | 9.81 | 3.77 | 134.63 | 332.45 | 62.34 | 50.26 | 1.38 | 19,614.15 | 2.65 | 2,351,216.0 | 11.25 | 14.97 | 1.07 | 5.59 |
Skew | 2.01 | 3.27 | 1.13 | 0.83 | 1.90 | 0.49 | 0.14 | 2.64 | 0.59 | 1.81 | 0.91 | 0.80 | 2.85 | 0.69 | 1.73 | 1.65 | 0.56 | 1.96 | 0.81 | 0.12 | 0.90 | −0.46 |
Kurt | 6.38 | 15.17 | 3.99 | 3.32 | 5.31 | 2.33 | 2.59 | 10.71 | 3.90 | 7.21 | 4.10 | 2.22 | 11.80 | 2.53 | 6.42 | 6.28 | 12.61 | 6.48 | 3.36 | 2.22 | 3.03 | 7.06 |
JB | 276.78 | 1911.74 | 61.04 | 28.88 | 197.92 | 14.26 | 2.49 | 872.82 | 22.07 | 307.90 | 45.10 | 31.93 | 1099.44 | 21.02 | 236.26 | 216.95 | 936.46 | 275.39 | 27.85 | 6.64 | 32.11 | 173.76 |
Prob | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 |
Var | EC | RENC | DMCpc | CMUR | EXTAM | EXTAP | FECHPC | FECPC | GHGIEC | GHGPC | GMWPC | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Test | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | |
Intercept at level | Stat | −7.8 | −4.8 | 107.9 | 123.9 | −2.6 | 1.7 | 57.0 | 80.0 | −10.5 | −2.9 | 87.2 | 65.0 | −5.0 | −0.4 | 61.41 | 57.29 | −1.9 | 2.1 | 53.3 | 46.0 | −9.2 | −3.1 | 95.3 | 88.7 | −9.8 | −4.2 | 98.5 | 136.2 | −11.1 | −4.6 | 115.1 | 94.6 | −3.7 | 1.9 | 44.1 | 63.0 | −7.2 | −2.2 | 75.8 | 90.5 | −3.5 | −0.7 | 63.9 | 81.3 |
p-value | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.96 | 0.17 | 0.00 | 0.0 | 0.0 | 0.0 | 0.1 | 0.00 | 0.32 | 0.09 | 0.168 | 0.0 | 1.0 | 0.3 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.6 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.1 | 0.0 | |
Result | S | S | S | S | S | NS | NS | S | S | S | S | S | S | NS | NS | NS | S | NS | NS | NS | S | S | S | S | S | S | S | S | S | S | S | S | S | NS | NS | S | S | S | S | S | S | NS | S | S | |
I order | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | ||||||||||||
Intercept and trend at level | Stat | −9.6 | −1.2 | 73.9 | 91.4 | −7.8 | −0.7 | 67.0 | 100.1 | −17.6 | −3.3 | 112.7 | 123.4 | −7.6 | −0.3 | 58.43 | 69.28 | −9.9 | −1.1 | 90.4 | 88.1 | −10.0 | −0.5 | 70.5 | 66.6 | −11.4 | −1.4 | 77.2 | 152.8 | −29.0 | −4.2 | 111.1 | 110.7 | −7.2 | −0.4 | 61.7 | 125.7 | −9.7 | −0.8 | 65.5 | 64.2 | −14.0 | −1.9 | 83.6 | 130.3 |
p-value | 0.00 | 0.11 | 0.01 | 0.00 | 0.00 | 0.24 | 0.04 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00 | 0.39 | 0.14 | 0.02 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.1 | 0.0 | 0.0 | 0.2 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | |
Result | S | NS | S | S | S | S | S | S | S | S | S | S | NS | NS | S | S | NS | S | S | S | NS | S | S | S | S | S | S | S | S | S | S | S | NS | S | S | S | NS | S | S | S | S | S | S | ||
I order | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | |||||||
Intercept at difference | Stat | −12.4 | −6.0 | 130.0 | 150.0 | −11.1 | −5.6 | 128.7 | 176.7 | −18.8 | −8.8 | 172.8 | 191.9 | −10.1 | −4.3 | 105.45 | 140.23 | −11.6 | −5.5 | 130.2 | 143.6 | −12.0 | −4.5 | 113.8 | 114.1 | −14.3 | −7.0 | 149.6 | 238.9 | −21.4 | −7.3 | 140.8 | 144.2 | −9.9 | −5.0 | 118.2 | 180.0 | −9.1 | −3.9 | 98.2 | 105.6 | −18.3 | −8.5 | 150.0 | 157.6 |
p-value | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Result | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | |
I order | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | |
Intercept and trend at difference | Stat | −15.6 | −1.8 | 90.8 | 126.7 | −10.9 | −1.9 | 98.7 | 175.5 | −17.6 | −2.6 | 113.0 | 180.3 | −76.1 | −7.9 | 143.90 | 114.20 | −14.3 | −2.6 | 115.4 | 162.9 | −12.7 | −2.1 | 101.9 | 183.3 | −13.1 | −1.7 | 89.9 | 181.5 | −11.3 | −0.9 | 74.5 | 107.3 | −12.8 | −1.9 | 97.7 | 153.9 | −8.6 | −0.7 | 66.4 | 86.8 | −16.8 | −1.8 | 87.9 | 161.2 |
p-value | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Result | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | NS | S | S | S | S | S | S | S | NS | S | S | S | S | S | S | |
I order | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | ||||||||||
Var | IRDEB | IRDEG | PECPC | RBW | RGDPP2015 | RGDPPC2015 | RLP | RP | RRMW | SRECFC | TRM | ||||||||||||||||||||||||||||||||||
Test | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | LLC | IPS | ADFF | PPF | |
Intercept at Level | Stat | 2.7 | 3.7 | 44.0 | 27.4 | −1.9 | 1.7 | 41.0 | 55.6 | −7.3 | −2.6 | 81.3 | 106.7 | 0.8 | 3.2 | 27.5 | 27.5 | 6.1 | 7.2 | 14.5 | 16.0 | −12.3 | −5.7 | 119.3 | 97.1 | 1.4 | 4.7 | 29.7 | 34.8 | −3.6 | −0.1 | 58.4 | 105.4 | −5.0 | −1.1 | 65.7 | 62.1 | −3.5 | 1.7 | 40.5 | 34.6 | −4.8 | −1.1 | 62.7 | 60.1 |
p-value | 1.0 | 1.0 | 0.6 | 1.0 | 0.0 | 1.0 | 0.8 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 1.0 | 1.0 | 0.9 | 0.0 | 0.5 | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 | 0.0 | 1.0 | 0.8 | 0.9 | 0.0 | 0.1 | 0.1 | 0.1 | |
Result | NS | NS | NS | NS | S | NS | NS | NS | S | S | S | S | NS | NS | NS | NS | NS | NS | NS | NS | S | S | S | S | NS | NS | NS | NS | S | NS | NS | S | S | NS | S | S | S | NS | NS | NS | S | NS | S | NS | |
I order | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | |||||||||||||||||||||||||||||
Intercept and trend at level | Stat | −3.9 | 1.0 | 40.9 | 38.9 | −4.1 | 1.2 | 36.6 | 54.0 | −9.6 | −0.9 | 63.7 | 73.8 | −7.0 | −0.3 | 57.5 | 76.3 | −18.3 | −1.7 | 92.2 | 61.7 | −17.5 | −3.6 | 127.3 | 116.5 | −7.3 | 0.0 | 60.2 | 39.3 | −11.3 | −1.8 | 90.1 | 141.0 | −14.7 | −2.2 | 93.0 | 104.6 | −7.2 | −0.4 | 59.7 | 59.2 | −9.3 | −1.1 | 72.4 | 58.1 |
p-value | 0.0 | 0.8 | 0.8 | 0.8 | 0.0 | 0.9 | 0.9 | 0.3 | 0.0 | 0.2 | 0.1 | 0.0 | 0.0 | 0.4 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.1 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.1 | 0.1 | 0.0 | 0.1 | 0.0 | 0.1 | |
Result | S | NS | NS | NS | S | NS | NS | NS | S | NS | S | S | S | NS | NS | S | S | S | S | NS | S | S | S | S | S | NS | NS | NS | S | S | S | S | S | S | S | S | S | NS | NS | NS | S | NS | S | NS | |
I order | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | I(0) | ||
Intercept at difference | Stat | −5.5 | −2.0 | 78.7 | 114.9 | −11.6 | −4.6 | 114.7 | 151.8 | −10.6 | −5.0 | 116.3 | 148.8 | −15.0 | −6.4 | 139.1 | 168.3 | −9.9 | −3.1 | 88.3 | 94.8 | −20.4 | −9.8 | 187.1 | 186.0 | −11.3 | −5.0 | 117.4 | 128.7 | −16.9 | −7.9 | 162.6 | 231.9 | −15.2 | −7.9 | 160.9 | 198.7 | −12.1 | −5.1 | 115.8 | 132.9 | −19.4 | −7.8 | 154.2 | 154.6 |
p-value | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Result | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | |
I order | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | |
Intercept and trend at difference | Stat | −10.7 | −1.9 | 99.1 | 146.3 | −14.6 | −2.2 | 101.9 | 167.5 | −6.6 | −0.6 | 71.1 | 135.3 | −14.8 | −2.1 | 99.5 | 189.7 | −11.5 | −1.7 | 91.2 | 144.6 | −18.7 | −2.9 | 119.1 | 143.8 | −16.6 | −2.7 | 114.4 | 158.1 | −21.6 | −2.6 | 111.5 | 190.9 | −21.4 | −3.7 | 135.7 | 210.0 | −13.4 | −1.5 | 83.4 | 146.1 | −24.7 | −2.8 | 111.8 | 139.5 |
p-value | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Result | S | S | S | S | S | S | S | S | S | NS | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | |
I order | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) | I(1) |
References
- MacArthur, E. Towards the Circular Economy: Economic and Business Rationale for an Accelerated Transition; Ellen MacArthur Foundation: Cowes, UK, 2015; Available online: https://emf.thirdlight.com/link/ip2fh05h21it-6nvypm/@/preview/1?o (accessed on 22 September 2022).
- Jawahir, I.S.; Bradley, R. Technological elements of circular economy and the principles of 6R-based closed-loop material flow in sustainable manufacturing. Procedia CIRP 2016, 40, 103–108. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- MacArthur, E. Towards the circular economy. J. Ind. Ecol. 2013, 2, 23–44. Available online: https://www.werktrends.nl/app/uploads/2015/06/Rapport_McKinsey-Towards_A_Circular_Economy.pdf (accessed on 1 September 2022).
- Andersen, M.S. An introductory note on the environmental economics of the circular economy. Sustain. Sci. 2007, 2, 133–140. [Google Scholar] [CrossRef]
- Geng, Y.; Fu, J.; Sarkis, J.; Xue, B. Towards a national circular economy indicator system in China: An evaluation and critical analysis. J. Clean. Prod. 2012, 23, 216–224. [Google Scholar] [CrossRef]
- George, D.A.; Lin, B.C.A.; Chen, Y. A circular economy model of economic growth. Environ. Model. Softw. 2015, 73, 60–63. [Google Scholar] [CrossRef]
- Yuan, Z.; Bi, J.; Moriguichi, Y. The circular economy: A new development strategy in China. J. Ind. Ecol. 2006, 10, 4–8. [Google Scholar] [CrossRef]
- Dinda, S. A Circular Economy Approach for Sustainable Economic Growth; University Library of Munich: Munich, Germany, 2016; (No. 89587); Available online: https://mpra.ub.uni-muenchen.de/104522/1/MPRA_paper_104522.pdf (accessed on 15 August 2022).
- Yong, R. The circular economy in China. J. Mater Cycles Waste Manag. 2007, 9, 121–129. [Google Scholar] [CrossRef]
- Sakai, S.I.; Yoshida, H.; Hirai, Y.; Asari, M.; Takigami, H.; Takahashi, S.; Tomoda, K.; Peeler, M.V.; Wejchert, J.; Schmid-Unterseh, T.; et al. International comparative study of 3R and waste management policy developments. J. Mater. Cycles Waste Manag. 2011, 13, 86–102. [Google Scholar] [CrossRef]
- Preston, F. A Global Redesign? Shaping the Circular Economy. 2012. Available online: https://www.biblioteca.fundacionicbc.edu.ar/images/d/d7/Bp0312_preston.pdf (accessed on 13 September 2022).
- Reh, L. Process engineering in circular economy. Particuology 2013, 11, 119–133. [Google Scholar] [CrossRef]
- Su, B.; Heshmati, A.; Geng, Y.; Yu, X. A review of the circular economy in China: Moving from rhetoric to implementation. J. Clean. Prod. 2013, 42, 215–227. [Google Scholar] [CrossRef]
- Lett, L.A. Global threats, waste recycling and the circular economy concept. Rev. Argent. Microbiol. 2014, 46, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.; Hultink, E.J. The Circular Economy–A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Kirchherr, J.; Piscicelli, L.; Bour, R.; Kostense-Smit, E.; Muller, J.; Huibrechtse-Truijens, A.; Hekkert, M. Barriers to the circular economy: Evidence from the European Union (EU). Ecol. Econ. 2018, 150, 264–272. [Google Scholar] [CrossRef]
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Majid, M.Z.A. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- Nocera, S.; Cavallaro, F.; Irranca Galati, O. Options for reducing external costs from freight transport along the Brenner corridor. Eur. Transp. Res. Rev. 2018, 10, 1–18. [Google Scholar] [CrossRef]
- Papież, M.; Śmiech, S.; Frodyma, K. The role of energy policy on the decoupling processes in the European Union countries. J. Clean. Prod. 2021, 318, 128484. [Google Scholar] [CrossRef]
- Hailemariam, A.; Erdiaw-Kwasie, M.O. Towards a circular economy: Implications for emission reduction and environmental sustainability. Bus. Strategy Environ. 2020, 1–15. [Google Scholar] [CrossRef]
- MacArthur, E. Towards the Circular Economy: Accelerating the Scale-Up Across Global Supply Chains. 2014. Available online: https://www3.weforum.org/docs/WEF_ENV_TowardsCircularEconomy_Report_2014.pdf (accessed on 22 September 2022).
- European Commission. Directive 2008/98/E.C. of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. 312. E. Commission. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02008L0098-20180705&from=EN (accessed on 10 July 2021).
- Van Buren, N.; Demmers, M.; Van der Heijden, R.; Witlox, F. Towards a circular economy: The role of Dutch logistics industries and governments. Sustainability 2016, 8, 647. [Google Scholar] [CrossRef]
- Proskurina, S.; Sikkema, R.; Heinimö, J.; Vakkilainen, E. Five years left–How are the EU member states contributing to the 20% target for EU’s renewable energy consumption; the role of woody biomass. Biomass Bioenergy 2016, 95, 64–77. [Google Scholar] [CrossRef]
- Cavallaro, F.; Galati, O.I.; Nocera, S. Policy strategies for the mitigation of GHG emissions caused by the mass-tourism mobility in coastal areas. Transp. Res. Procedia 2017, 27, 317–324. [Google Scholar] [CrossRef]
- Ekins, P.; Hughes, N.; Brigenzu, S.; Arden Clark, C.; Fischer-Kowalski, M.; Graedel, T.; Westhowk, H. Resource Efficiency: Potential and Economic Implications. A Report of the International Resource Panel. 2016. Available online: https://pure.iiasa.ac.at/id/eprint/13813/1/-Resource_Efficiency__Potential_and_Economic_Implications;_summary_for_Policy-MakersResource-Eff-irp-lr.pdf.pdf (accessed on 22 September 2022).
- Global Bioeconomy Summit. Communiqué—Making Bioeconomy Work for Sustainable Development. 2015. Available online: https://gbs2020.net/wp-content/uploads/2021/10/Communique_final_neu.pdf (accessed on 22 September 2022).
- El-Chichakli, B.; von Braun, J.; Lang, C.; Barben, D.; Philp, J. Policy: Five cornerstones of a global bioeconomy. Nat. News 2016, 535, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Buechler, E.; Powell, S.; Sun, T.; Astier, N.; Zanocco, C.; Bolorinos, J.; Rajagopal, R. Global changes in electricity consumption during COVID-19. Inscience 2022, 25, 103568. [Google Scholar] [CrossRef] [PubMed]
- Figge, F.; Thorpe, A.S.; Manzhynski, S. Between you and I: A portfolio theory of the circular economy. Ecol. Econ. 2021, 190, 107190. [Google Scholar] [CrossRef]
- Hansen, J.P.; Narbel, P.A.; Aksnes, D.L. Limits to growth in the renewable energy sector. Renew. Sustain. Energy Rev. 2017, 70, 769–774. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. The limits of renewable energy. In Switching Off; Springer: Singapore, 2022; pp. 35–54. [Google Scholar] [CrossRef]
- Parajuly, K.; Fitzpatrick, C.; Muldoon, O.; Kuehr, R. Behavioral change for the circular economy: A review with focus on electronic waste management in the EU. Resour. Conserv. Recycl. X 2020, 6, 100035. [Google Scholar] [CrossRef]
- Perrow, C. Why we disagree about climate change: Understanding controversy, inaction, and opportunity. Contemp. Sociol. 2010, 39, 46. [Google Scholar] [CrossRef]
- von Wehrden, H.; Luederitz, C.; Leventon, J.; Russell, S. Methodological challenges in sustainability science: A call for method plurality, procedural rigor and longitudinal research. Chall. Sustain. 2017, 5, 35–42. [Google Scholar] [CrossRef]
- Van der Ploeg, F. Natural resources: Curse or blessing? J. Econ. Lit. 2011, 49, 366–420. [Google Scholar] [CrossRef]
- Kok, L.; Wurpel, G.; Ten Wolde, A. Unleashing the Power of the Circular Economy. 2013. Available online: http://www.imsa.nl/uploads/Unleashing_the_Power_of_the_Circular_Economy-Circle_Economy.pdf (accessed on 22 August 2021).
- European Commission. European Resource Efficiency Platform (EREP): Manifesto and Policy Recommendations. 2012. Available online: https://ec.europa.eu/environment/resource_efficiency/documents/erep_manifesto_and_policy_recommendations_31-03-2014.pdf (accessed on 22 September 2022).
- Pieratti, E.; Paletto, A.; De Meo, I.; Fagarazzi, C.; Migliorini, M.G.R. Assessing the forest-wood chain at local level: A Multi-Criteria Decision Analysis (MCDA) based on the circular bioeconomy principles. Ann. For. Res. 2019, 62, 123–138. [Google Scholar] [CrossRef]
- Mohan, S.V.; Nikhil, G.N.; Chiranjeevi, P.; Reddy, C.N.; Rohit, M.V.; Kumar, A.N.; Sarkar, O. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresour. Technol. 2016, 215, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Hetemäki, L.; Hanewinkel, M.; Muys, B.; Ollikainen, M.; Palahí, M.; Trasobares, A.; Potoćnik, J. Leading the Way to a European Circular Bioeconomy Strategy. 2017. Available online: https://efi.int/sites/default/files/files/publication-bank/2018/efi_fstp_5_2017.pdf (accessed on 22 September 2022).
- Caeiro, S.; Ramos, T.B.; Huisingh, D. Procedures and criteria to develop and evaluate household sustainable consumption indicators. J. Clean. Prod. 2012, 27, 72–91. [Google Scholar] [CrossRef]
- Bocken, N.M.; De Pauw, I.; Bakker, C.; Van Der Grinten, B. Product design and business model strategies for a circular economy. J. Ind. Prod. Eng. 2016, 33, 308–320. [Google Scholar] [CrossRef]
- Trica, C.L.; Banacu, C.S.; Busu, M. Environmental factors and sustainability of the circular economy model at the European Union level. Sustainability 2019, 11, 1114. [Google Scholar] [CrossRef]
- Elia, V.; Gnoni, M.G.; Tornese, F. Measuring circular economy strategies through index methods: A critical analysis. J. Clean. Prod. 2017, 142, 2741–2751. [Google Scholar] [CrossRef]
- Korhonen, J.; Nuur, C.; Feldmann, A.; Birkie, S.E. Circular economy as an essentially contested concept. J. Clean. Prod. 2018, 175, 544–552. [Google Scholar] [CrossRef]
- Schroeder, P.; Anggraeni, K.; Weber, U. The relevance of circular economy practices to the sustainable development goals. J. Ind. Ecol. 2019, 23, 77–95. [Google Scholar] [CrossRef]
- Schroder, P. Promoting a Just Transition to an Inclusive Circular Economy; Energy, Environment and Resource Program; Catham House: London, UK, 2020; pp. 1–33. [Google Scholar]
- Halkos, G.; Petrou, K.N. Analysing the energy efficiency of EU member states: The potential of energy recovery from waste in the circular economy. Energies 2019, 12, 3718. [Google Scholar] [CrossRef]
- Robaina, M.; Villar, J.; Pereira, E.T. The determinants for a circular economy in Europe. Environ. Sci. Pollut. Res. 2020, 27, 12566–12578. [Google Scholar] [CrossRef]
- Knäble, D.; de Quevedo Puente, E.; Cornejo, C.P.; Baumgärtler, T. The impact of the circular economy on sustainable development: A European panel data approach. Sustain. Prod. Consum. 2022, 34, 233–243. [Google Scholar] [CrossRef]
- Malinauskaite, J.; Jouhara, H.; Czajczyńska, D.; Stanchev, P.; Katsou, E.; Rostkowski, P.; Spencer, N. Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy 2017, 141, 2013–2044. [Google Scholar] [CrossRef]
- Levin, A.; Lin, C.-F.; Chu, C.-S.J. Unit root tests in panel data: Asymptotic and finite sample properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econom. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Maddala, G.S.; Wu, S. A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test. Oxf. Bull. Econ. Stat. 1999, 61 (Suppl S1), 631–652. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1111/1468-0084.0610s1631 (accessed on 20 August 2022). [CrossRef]
- Colonescu, C. Using R for Principles of Econometrics; CreateSpace Independent Publishing Platform: Scott Valley, CA, USA, 2018. [Google Scholar]
- Busu, M.; Trica, C.L. Sustainability of circular economy indicators and their impact on economic growth of the European Union. Sustainability 2019, 11, 5481. [Google Scholar] [CrossRef]
- Hysa, E.; Kruja, A.; Rehman, N.U.; Laurenti, R. Circular economy innovation and environmental sustainability impact on economic growth: An integrated model for sustainable development. Sustainability 2020, 12, 4831. [Google Scholar] [CrossRef]
- Sverko Grdic, Z.; Krstinic Nizic, M.; Rudan, E. Circular economy concept in the context of economic development in EU countries. Sustainability 2020, 12, 3060. [Google Scholar] [CrossRef]
- Tantau, A.D.; Maassen, M.A.; Fratila, L. Models for analyzing the dependencies between indicators for a circular economy in the European Union. Sustainability 2018, 10, 2141. [Google Scholar] [CrossRef]
- Pineiro-Villaverde, G.; García-Álvarez, M.T. Sustainable consumption and production: Exploring the links with resources productivity in the EU-28. Sustainability 2020, 12, 8760. [Google Scholar] [CrossRef]
- Gujarati, D.N. Basic Econometrics; Tata McGraw-Hill Education: New York, NY, USA, 2009. [Google Scholar]
- Baltagi, B. Econometric Analysis of Panel Data; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Ba, Y.; Berrett, J.; Coupet, J. Panel data analysis: A guide for nonprofit studies. VOLUNTAS Int. J. Volunt. Nonprofit Organ. 2021, 1–16. [Google Scholar] [CrossRef]
- Hausman, J.A.; Taylor, W.E. Panel data and unobservable individual effects. Econom. J. Econom. Soc. 1981, 49, 1377–1398. [Google Scholar] [CrossRef]
- Breusch, T.S.; Pagan, A.R. The Lagrange multiplier test and its applications to model specification in econometrics. Rev. Econ. Stud. 1980, 47, 239–253. [Google Scholar] [CrossRef]
- Pesaran, M.H. General diagnostic tests for cross-sectional dependence in panels. Empir. Econ. 2021, 60, 13–50. [Google Scholar] [CrossRef]
- Pesaran, M.H. Testing weak cross-sectional dependence in large panels. Econom. Rev. 2015, 34, 1089–1117. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010; pp. 282–283. [Google Scholar]
- Greene, W.H. Econometric Analysis; Pearson: New York, NY, USA, 2018; p. 136. [Google Scholar]
- Yildirim, E.; Saraç, Ş.; Aslan, A. Energy consumption and economic growth in the USA: Evidence from renewable energy. Renew. Sustain. Energy 2012, 16, 6770–6774. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Paramati, S.R.; Ozturk, I.; Bhattacharya, S. The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Appl. Energy 2016, 162, 733–741. [Google Scholar] [CrossRef]
- Arellano, M. Computing robust standard errors for within-groups estimators. Oxf. Bull. Econ. Stat. 1987, 49, 431–434. [Google Scholar] [CrossRef]
- Pilatowska, M.; Geise, A.; Wlodarczyk, A. Asymmetric Impact of Economic Growth on CO2 Emissions: Evidence from the EU Countries. In Proceedings of the 2018 15th International Conference on the European Energy Market (EEM), Lodz, Poland, 27–29 June 2018; IEEE: Piscataway Township, NJ, USA, 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Šikić, T.F. The impact of energy consumption on economic growth in developed and post-transition countries of European Union. Zb. Rad. Ekon. Fak. Rij. 2020, 38, 475–497. [Google Scholar] [CrossRef]
- Bilbao-Osorio, B.; Rodríguez-Pose, A. From R&D to innovation and economic growth in the EU. Growth Chang. 2004, 35, 434–455. [Google Scholar] [CrossRef]
Country | Code | Country | Code | Country | Code | Country | Code |
---|---|---|---|---|---|---|---|
Austria | AUT | Finland | FIN | Italy | ITA | Portugal | PRT |
Belgium | BEL | France | FRA | Latvia | LVA | Romania | ROU |
Croatia | HRV | Germany | DEU | Lithuania | LTU | Slovak Republic | SVK |
Czech Republic | CZE | Greece | GRC | Luxembourg | LUX | Slovenia | SVN |
Denmark | DNK | Hungary | HUN | Netherlands | NLD | Spain | ESP |
Estonia | EST | Ireland | IRL | Poland | POL | Sweden | SWE |
Variable | Name | Definition | Unit | Eurostat Codes |
---|---|---|---|---|
Y1 | EC | Aggregate energy consumption | Mtoe | BP |
Y2 | RENC | Renewable energy consumption | Mtoe | BP |
X1 | RGDP | Real GDP per capita at market prices in 2015 | Chain-linked volumes (2010), Euros per capita | SDG_08_10 |
X2 | RGDPpc | Real GDP per capita at market prices in 2015 | Percentage (%) | SDG_08_10 |
X3 | RP | Gross domestic product divided by domestic material consumption | Euros per kilogram, chain-linked volumes (2015) | SDG_12_20 |
X4 | RRMW | Recycling rate of municipal waste | Percentage (%) | cei_wm011 |
X5 | RBW | Recycling of biowaste | Kilograms per capita | cei_wm030 |
X6 | CMUR | Ratio of the circular use of materials to the overall material use | Percentage (%) | cei_srm030 |
X7 | TRM | Imports intra-EU27 (from 2020) | Tons | cei_srm020 |
X8 | ETAXM | Environmental taxes by economic activity (NACE Rev. 2) | Million euro | env_ac_taxind2 |
X9 | ETAXP | Environmental tax revenue (% of GDP) | Percentage of GDP | T2020_RT320 |
X10 | RLP | Productivity per person employed in relation to the EU average | Percentage (%) | NAMA_10_LP_ULC |
X11 | GHGpc | Greenhouse gas emissions per capita | Tons of CO2 equivalent per capita. | T2020_RD300 |
X12 | GHGIEC | Greenhouse gas emissions intensity of energy consumption | Index, 2000 = 100 | sdg_13_20 |
X13 | DMCpc | Domestic material consumption per capita | Tons per capita | T2020_RL110 |
X14 | SRECFC | Share of renewable energy sources in gross final energy consumption | Percentage (%) | SDG_07_40 |
X15 | FECHpc | Final energy consumption in households per capita | Kilogram of oil equivalent (KGOE) | SDG_07_20 |
X16 | PECpc | Primary energy consumption per capita | Kilograms of oil equivalent per capita | sdg_07_10 |
X17 | FECpc | Final energy consumption per capita | Kilograms of oil equivalent per capita | sdg_07_11 |
X18 | IRDEB | Intramural R&D expenditure (GERD)—Business | Euros per inhabitant | rd_e_gerdtot |
X19 | IRDEG | Intramural R&D expenditure (GERD)—Government | Euros per inhabitant | rd_e_gerdtot |
No. | Authors | Sample | Dependent Variables | Independent Variables |
---|---|---|---|---|
1 | [58] | 2010–2017 | GDP per capita growth (%) | CMUR (%); RRMW (Tons); TRM (Imports intra-EU27 (from 2020)); ETAXM (Euros); RLP (%); RP (Euros/kg) |
2 | [59] | 2000–2017 | GDP per capita growth (%) | ETAXP (% of GDP); RRMW; TRM (imports intra-EU27 (from 2020)); INV |
3 | [60] | 2008–2016 | GDP per capita (Euros) | GMWpc (kilograms per capita); RRMW (%); RRPTP (%); RREW (%); RBW (kilograms per capita); VAFC (million euros); PAT (number) |
4 | [61] | 2010–2014 | RRMW (%) | CMUR (%); ETAXM (in million Euros); RP (Euros per kg); TRM (imports intra-EU27 (from 2020)); GERD (in million Euros) |
5 | [62] | 2001–2018 | RP (Euros per kilogram, chain-linked volumes (2015)) | RRMW (%); CMUR (%); RRCDW (%); DMCpc (tons per capita); SRECFC (%); FECHpc (KGOE); PECpc (in kilograms of oil equivalent per capita); FECpc (in kilograms of oil equivalent per capita); IRDEB (Euros per inhabitant); IRDEG (Euros per inhabitant); GHGpc (tons of CO2 equivalent per capita); GHGIEC (Index, 2000 = 100) |
EC | RENC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Exogenous Variable | Model 1a | Model 2a | Model 3a | Model 4a | Model 5a | Model 1b | Model 2b | Model 3b | Model 4b | Model 5b |
RGDPpc | − | − | − | − | − | + | ||||
RGDP | + | + | ||||||||
ETAXM | + | − | + | + | − | + | ||||
ETAXP | + | − | ||||||||
RP | + | + | + | + | + | − | + | − | + | + |
RLP | + | − | − | + | − | − | − | − | ||
RRMW | − | − | − | − | − | − | − | − | − | − |
CMUR | − | − | + | − | + | − | − | − | − | − |
TRM | − | − | − | − | − | − | + | + | ||
GMWpc | − | − | − | − | ||||||
RBW | − | − | ||||||||
DMCpc | − | + | + | − | − | + | ||||
PECpc | + | − | + | − | − | − | ||||
FECpc | − | − | − | − | − | − | ||||
SRECFC | − | − | − | + | + | + | ||||
FECHpc | − | − | − | − | − | + | ||||
GHGpc | − | − | − | − | − | − | ||||
GHGIEC | − | − | − | − | − | − | ||||
IRDEB | − | − | − | − | − | − | ||||
IRDEG | + | + | + | − | − | − | ||||
Model diagnostics | ||||||||||
R2 within the groups | 0.496 | 0.344 | 0.421 | 0.597 | 0.4775 | 0.3756 | 0.2851 | 0.4164 | 0.5698 | 0.4912 |
R2 between the groups | 0.7216 | 0.006 | 0.0535 | 0.5216 | 0.0010 | 0.2817 | 0.1768 | 0.1123 | 0.1384 | 0.0247 |
R2 overall | 0.7004 | 0.004 | 0.0499 | 0.5019 | 0.0014 | 0.2854 | 0.1326 | 0.1206 | 0.1531 | 0.0148 |
BIC | 1086.24 | 1129.28 | 1146.65 | 1002.16 | 1144.25 | 955.48 | 998.92 | 966.63 | 915.37 | 955.65 |
EC | RENC | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Coef. | St. Err. | t-Value | p-Value | Coef. | St. Err. | t-Value | p-Value |
RGDP | 0.000 | 0.000 | 1.83 | 0.080 | 0.000 | 0.000 | −1.93 | 0.066 |
TRM | 0.000 | 0.000 | 0.76 | 0.455 | 0.000 | 0.000 | −1.77 | 0.090 |
RLP | 0.068 | 0.063 | 1.08 | 0.291 | 0.045 | 0.035 | 1.26 | 0.219 |
RP | −6.879 | 2.173 | −3.17 | 0.004 | 2.342 | 1.164 | 2.01 | 0.056 |
ETAXM | −0.001 | 0.000 | −7.82 | 0.000 | 0.000 | 0.000 | 3.6 | 0.002 |
RRMW | 0.004 | 0.025 | 0.18 | 0.861 | 0.000 | 0.016 | 0.000 | 0.996 |
CMUR | −0.174 | 0.154 | −1.13 | 0.270 | −0.236 | 0.188 | −1.26 | 0.221 |
DMCpc | −0.344 | 0.157 | −2.19 | 0.039 | −0.051 | 0.132 | −0.38 | 0.704 |
SRECFC | −0.003 | 0.082 | −0.04 | 0.969 | 0.127 | 0.068 | 1.86 | 0.075 |
FECHpc | 0.011 | 0.007 | 1.56 | 0.132 | −0.003 | 0.003 | −1.03 | 0.315 |
PECpc | 3.003 | 2.164 | 1.39 | 0.178 | 1.361 | 2.316 | 0.59 | 0.563 |
FECpc | 1.431 | 1.636 | 0.88 | 0.391 | 1.325 | 0.873 | 1.52 | 0.143 |
IRDEB | 0.004 | 0.006 | 0.6 | 0.555 | 0.02 | 0.013 | 1.5 | 0.147 |
IRDEG | 0.029 | 0.016 | 1.81 | 0.084 | 0.046 | 0.041 | 1.13 | 0.270 |
GHGpc | 0.207 | 0.589 | 0.35 | 0.728 | −0.02 | 0.417 | −0.05 | 0.963 |
GHGIEC | −0.044 | 0.063 | −0.7 | 0.492 | 0.014 | 0.05 | 0.27 | 0.791 |
Constant | 50.803 | 8.603 | 5.91 | 0.000 | −12.538 | 9.309 | −1.35 | 0.191 |
Model diagnostics for parameter significance | ||||||||
F-TEST | F-TEST = 39.668, Prob > F = 0.000 | F-TEST = 8.817, Prob > F = 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.M.; Osińska, M. Energy Consumption under Circular Economy Conditions in the EU Countries. Energies 2022, 15, 7839. https://doi.org/10.3390/en15217839
Khan AM, Osińska M. Energy Consumption under Circular Economy Conditions in the EU Countries. Energies. 2022; 15(21):7839. https://doi.org/10.3390/en15217839
Chicago/Turabian StyleKhan, Atif Maqbool, and Magdalena Osińska. 2022. "Energy Consumption under Circular Economy Conditions in the EU Countries" Energies 15, no. 21: 7839. https://doi.org/10.3390/en15217839
APA StyleKhan, A. M., & Osińska, M. (2022). Energy Consumption under Circular Economy Conditions in the EU Countries. Energies, 15(21), 7839. https://doi.org/10.3390/en15217839