Voltage Rise Mitigation in PV Rich LV Distribution Networks Using DC/DC Converter Level Active Power Curtailment Method
Abstract
:1. Introduction
2. Problem Analysis and Overview of Proposed Control
3. DeRating Based Voltage Control
3.1. Description of the Model
3.2. Voltage Control Algorithm
4. Simulation Results
4.1. CaseI: Variable Load and Fixed Irradiance Levels
4.2. CaseII: Fixed Load and Variable Irradiance
4.3. CaseIII: Variable Load and Variable Irradiance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviation  Description 
PV  Photovoltaic 
RPC  Reactive power control 
APC  Active power control 
LV  Low voltage 
P–V  Power versus Voltage 
MPP  Maximum power point 
MPPT  Maximum power point tracking 
VCS  Voltage control subroutine 
VCA  Voltage control algorithm 
Variables  Description 
P  Active power 
Q  Reactive power 
V_{rated}  Rated voltage 
P_{ref}  Reference power 
V_{mpp}  Maximum power point voltage 
V_{3}  Line end voltage 
V_{OC}  Open circuit voltage 
P_{mpp}  Maximum power point power 
Appendix A
LV Distribution System  PV System  

Load L1  P  2 kW  PV array 1 and 2  P_{MPP}  100 kW 
Q  0  V_{MPP}  260 V  
Vrms/pp  25 kV  I_{SC}  400 A  
Load L2  P  2 kW  V_{OC}  320 V  
Q  0  Dc/dc converter  PV side capacitor  100 µF  
Vrms/pp  25 e3  Inverter side capacitor  6000e µF  
Load L3  P  60 kW  Inductor  5 mH  
Q  4 k Var  PV side T/F 1 and 2  kVA  100  
Vrms/pp  25 kV  V_{P}  260 V  
Grid side T/F  kVA  200  V_{S}  25 kV  
V_{P}  20 kV  Voltage droop control  k  0.002  
V_{S}  25 kV 
References
 Jahangiri, P.; Aliprantis, D.C. Distributed volt/VAr control by PV inverters. IEEE Trans. Power Syst. 2013, 28, 3429–3439. [Google Scholar] [CrossRef]
 Long, C.; Ochoa, L.F. Voltage control of PVrich LV networks: OLTCfitted transformer and capacitor banks. IEEE Trans. Power Syst. 2016, 31, 4016–4025. [Google Scholar] [CrossRef]
 Klonari, V.; Toubeau, J.F.; Vandoorn, T.L.; Meersman, B.; de Grève, Z.; Lobry, J.; Vallée, F. Probabilistic framework for evaluating droop control of photovoltaic inverters. Electr. Power Syst. Res. 2015, 129, 1–9. [Google Scholar] [CrossRef]
 Bozalakov, D.V.; Laveyne, J.; Desmet, J.; Vandevelde, L. Overvoltage and voltage unbalance mitigation in areas with high penetration of renewable energy resources by using the modified threephase damping control strategy. Electr. Power Syst. Res. 2019, 168, 283–294. [Google Scholar] [CrossRef]
 Su, X.; Masoum, M.A.; Wolfs, P.J. Optimal PV inverter reactive power control and real power curtailment to improve performance of unbalanced fourwire LV distribution networks. IEEE Trans. Sustain. Energy 2014, 5, 967–977. [Google Scholar] [CrossRef]
 Dall’Anese, E.; Dhople, S.V.; Johnson, B.B.; Giannakis, G.B. Optimal dispatch of photovoltaic inverters in residential distribution systems. IEEE Trans. Sustain. Energy 2014, 5, 487–497. [Google Scholar] [CrossRef]
 Alam, M.J.; Muttaqi, K.M.; Sutanto, D. A multimode control strategy for VAr support by solar PV inverters in distribution networks. IEEE Trans. Power Syst. 2015, 30, 1316–1326. [Google Scholar] [CrossRef]
 Samadi, A.; Eriksson, R.; Rawn, B.; Söder, L. Coordinated active powerDependent voltage regulation in distribution grids with PV systems. IEEE Trans. Power Deliv. 2014, 29, 1454–1464. [Google Scholar] [CrossRef]
 Olivier, F.; Aristidou, P.; Ernst, D.; Cutsem, T.V. Active management of lowVoltage networks for mitigating overvoltages due to photovoltaic units. IEEE Trans. Smart Grid 2016, 7, 926–936. [Google Scholar] [CrossRef]
 Ali, M.M.V.M.; Babar, M.; Nguyen, P.H.; Cobben, J.F. Overlaying control mechanism for solar PV inverters in the LV distribution network. Electr. Power Syst. Res. 2017, 145, 264–274. [Google Scholar] [CrossRef]
 Haaque, A.N.; Nguyen, P.H.; Vo, T.H.; Bliek, F.W. Agentbased unified approach for thermal and voltage constraint management in LV distribution network. Electr. Power Syst. Res. 2017, 143, 462–473. [Google Scholar] [CrossRef]
 Tonkoski, R.; Lopes, L.A.C.; Elfouly, T.H.M. Coordinated active power curtailment of grid connected PV inverters for overvoltage prevention. IEEE Trans. Sustain. Energy 2011, 2, 139–147. [Google Scholar] [CrossRef]
 Collins, L.; Ward, J.K. Real and reactive power control of distributed PV inverters for overvoltage prevention and increased renewable generation hosting capacity. Renew. Energy 2015, 81, 464–471. [Google Scholar] [CrossRef]
 Mai, T.T.; Haque, A.N.M.M.; Vo, T.; Nguyen, P.H. Coordinated active and reactive power control for overvoltage mitigation in physical LV microgrids. In Proceedings of the 2018 International Conference on Renewable Power Generation, Barcelona, Spain, 25–27 April 2018; pp. 1–6. [Google Scholar]
 Mousavi, S.Y.M.; Jalilian, A.; Savaghebi, M.; Guerrero, J.M. Coordinated control of multifunctional inverters for voltage support and harmonic compensation in a gridconnected microgrid. Electr. Power Syst. Res. 2018, 155, 254–264. [Google Scholar] [CrossRef]
 Ali, M.M.V.M.; Nguyen, P.H.; Kling, W.L.; Chrysochos, A.I.; Papadopoulos, T.A.; Papagiannis, G.K. Fair power curtailment of distributed renewable energy sources to mitigate overvoltages in lowvoltage networks. In Proceedings of the IEEE PES Power Tech 2015 Eindhoven, Eindhoven, The Netherlands, 29 June–2 July 2015. [Google Scholar] [CrossRef]
 Weckx, S.; Gonzalez, C.; Driesen, J. Combined central and local active and reactive power control of PV inverters. IEEE Trans. Sustain. Energy 2014, 5, 776–784. [Google Scholar] [CrossRef]
 Alyami, S.; Wang, Y.; Wang, C.; Zhao, J.; Zhao, B. Adaptive real power capping method for fair overvoltage regulation of distribution networks with high penetration of PV systems. IEEE Trans. Smart Grid 2014, 5, 2729–2738. [Google Scholar] [CrossRef]
 Ghasemi, M.A.; Parniani, M. Prevention of distribution network overvoltage by adaptive droopbased active and reactive power control of PV systems. Electr. Power Syst. Res. 2016, 133, 313–327. [Google Scholar] [CrossRef]
 Mai, T.T.; Haque, A.N.M.M.; Nguyen, P.H. ConsensusBased Distributed Control for Overvoltage Mitigation in LV Microgrids. In Proceedings of the IEEE PES Powertech 2019 Milano, Milano, Italy, 23–27 June 2019. [Google Scholar]
 Mai, T.T.; Haque, A.N.M.M.; Vergara, P.P.; Nguyen, P.H.; Pemen, G. Adaptive coordination of sequential droop control for PV inverters to mitigate voltage rise in PVRich LV distribution networks. Electr. Power Syst. Res. 2021, 192, 106931. [Google Scholar] [CrossRef]
 Demirok, E.; Gonz´alez, P.C.; Frederiksen, K.H.; Sera, D.; Rodriguez, P.; Teodorescu, R. Local reactive power control methods for overvoltage prevention of distributed solar inverters in lowvoltage grids. IEEE J. Photovoltaics 2011, 1, 174–182. [Google Scholar] [CrossRef]
 Zhang, Z.; Dou, C.; Yue, D.; Zhang, B.; Zhao, P. Higheconomic PV power compensation algorithm to mitigate voltage rise with minimal curtailment. Electr. Power Syst. Res. 2021, 125, 106401. [Google Scholar] [CrossRef]
 Farooqi, A.; Othman, M.M.; Radzi, M.A.M.; Musirin, I.; Noor, S.Z.M.; Abidin, I.Z. Dynamic voltage restorer (DVR) enhancement in power quality mitigation with an adverse impact of unsymmetrical faults. Energy Rep. 2022, 8, 871–882. [Google Scholar] [CrossRef]
 Gholami, K.; Islam, M.R.; Rahman, M.M.; Azizivahed, A.; Fekih, A. Stateoftheart technologies for voltvar control to support the penetration of renewable energy into the smart distribution grids. Energy Rep. 2022, 8, 8630–8651. [Google Scholar] [CrossRef]
 Leon, J.A.; Palacios, C.C.; Salgado, C.V.; Perez, E.H.; Garcia, E.X.M. Particle Swarm Optimization, Genetic Algorithm and Grey Wolf Optimizer Algorithms Performance Comparative for a DCDC Boost Converter PID Controller. Adv. Sci. Technol. Eng. Syst. J. 2021, 6, 619–625. [Google Scholar] [CrossRef]
 Leon, J.A.; Palacios, C.C.; Salgado, C.V.; Perez, E.H.; Garcia, E.X.M. Optimal PID Parameters Tunning for a DCDC Boost Converter. In Proceedings of the 2020 IEEE Conference on Technology for Sustainability (SusTech), Santa Ana, CA, USA, 23–25 April 2020. [Google Scholar]
 Chaudhary, P.; Rizwan, M. Voltage regulation mitigation techniques in distribution system with high PV penetration: A review. Renew. Sustain. Energy Rev. 2018, 82, 3279–3287. [Google Scholar] [CrossRef]
 Stetz, T.; Marten, F.; Braun, M. Improved low voltage gridIntegration of photovoltaic systems in germany. IEEE Trans. Sustain. Energy 2013, 4, 534–542. [Google Scholar] [CrossRef]
 Vergara, P.P.; Salazar, M.; Mai, T.T.; Nguyen, P.H.; Slootweg, H. A comprehensive assessment of PV inverters operating with droop control for overvoltage mitigation in LV distribution networks. Renew. Energy 2020, 159, 172–183. [Google Scholar] [CrossRef]
 Verma, P.; Kaur, T.; Kaur, R. Power control strategy of an integrated PV system for active power reserve under dynamic operating conditions. Sustain. Energy Technol. Assess. 2021, 45, 101066. [Google Scholar] [CrossRef]
 Xin, H.; Liu, Y.; Wang, Z.; Gan, D.; Yang, T. A new frequency regulation strategy for photovoltaic systems without energy storage. IEEE Trans. Sust. Energy 2013, 4, 985–993. [Google Scholar] [CrossRef]
 Liu, Y.; Xin, H.; Wang, Z.; Yang, T. Power control strategy for photovoltaic system based on the newton quadratic interpolation. IET Renew. Power Gen. 2014, 8, 611–620. [Google Scholar] [CrossRef]
 Zarina, P.P.; Mishra, S.; Sekhar, P.C. Exploring frequency control capability of a PV system in a hybrid PVrotating machinewithout storage system. Int. J. Elect. Power Energy Syst. 2014, 60, 258–267. [Google Scholar] [CrossRef]
 Rajan, R.; Fernandez, F.M. Power control strategy of photovoltaic plants for frequency regulation in a hybrid power system. Elect. Power Energy Syst. 2019, 110, 171–183. [Google Scholar] [CrossRef]
 Rajan, R.; Fernandez, F.M. Fuzzy based control of gridconnected photovoltaic system for enhancing system inertial response. In Proceedings of the 53rd International Universities Power Engineering Conference (UPEC), Glasgow, UK, 4–7 September 2018; pp. 1–6. [Google Scholar]
 Rajan, R.; Fernandez, F.M. Grid inertia based frequency regulation strategy of photovoltaic system without energy storage. In Proceedings of the International CET Conference on Control, Communication, and Computing (IC4), Trivandrum, India, 5–7 July 2018; pp. 106–111. [Google Scholar]
 Esram, T.; Chapman, P.L. Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques. IEEE Trans. Energy Conv. 2007, 22, 439–448. [Google Scholar] [CrossRef]
S. No.  Ref. No.  Adopted Control  Power Controlled (P or Q)  Implementation Stage  Critical Remarks  Year of Publication 

1  [4]  Modified damping based control  P (Active)  Inverter 
 2019 
2  [5]  Multi objective optimal power flow  P and Q (both active and reactive)  Inverter 
 2014 
3  [6]  Optimal inverter dispatch control  P and Q (both active and reactive)  Inverter 
 2014 
4  [7]  Reverse power flow based droop characteristic control  Q (Reactive)  Inverter 
 2015 
5  [8]  Active power dependent voltage regulation  Q (Reactive)  Inverter 
 2014 
6  [9]  5Mode distributed control scheme  P and Q (both active and reactive)  Inverter 
 2016 
7  [10]  A powervoltage (P–V) droop control based overvoltage mitigation  P (Active)  Inverter 
 2017 
8  [12]  Droop based APC  P (Active)  Inverter 
 2011 
9  [13]  P–V and QV conjunction control  P and Q (both active and reactive)  Inverter 
 2015 
10  [15]  Voltage support technique for VSI  P and Q (both active and reactive)  Inverter 
 2018 
11  [16]  Fairness power sharing algorithm  P (Active)  Inverter 
 2015 
12  [17]  Optimal reactive power utilization technique for overvoltage compensation  P and Q (both active and reactive) 
 2014  
13  [18]  Fair real power curtailment method  P (Active)  Inverter 
 2014 
14  [19]  Adaptivedroop based active and reactive power control  P and Q (both active and reactive)  Unspecified 
 2016 
15  [21]  Twolevel overvoltage mitigation control  P and Q (both active and reactive)  Inverter 
 2021 
16  [23]  Power Compensation algorithm  P and Q (both active and reactive)  NA 
 2021 
17  [24]  A new DVR configuration  Q (Reactive)  Inverter 
 2022 
18  Proposed method  P (Active)  Dc/dc converter 

S. No.  Time (s)  Power (kW)Figure 8a  Voltage (V_{PV})Figure 8c  V_{3} (kV) MPPFigure 8f  V_{3} (kV) DeRating Figure 8f 

1  1.2  100  270  13.2  13.2 
2  1.4  100  270  13.2  13.2 
3  3.5  80  300  13.4  13.2 
4  4.5  86  294  13.4  13.3 
5  6.5  82  296  13.5  13.3 
S. No.  Time (s)  Power (kW)Figure 9a  Irr. (W/m^{2})Figure 9d  Voltage (V_{PV})Figure 9c  V_{3} (kV) MPPFigure 9f  V_{3} (kV) DeRating Figure 9f 

1  1.2  48  500  271  12.5  12.5 
2  1.4  48  500  271  12.5  12.5 
3  3.5  60  1000  310  12.5  12.5 
4  4.5  60  1000  310  12.56  12.53 
5  6.5  60  1000  312  12.56  12.51 
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, P.; Katal, N.; Sharma, B.; Chowdhury, S.; Mehbodniya, A.; Webber, J.L.; Bostani, A. Voltage Rise Mitigation in PV Rich LV Distribution Networks Using DC/DC Converter Level Active Power Curtailment Method. Energies 2022, 15, 5901. https://doi.org/10.3390/en15165901
Verma P, Katal N, Sharma B, Chowdhury S, Mehbodniya A, Webber JL, Bostani A. Voltage Rise Mitigation in PV Rich LV Distribution Networks Using DC/DC Converter Level Active Power Curtailment Method. Energies. 2022; 15(16):5901. https://doi.org/10.3390/en15165901
Chicago/Turabian StyleVerma, Pankaj, Nitish Katal, Bhisham Sharma, Subrata Chowdhury, Abolfazl Mehbodniya, Julian L. Webber, and Ali Bostani. 2022. "Voltage Rise Mitigation in PV Rich LV Distribution Networks Using DC/DC Converter Level Active Power Curtailment Method" Energies 15, no. 16: 5901. https://doi.org/10.3390/en15165901