Review on Boiling Heat Transfer Enhancement Techniques
Abstract
:1. Introduction
2. Surface Characteristics
- Roughness was found to have a large effect on the heat transfer rate in one of the early research works by Jerome, 1960 [2]. With an increased roughness in a particular metal of particular geometry, there were greater occurrences of active nucleation sites. Having a higher density of sites may enhance the heat transfer coefficient.
- Porosity also enhances the heat transfer rate. Surface porosity can be increased by manually/artificially creating cavities on the surface.
3. Background of Boiling Heat Transfer
4. Techniques to Improve Heat Exchange
5. Heat Transfer Enhancement in Heat Exchangers
6. Nanofluids
7. Effect of Droplet Dynamics on Heat Transfer
7.1. Nucleate Boiling over Plane Surface
7.2. Nucleate Boiling over Cylindrical Surface
8. Numerical Conceptions in Boiling Heat Transfer
9. Conclusions/Analysis of Existing Work and Future Possibilities
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Area of copper cylinder, m2 | |
CHF | Critical heat flux, W/m2 |
f | Frequency of variations |
h | Convective heat transfer coefficient, W/m2 K |
Latent heat of vapourization, J/kg | |
Thermal Conductivity, W/m K | |
ns | Number of nucleation sites per unit area |
Liquid pressure, N/m2 | |
Rate of heat transfer, W | |
Heat Flux, W/m2 | |
Liquid Temperature, °C | |
Saturation temperature of liquid, °C | |
t | Time, sec |
V | Voltage, V |
Greek Symbols | |
ΔT | Superheat, K |
Vapor and Liquid densities respectively, kg/m3 | |
σ | Surface tension of liquid vapour interface, N/m |
References
- Faghri, A.; Zhang, Y. Transport Phenomena in Multiphase Systems; Academic Press: Cambridge, MA, USA, 2006; pp. 765–852. [Google Scholar]
- Jerome, B.P. Transition Boiling Heat Transfer from a Horizontal Surface; Massachusetts Institute of Technology, Division of Industrial Cooperation: Cambridge, MA, USA, 1960. [Google Scholar]
- Nukiyama, S. The maximum and minimum values of the heat transmitted from metal to boiling water under atmos-pheric pressure. J. Jpn. Soc. Mech. Eng. 1934, 37, 367–378. [Google Scholar]
- Drew, T.B.; Mueller, A.C. Boiling. Trans. AIChE 1937, 33, 449–473. [Google Scholar]
- Guo, Z.Y.; Li, D.Y.; Wang, B.X. A novel concept for convective heat transfer enhancement. Int. J. Heat Mass Transf. 1998, 41, 2221–2225. [Google Scholar] [CrossRef]
- Bergles, A.E. Enhancement of pool boiling. Int. J. Refrig. 1997, 20, 545–551. [Google Scholar] [CrossRef]
- Calmidi, V.V.; Mahajan, R.L. Forced Convection in High Porosity Metal Foams. J. Heat Transf. 2000, 122, 557–565. [Google Scholar] [CrossRef]
- Mori, S.; Okuyama, K. Enhancement of the critical heat flux in saturated pool boiling using honeycomb porous media. Int. J. Multiph. Flow 2009, 35, 946–951. [Google Scholar] [CrossRef]
- Cooke, D.; Kandlikar, S.G. Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels. In Proceedings of the International Conference on Nanochannels, Microchannels, and Minichannels, Montreal, Quebec, Canada, 1–5 August 2010; Volume 54501, pp. 163–172. [Google Scholar]
- Liter, S.G.; Kaviany, M. Pool-boiling CHF enhancement by modulated porous-layer coating: Theory and experiment. Int. J. Heat Mass Transf. 2001, 44, 4287–4311. [Google Scholar] [CrossRef]
- Meena, C.S.; Das, A.K. Boiling Heat Transfer on Cylindrical Surface: An Experimental Study. Heat Transf. Eng. 2022, 1–13. [Google Scholar] [CrossRef]
- Hao, W.; Wang, T.; Jiang, Y.-Y.; Guo, C.; Guo, C.-H. Pool boiling heat transfer on deformable structures made of shape-memory-alloys. Int. J. Heat Mass Transf. 2017, 112, 236–247. [Google Scholar] [CrossRef]
- Wang, K.; Gong, H.; Wang, L.; Erkan, N.; Okamoto, K. Effects of a porous honeycomb structure on critical heat flux in downward-facing saturated pool boiling. Appl. Therm. Eng. 2020, 170, 115036. [Google Scholar] [CrossRef]
- Koncar, B.; Krepper, E.; Bestion, D.; Song, C.-H.; Hassan, Y.A. Two-Phase Flow Heat Transfer in Nuclear Reactor Systems. Sci. Technol. Nucl. Install. 2013, 2013, 1–2. [Google Scholar] [CrossRef]
- Siddique, M.; Khaled, A.R.; Abdulhafiz, N.I.; Boukhary, A.Y. Recent Advances in Heat Transfer Enhancements: A Review Report. Int. J. Chem. Eng. 2010, 2010, 106461. [Google Scholar] [CrossRef] [Green Version]
- Khaled, A.-R.; Vafai, K. Heat transfer enhancement by layering of two immiscible co-flows. Int. J. Heat Mass Transf. 2014, 68, 299–309. [Google Scholar] [CrossRef]
- Sandeep, N.; Malvandi, A. Enhanced heat transfer in liquid thin film flow of non-Newtonian nanofluids embedded with graphene nanoparticles. Adv. Powder Technol. 2016, 27, 2448–2456. [Google Scholar] [CrossRef]
- Al-Zaidi, A.H.; Mahmoud, M.M.; Karayiannis, T.G. Flow boiling of HFE-7100 in microchannels: Experimental study and comparison with correlations. Int. J. Heat Mass Transf. 2019, 140, 100–128. [Google Scholar] [CrossRef]
- You, S.M.; Kim, J.H.; Kim, K.H. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl. Phys. Lett. 2003, 83, 3374–3376. [Google Scholar] [CrossRef]
- Coursey, J.S.; Kim, J. Nanofluid boiling: The effect of surface wettability. Int. J. Heat Fluid Flow 2008, 29, 1577–1585. [Google Scholar] [CrossRef]
- El-Genk, M.S.; Parker, J.L. Nucleate boiling of FC-72 and HFE-7100 on porous graphite at different orientations and liquid subcooling. Energy Convers. Manag. 2008, 49, 733–750. [Google Scholar] [CrossRef]
- Sathyamurthi, V.; Ahn, H.-S.; Banerjee, D.; Lau, S.C. Subcooled Pool Boiling Experiments on Horizontal Heaters Coated With Carbon Nanotubes. J. Heat Transf. 2009, 131, 071501. [Google Scholar] [CrossRef] [Green Version]
- Park, S.D.; Lee, S.W.; Kang, S.; Bang, I.C.; Kim, J.H.; Shin, H.S.; Lee, D.W. Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux. Appl. Phys. Lett. 2010, 97, 023103. [Google Scholar] [CrossRef] [Green Version]
- Sheikhbahai, M.; Esfahany, M.N.; Etesami, N. Experimental investigation of pool boiling of Fe3O4/ethylene glycol–water nanofluid in electric field. Int. J. Therm. Sci. 2012, 62, 149–153. [Google Scholar] [CrossRef]
- Tang, Y.; Tang, B.; Qing, J.; Li, Q.; Lu, L. Nanoporous metallic surface: Facile fabrication and enhancement of boiling heat transfer. Appl. Surf. Sci. 2012, 258, 8747–8751. [Google Scholar] [CrossRef]
- Betz, A.R.; Jenkins, J.; Attinger, D. Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces. Int. J. Heat Mass Transf. 2013, 57, 733–741. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Huang, X.; Yang, F.; Li, X.; Sightler, J.; Yang, Y.; Li, C. Enhanced nucleate boiling on horizontal hydropho-bic-hydrophilic carbon nanotube coatings. Appl. Phys. Lett. 2013, 102, 161605. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Gurung, A.; Amaya, M.; Kwark, S.M.; You, S.M. Microporous Coatings to Maximize Pool Boiling Heat Transfer of Saturated R-123 and Water. J. Heat Transf. 2015, 137, 081501. [Google Scholar] [CrossRef]
- Bostanci, H.; Joshua, N.E. Nucleate Boiling of Dielectric Liquids on Hydrophobic and Hydrophilic Surfaces. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 13–19 November 2015; American Society of Mechanical Engineers: New York, NY, USA, 2015; Volume 57496, p. V08AT10A036. [Google Scholar]
- Jun, S.; Wi, H.; Gurung, A.; Amaya, M.; You, S.M. Pool Boiling Heat Transfer Enhancement of Water Using Brazed Copper Microporous Coatings. J. Heat Transf. 2016, 138, 071502. [Google Scholar] [CrossRef]
- Gao, J.; Lu, L.-S.; Sun, J.-W.; Liu, X.-K.; Tang, B. Enhanced boiling performance of a nanoporous copper surface by electrodeposition and heat treatment. Heat Mass Transf. 2016, 53, 947–958. [Google Scholar] [CrossRef]
- Hu, H.; Xu, C.; Zhao, Y.; Ziegler, K.J.; Chung, J.N. Boiling and quenching heat transfer advancement by nanoscale surface modification. Sci. Rep. 2017, 7, 6177. [Google Scholar] [CrossRef] [PubMed]
- Kumar, U.; Suresh, S.; Thansekhar, M.R.; Babu, D. Effect of diameter of metal nanowires on pool boiling heat transfer with FC-72. Appl. Surf. Sci. 2017, 423, 509–520. [Google Scholar] [CrossRef]
- Seo, G.H.; Jeong, U.; Son, H.H.; Shin, D.; Kim, S.J. Effects of layer-by-layer assembled PEI/MWCNT surfaces on enhanced pool boiling critical heat flux. Int. J. Heat Mass Transf. 2017, 109, 564–576. [Google Scholar] [CrossRef]
- Gu, Y.; Xu, S.; Wu, X. Thermal conductivity enhancements and viscosity properties of water based Nanofluid con-taining carbon nanotubes decorated with ag nanoparticles. Heat Mass Transf. 2018, 54, 1847–1852. [Google Scholar] [CrossRef]
- Abdel-Rahman, A.A.; Al-Fahed, S.F.; Chakroun, W. The near-field characteristics of circular jets at low Reynolds numbers. Mech. Res. Commun. 1996, 23, 313–324. [Google Scholar] [CrossRef]
- Freund, L.B.; Suresh, S. Thin Film Materials: Stress, Defect Formation and Surface Evolution; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Promvonge, P.; Eiamsa-Ard, S. Heat transfer behaviors in a tube with combined conical-ring and twisted-tape insert. Int. Commun. Heat Mass Transf. 2007, 34, 849–859. [Google Scholar] [CrossRef]
- Nanan, K.; Thianpong, C.; Promvonge, P.; Eiamsa-Ard, S. Investigation of heat transfer enhancement by perforated helical twisted-tapes. Int. Commun. Heat Mass Transf. 2014, 52, 106–112. [Google Scholar] [CrossRef]
- Thianpong, C.; Eiamsa-Ard, P.; Promvonge, P.; Eiamsa-Ard, S. Effect of perforated twisted-tapes with parallel wings on heat tansfer enhancement in a heat exchanger tube. Energy Procedia 2012, 14, 1117–1123. [Google Scholar] [CrossRef] [Green Version]
- Thianpong, C.; Yongsiri, K.; Nanan, K.; Eiamsa-Ard, S. Thermal performance evaluation of heat exchangers fitted with twisted-ring turbulators. Int. Commun. Heat Mass Transf. 2012, 39, 861–868. [Google Scholar] [CrossRef]
- Wongcharee, K.; Eiamsa-Ard, S. Friction and heat transfer characteristics of laminar swirl flow through the round tubes inserted with alternate clockwise and counter-clockwise twisted-tapes. Int. Commun. Heat Mass Transf. 2011, 38, 348–352. [Google Scholar] [CrossRef]
- Eiamsa-Ard, S.; Promvonge, P. Thermal characteristics in round tube fitted with serrated twisted tape. Appl. Therm. Eng. 2010, 30, 1673–1682. [Google Scholar] [CrossRef]
- Eiamsa-ard, S.; Wongcharee, K.; Eiamsa-Ard, P.; Thianpong, C. Heat transfer enhancement in a tube using del-ta-winglet twisted tape inserts. Appl. Therm. Eng. 2010, 30, 310–318. [Google Scholar] [CrossRef]
- Eiamsa-Ard, S.; Wongcharee, K.; Sripattanapipat, S. 3-D Numerical simulation of swirling flow and convective heat transfer in a circular tube induced by means of loose-fit twisted tapes. Int. Commun. Heat Mass Transf. 2009, 36, 947–955. [Google Scholar] [CrossRef]
- Promvonge, P.; Pethkool, S.; Pimsarn, M.; Thianpong, C. Heat transfer augmentation in a helical-ribbed tube with double twisted tape inserts. Int. Commun. Heat Mass Transf. 2012, 39, 953–959. [Google Scholar] [CrossRef]
- Skullong, S.; Promvonge, P.; Thianpong, C.; Pimsarn, M. Heat transfer and turbulent flow friction in a round tube with staggered-winglet perforated-tapes. Int. J. Heat Mass Transf. 2016, 95, 230–242. [Google Scholar] [CrossRef]
- Pethkool, S.; Eiamsa-Ard, S.; Kwankaomeng, S.; Promvonge, P. Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube. Int. Commun. Heat Mass Transf. 2010, 38, 340–347. [Google Scholar] [CrossRef]
- Kongkaitpaiboon, V.; Nanan, K.; Eiamsa-Ard, S. Experimental investigation of heat transfer and turbulent flow friction in a tube fitted with perforated conical-rings. Int. Commun. Heat Mass Transf. 2010, 37, 560–567. [Google Scholar] [CrossRef]
- Guo, J.; Fan, A.; Zhang, X.; Liu, W. A numerical study on heat transfer and friction factor characteristics of laminar flow in a circular tube fitted with center-cleared twisted tape. Int. J. Therm. Sci. 2011, 50, 1263–1270. [Google Scholar] [CrossRef]
- Chang, S.W.; Jan, Y.J.; Liou, J.S. Turbulent heat transfer and pressure drop in tube fitted with serrated twisted tape. Int. J. Therm. Sci. 2007, 46, 506–518. [Google Scholar] [CrossRef]
- Kathait, P.S.; Patil, A.K. Thermo-hydraulic performance of a heat exchanger tube with discrete corrugations. Appl. Therm. Eng. 2014, 66, 162–170. [Google Scholar] [CrossRef]
- Vashistha, C.; Patil, A.K.; Kumar, M. Experimental investigation of heat transfer and pressure drop in a circular tube with multiple inserts. Appl. Therm. Eng. 2016, 96, 117–129. [Google Scholar] [CrossRef]
- Li, H.M.; Ye, K.S.; Tan, Y.; Deng, S.J. Investigation on tube-side flow visualization, friction factors and heat transfer characteristics of helical-ridging tubes. In Proceedings of the International Heat Transfer Conference Digital Library, Munich, Germany, 6–10 September 1982; Begel House Inc.: Danbury, CT, USA, 1982. [Google Scholar]
- Wen, D.; Ding, Y. Experimental investigation into convective heat transfer of nanofluid at the entrance region under laminar flow conditions. Int. J. Heat. Mass. Transf. 2004, 47, 5181–5188. [Google Scholar] [CrossRef]
- Kim, S.J.; Bang, I.C.; Buongiorno, J.; Hu, L.W. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int. J. Heat Mass Transf. 2007, 50, 4105–4116. [Google Scholar] [CrossRef]
- Amirahmad, A.; Maglad, A.M.; Mustafa, J.; Cheraghian, G. Loading PCM Into Buildings Envelope to Decrease Heat Gain-Performing Transient Thermal Analysis on Nanofluid Filled Solar System. Front. Energy Res. 2021, 9, 727011. [Google Scholar] [CrossRef]
- Gunnasegaran, P.; Shuaib, N.H.; Jalal, M.F.A.; Sandhita, E. Numerical Study of Fluid Dynamic and Heat Transfer in a Compact Heat Exchanger Using Nanofluids. Int. Sch. Res. Not. 2012, 2012, 585496. [Google Scholar] [CrossRef] [Green Version]
- Maddah, H.; Alizadeh, M.; Ghasemi, N.; Alwi, S.R.W. Experimental study of Al2O3/water nanofluid turbulent heat transfer enhancement in the horizontal double pipes fitted with modified twisted tapes. Int. J. Heat Mass Transf. 2014, 78, 1042–1054. [Google Scholar] [CrossRef]
- Maddah, H.; Aghayari, R.; Mirzaee, M.; Ahmadi, M.H.; Sadeghzadeh, M.; Chamkha, A.J. Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3-TiO2 hybrid nanofluid. Int. Commun. Heat Mass Transf. 2018, 97, 92–102. [Google Scholar] [CrossRef]
- Freitas, E.; Pontes, P.; Cautela, R.; Bahadur, V.; Miranda, J.; Ribeiro, A.P.C.; Souza, R.R.; Oliveira, J.D.; Copetti, J.B.; Lima, R.; et al. Pool Boiling of Nanofluids on Biphilic Surfaces: An Experimental and Numerical Study. Nanomaterials 2021, 11, 125. [Google Scholar] [CrossRef]
- Pasandideh-Fard, M.; Chandra, S.; Mostaghimi, J. A three-dimensional model of droplet impact and solidification. Int. J. Heat Mass Transf. 2002, 45, 2229–2242. [Google Scholar] [CrossRef]
- Larsen, T.S.; Nikolopoulos, N.; Nikolopoulos, A.; Strotos, G.; Nikas, K.-S. Characterization and prediction of the volume flow rate aerating a cross ventilated building by means of experimental techniques and numerical approaches. Energy Build. 2011, 43, 1371–1381. [Google Scholar] [CrossRef]
- Roisman, I.V. Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Phys. Fluids 2009, 21, 052104. [Google Scholar] [CrossRef]
- Herbert, S.; Gambaryan-Roisman, T.; Stephan, P. Influence of the governing dimensionless parameters on heat transfer during single drop impingement onto a hot wall. Colloids Surf. A Physicochem. Eng. Asp. 2013, 432, 57–63. [Google Scholar] [CrossRef]
- Ahn, H.S.; Kim, J.; Kim, M.H. Investigation of Pool Boiling Critical Heat Flux Enhancement on a Modified Surface Through the Dynamic Wetting of Water Droplets. J. Heat Transf. 2012, 134, 071504. [Google Scholar] [CrossRef]
- Alizadeh, A.; Bahadur, V.; Zhong, S.; Shang, W.; Li, R.; Ruud, J.A.; Yamada, M.; Ge, L.; Dhinojwala, A.; Sohal, M. Temperature dependent droplet impact dynamics on flat and textured surfaces. Appl. Phys. Lett. 2012, 100, 111601. [Google Scholar] [CrossRef]
- Negeed, E.-S.R.; Albeirutty, M.; Takata, Y. Dynamic behavior of micrometric single water droplets impacting onto heated surfaces with TiO2 hydrophilic coating. Int. J. Therm. Sci. 2014, 79, 1–17. [Google Scholar] [CrossRef]
- Tran, T.; Staat, H.J.J.; Prosperetti, A.; Sun, C.; Lohse, D. Drop Impact on Superheated Surfaces. Phys. Rev. Lett. 2012, 108, 036101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, J.H.; Cho, M.; Lee, S.H. Dynamic wetting and heat transfer characteristics of a liquid droplet impinging on heated textured surfaces. Int. J. Heat Mass Transf. 2016, 97, 308–317. [Google Scholar] [CrossRef]
- Zuber, N. On the stability of boiling heat transfer. Trans. Am. Soc. Mech. Eng. 1958, 80, 711–714. [Google Scholar] [CrossRef]
- Mikic, B.B.; Rohsenow, W.M. A new correlation of pool-boiling data including the effect of heating surface char-acteristics. J. Heat Transf. 1969, 91, 245–250. [Google Scholar] [CrossRef]
- Prasad, N.R.; Saini, J.S.; Prakash, R. The effect of heater wall thickness on heat transfer in nucleate pool-boiling at high heat flux. Int. J. Heat Mass Transf. 1985, 28, 1367–1375. [Google Scholar] [CrossRef]
- Bhat, A.M.; Prakash, R.T.; Saini, J.S. On the mechanism of macrolayer formation in nucleate pool boiling at high heat flux. Int. J. Heat Mass Transf. 1983, 26, 735–740. [Google Scholar] [CrossRef]
- Jairajpuri, A.M.; Saini, J.S. A new model for heat flow through macrolayer in pool boiling at high heat flux. Int. J. Heat Mass Transf. 1991, 34, 1579–1591. [Google Scholar] [CrossRef]
- Pasamehmetoglu, K.O.; Chappidi, P.R.; Unal, C.; Nelson, R.A. Saturated pool nucleate boiling mechanisms at high heat fluxes. Int. J. Heat Mass Transf. 1993, 36, 3859–3868. [Google Scholar] [CrossRef]
- Katto, Y. Critical heat flux. Int. J. Multiph. Flow 1994, 20, 53–90. [Google Scholar] [CrossRef]
- Lienhard, J.H. Snares of pool boiling research: Putting our historty to use. Heat Transf. 1994, 1, 333–348. [Google Scholar]
- Das, S.K.; Roetzel, W. A Composite Heat Transfer Model For Pool Boiling on a Horizontal Tube at Moderate Pressure. Can. J. Chem. Eng. 2008, 82, 316–322. [Google Scholar] [CrossRef]
- Sateesh, G.; Das, S.K.; Balakrishnan, A.R. Analysis of pool boiling heat transfer: Effect of bubbles sliding on the heating surface. Int. J. Heat Mass Transf. 2005, 48, 1543–1553. [Google Scholar] [CrossRef]
- Qu, X.; Revankar, S.T.; Tian, M. Numerical simulation of bubble formation and condensation of steam air mixture injected in subcooled pool. Nucl. Eng. Des. 2017, 320, 123–132. [Google Scholar] [CrossRef]
- Ribatski, G.; Jabardo, J.M. Experimental study of nucleate boiling of halocarbon refrigerants on cylindrical surfaces. Int. J. Heat Mass Transf. 2003, 46, 4439–4451. [Google Scholar] [CrossRef]
- Elghanam, R.I.; Fawal, M.E.; Aziz, R.A.; Skr, M.; Khalifa, A.H. Experimental study of nucleate boiling heat transfer enhancement by using surfactant. Ain Shams Eng. J. 2011, 2, 195–209. [Google Scholar] [CrossRef] [Green Version]
- Das, A.K.; Das, P.K.; Saha, P. Performance of different structured surfaces in nucleate pool boiling. Appl. Therm. Eng. 2009, 29, 3643–3653. [Google Scholar] [CrossRef]
- Mehta, J.S.; Kandlikar, S.G. Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure, Part I: Experimental results for circumferential rectangular open microchannels. Int. J. Heat Mass Transf. 2013, 64, 1205–1215. [Google Scholar] [CrossRef]
- Meena, C.S.; Deep, A.; Das, A.K. Understanding of Interactions for Bubbles Generated at Neighboring Nucleation Sites. Heat Transf. Eng. 2017, 39, 885–900. [Google Scholar] [CrossRef]
- Deep, A.; Meena, C.S.; Das, A.K. Interaction of Asymmetric Films Around Boiling Cylinder Array: Homogeneous Interface to Chaotic Phenomenon. J. Heat Transf. 2017, 139, 041502. [Google Scholar] [CrossRef]
- Yamagata, K.; Hirano, F.; Nishikawa, K.; Matsuoka, H. Nucleate boiling of water on the horizontal heating surface. Mem. Fac. Eng. Kyushu 1955, 15, 98. [Google Scholar]
- Kurihara, H.M.; Myers, J.E. The effects of superheat and surface roughness on boiling coefficients. AIChE J. 1960, 6, 83–91. [Google Scholar] [CrossRef]
- Hsu, S.T.; Schmidt, F.W. Measured Variations in Local Surface Temperatures in Pool Boiling of Water. J. Heat Transf. 1961, 83, 254–260. [Google Scholar] [CrossRef]
- Hsu, Y.Y. On the Size Range of Active Nucleation Cavities on a Heating Surface. J. Heat Transf. 1962, 84, 207–213. [Google Scholar] [CrossRef]
- Hsu, Y.Y.; Graham, R.W. Transport Processes in Boiling and Two-Phase Systems, including Near-Critical Fluids; Hemisphere Publishing Corp.: Washington, DC, USA; McGraw-Hill Book Co.: New York, NY, USA, 1976; p. 559. [Google Scholar]
- Gaertner, R.F.; Westwater, J.W. Population of Active Sites in Nucleate Boiling Heat Transfer; ProQuest Dissertations Publishing: Ann Arbor, MI, USA, 1960; Volume 56. [Google Scholar]
- Cornwell, K.; Brown, R.D. Boiling Surface topography. In Proceedings of the 6th International Heat Transfer Conference, Toronto, ON, Canada, 7–11 August 1978; Volume 1, pp. 157–161. [Google Scholar]
- Rohsenow, W.M. A Method of Correlating Heat-Transfer Data for Surface Boiling of Liquids; MIT Division of Industrial Cooporation: Cambridge, MA, USA, 1952. [Google Scholar]
Author | Working Fluid | Parameters | CHF Enhancement |
---|---|---|---|
You et al., 2003 [19] | Al2O3/water (nanofluid) | 0–0.05 g/L, test heater: Cu | 200% |
Coursey et al., 2008 [20] | Al2O3/ethanol (nanofluid) | 0.001–10 g/L, test heater: Glass | 25% (at 10 g/L) |
El-Genk et al., 2008 [21] | FC-72 | Porous graphite surface | 41% |
Satyamurthi et al., 2009 [22] | PF-5060 | MWCNTs (nanomaterial), boiling surface material: Si | 58% |
Park et al., 2010 [23] | Graphene (nanofluid) | 0.001% by vol., test heater: Ni-Cr wire | 84% |
Sheikhbahai et al., 2012 [24] | Fe3O4/water/Ethylene glycol (nanofluid) | 0.01–0.1% by vol., test heater: Ni-Cr wire | 100% (at 0.1% conc.) |
Tang et al., 2012 [25] | Water | Cu-Zn alloy nanoporous surface, 50–200 nm pore size | enhanced |
Betz et al., 2013 [26] | DI water | SiO 2 (50 nm coating thickness) (nanomaterial), surface modification technique: SBPi (SHPi and SHPo), test surface: Si | 300% |
Dai et al., 2013 [27] | – | CNT (nanomaterial), surface modification technique: HPo-HPi MWCNT composite, test surface: Cu | 16% |
Han kim et al., 2015 [28] | R-123, DI water | Al (nanomaterial), boiling surface material: Cu | 40% (8–12 μm size and R-123) |
Bostanci et al., 2015 [29] | HFE-7100 | TiO2 (nanomaterial), surface modification technique: HPo/HPi (pattern size 40, 100, 250 μm), test surface: Cu | 47% |
Jun et al., 2016 [30] | DI water | Cu (nanomaterial), boiling surface material: Cu | 2 times (enhanced with coating thickness) |
Gao et al., 2016 [31] | Water | Nanoporous Cu surface, 50–200 nm pore size | enhanced |
Hu et al., 2017 [32] | Water | Nanoporous Al alloy surface | 112% |
Kumar et al., 2017 [33] | FC-72 | CuNW (nanomaterial), particle size: 35–200 nm, boiling surface material: Cu | 48% |
Seo et al., 2017 [34] | DI water | MWCNTs/polyethy leneimine (nanomaterial), boiling surface material: SS | 94% |
Gu et al., 2018 [35] | Ag-CNT/water (nanofluid) | 0.1%, 0.3%, 1% mol. | 21% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meena, C.S.; Kumar, A.; Roy, S.; Cannavale, A.; Ghosh, A. Review on Boiling Heat Transfer Enhancement Techniques. Energies 2022, 15, 5759. https://doi.org/10.3390/en15155759
Meena CS, Kumar A, Roy S, Cannavale A, Ghosh A. Review on Boiling Heat Transfer Enhancement Techniques. Energies. 2022; 15(15):5759. https://doi.org/10.3390/en15155759
Chicago/Turabian StyleMeena, Chandan Swaroop, Ashwani Kumar, Sanghati Roy, Alessandro Cannavale, and Aritra Ghosh. 2022. "Review on Boiling Heat Transfer Enhancement Techniques" Energies 15, no. 15: 5759. https://doi.org/10.3390/en15155759
APA StyleMeena, C. S., Kumar, A., Roy, S., Cannavale, A., & Ghosh, A. (2022). Review on Boiling Heat Transfer Enhancement Techniques. Energies, 15(15), 5759. https://doi.org/10.3390/en15155759