Implementation and Design of FREEDM System Differential Protection Method Based on Internet of Things
Abstract
:1. Introduction
- Proposing a novel differential protection method for the FREEDM-based M.G. network.
- Using the FIDs in the two-terminals for the faulty line’s fast and accurate fault isolation process.
- Applying the IoT technology for the interlinking between the relay, transducers, and the FIDs in the two terminals of the protected line based on the Wi-Fi channel.
- Investigating the effectiveness of the proposed protection scheme using four fault conditions with different locations.
- Performing a performance analysis for the proposed protection method using security, dependability, and accuracy indices.
- Constructing a prototype of the FREEDM system and applying the protection method using the Proteus software simulator and in the laboratory.
2. FREEDM System Architecture
2.1. Distributed Grid Intelligence
2.2. Fault Isolation Device
2.3. Distributed Energy Resources and Storage Devices
2.4. Solid-State Transformer
2.4.1. A.C.–D.C. Stage
2.4.2. D.C.–D.C. Isolation Stage
2.4.3. D.C.–A.C. Stage
3. Proposed Protection Scheme
3.1. Design of the Differential Protection Scheme
3.2. Implementation of the Communication Channel-Based IoT Technology
4. Simulation Results and Discussion
- Normal operation
- Fault condition
- Applying the proposed protection scheme
4.1. Normal Operation
4.2. Fault Condition
4.3. Applying the Proposed Protection Scheme
4.4. Performance Evaluation of the Proposed Differential Protection Scheme
5. Prototype Design and Implementation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
DES | Distributed energy storage |
DGI | Distributed grid intelligence |
DRE | Distributed renewable energy |
CT | Current transformer |
FREEDM | Future Renewable Electric Energy Delivery and Management |
FID | Fault isolation device |
IEM | Intelligent energy management |
IoT | Internet of things |
LAN | Local area network |
LL | Line to line |
LLG | Line to line to ground |
3LG | Three-lines to ground |
LVDC | Low voltage D.C |
MVDC | Medium voltage D.C |
M.G. | Microgrid |
MT-HVDC | Multi terminal high voltage direct current |
PMU | Phasor measurement unit |
RMS | Root mean square |
SG | Smart grid |
SLG | Single line to ground |
SSCB | Solid-state circuit breakers |
SST | Solid-state transformer |
SCADA | Supervisory control and data acquisition |
WAN | Wide-area network |
References
- Hafez, A.A.; Hatata, A.Y.; Aldl, M.M. Optimal sizing of hybrid renewable energy system via artificial immune system under frequency stability constraints. J. Renew. Sustain. Energy 2019, 11, 015905. [Google Scholar] [CrossRef]
- Wang, J.; Yang, F. Optimal capacity allocation of standalone wind/solar/battery hybrid power system based on improved particle swarm optimisation algorithm. IET Renew. Power Gener. 2013, 7, 443–448. [Google Scholar] [CrossRef]
- Khan, M.; Iqbal, M. Dynamic modeling and simulation of a small wind–fuel cell hybrid energy system. Renew. Energy 2005, 30, 421–439. [Google Scholar] [CrossRef]
- Tailor, J.; Osman, A. Restoration of Fuse-Recloser Coordination in Distribution System with High DG Penetration. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–8. [Google Scholar]
- Brahma, S.; Girgis, A. Development of Adaptive Protection Scheme for Distribution Systems with High Penetration of Distributed Generation. IEEE Trans. Power Deliv. 2004, 19, 56–63. [Google Scholar] [CrossRef]
- Plaza, C.; Gil, J.; De Chezelles, F.; Strang, K.A. Distributed Solar Self-Consumption and Blockchain Solar Energy Exchanges on the Public Grid Within an Energy Community. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–4. [Google Scholar]
- Brahma, S.; Girgis, A. Microprocessor-based reclosing to coordinate fuse and recloser in a system with high penetration of distributed generation. In Proceedings of the 2002 IEEE Power Engineering Society Winter Meeting, New York, NY, USA, 7–10 November 2003; pp. 453–458. [Google Scholar]
- Yan, B.; Di Somma, M.; Luh, P.B.; Graditi, G. Operation Optimization of Multiple Distributed Energy Systems in an Energy Community. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018. [Google Scholar] [CrossRef]
- Zhang, X.; Ruiz, H.S.; Geng, J.; Shen, B.; Fu, L.; Zhang, H.; Coombs, T.A. Power Flow Analysis and Optimal Locations of Resistive Type Superconducting Fault Current Limiters. SpringerPlus 2016, 5, 1972. [Google Scholar] [CrossRef] [Green Version]
- Firuzabad, M.; Aminifar, F.; Rahmati, I. Reliability Study of H.V. Substations Equipped with the Fault Current Limiter. IEEE Trans. Power Deliv. 2012, 27, 610–617. [Google Scholar] [CrossRef]
- Razavi, S.; Rahimi, E.; Javadi, M.S.; Nezhad, A.E.; Lotfi, M.; Shafie-khah, M.; Catalão, J.P.S. Impact of Distributed Generation on Protection and Voltage Regulation of Distribution Systems: A review. Renew. Sustain. Energy Rev. 2019, 105, 157–167. [Google Scholar] [CrossRef]
- Mahmud, M.A.; Hossain, M.J.; Pota, H.R. Voltage Variation on Distribution Networks With Distributed Generation: Worst Case Scenario. IEEE Syst. J. 2014, 8, 1096–1103. [Google Scholar] [CrossRef]
- Firouz, Y.; Farhadkhani, S.; Lobry, L.; Vallée, F.; Khakpour, A.; Durieux, O. Numerical Comparison of The Effects of Different Types of Distributed Generation Units on Overcurrent Protection Systems in MV Distribution Grids. Renew. Energy 2014, 69, 271–283. [Google Scholar] [CrossRef]
- Costa, F.B.; Monti, A.; Paiva, S.C. Overcurrent Protection in Distribution Systems With Distributed Generation Based on the Real-Time Boundary Wavelet Transform. IEEE Trans. Power Deliv. 2017, 32, 462–473. [Google Scholar] [CrossRef]
- Gamarra, C.; Guerrero, J. Computational optimization techniques applied to microgrids planning: A review. Renew. Sustain. Energy Rev. 2015, 48, 413–424. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, A.; Parag, Y.; Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev. 2018, 90, 402–411. [Google Scholar] [CrossRef]
- Jung, J.; Villaran, M. Optimal planning and design of hybrid renewable energy systems for microgrids. Renew. Sustain. Energy Rev. 2017, 75, 180–191. [Google Scholar] [CrossRef]
- Ceglia, F.; Marrasso, E.; Pallotta, G.; Roselli, C.; Sasso, M. The State of the Art of Smart Energy Communities: A Systematic Review of Strengths and Limits. Energies 2022, 15, 3462. [Google Scholar] [CrossRef]
- Zahraee, S.; Assadi, M.K.; Saidur, R. Application of Artificial Intelligence Methods for Hybrid Energy System Optimization. Renew. Sustain. Energy Rev. 2016, 66, 617–630. [Google Scholar] [CrossRef]
- Teimourzadeh, S.; Aminifar, F.; Davarpanah, M.; Shahidehpour, M. Adaptive Protection for Preserving Microgrid Security. IEEE Trans. Smart Grid 2019, 10, 592–600. [Google Scholar] [CrossRef]
- Laaksonen, H.J. Protection Principles for Future Microgrids. IEEE Trans. Power Electron. 2010, 25, 2910–2918. [Google Scholar] [CrossRef]
- Muda, H.; Jena, P. Superimposed Adaptive Sequence Current Based Microgrid Protection: A New Technique. IEEE Trans. Power Deliv. 2017, 32, 757–767. [Google Scholar] [CrossRef]
- Mirsaeidi, S.; Said, D.M.; Mustafa, M.W.; Habibuddin, M.H. A protection strategy for micro-grids based on positive sequence component. IET Renew. Power Gener. 2015, 9, 600–609. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Zhang, K.; Cheng, L. A novel method of fault location for single-phase microgrids. IEEE Trans. Smart Grid 2016, 7, 915–925. [Google Scholar] [CrossRef]
- Saleh, S.A.; Ahshan, R.; Abu-Khaizaran, M.S.; Alsayid, B.; Rahman, M.A. Implementing and testing d-q WPT-based digital protection for microgrid systems. IEEE Trans. Ind. Appl. 2014, 50, 2173–2185. [Google Scholar] [CrossRef]
- Kar, S.; Samantaray, S.R. Time-frequency transform-based differential scheme for microgrid protection. IET Gener. Transm. Distrib. 2014, 8, 310–320. [Google Scholar] [CrossRef]
- Gururani, A.; Mohanty, S.R.; Mohanta, J.C. Microgrid protection using Hilbert-Huang transform based-differential scheme. IET Gener. Transm. Distrib. 2016, 10, 3707–3716. [Google Scholar] [CrossRef]
- Abdulwahid, A.H.; Wang, S. A new differential protection scheme for microgrid using Hilbert space based power setting and fuzzy decision processes. In Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China, 5–7 June 2016; pp. 6–11. [Google Scholar] [CrossRef]
- Casagrande, E.; Woon, W.L.; Zeineldin, H.H.; Kan’An, N.H. Data mining approach to fault detection for isolated inverter-based microgrids. IET Gener. Transm. Distrib. 2013, 7, 745–754. [Google Scholar] [CrossRef]
- Casagrande, E.; Woon, W.L.; Zeineldin, H.H.; Svetinovic, D. A Differential Sequence Component Protection Scheme for Microgrids With Inverter-Based Distributed Generators. IEEE Trans. Smart Grid 2014, 5, 29–37. [Google Scholar] [CrossRef]
- Mishra, D.P.; Samantaray, S.R.; Joos, G. A combined wavelet and data-mining based intelligent protection scheme for microgrid. IEEE Trans. Smart Grid 2016, 7, 2295–2304. [Google Scholar] [CrossRef]
- Kar, S.; Samantaray, S.R.; Zadeh, M.D. Data-mining model based intelligent differential microgrid protection scheme. IEEE Syst. J. 2017, 11, 1161–1169. [Google Scholar] [CrossRef]
- Lei, L.; Wang, C.; Gao, J.; Zhao, J.; Wang, X. A Protection Method Based on Feature Cosine and Differential Scheme for Microgrid. Math. Probl. Eng. 2019, 2019, 7248072. [Google Scholar] [CrossRef] [Green Version]
- Piesciorovsky, E.C.; Schulz, N.N. Comparison of Programmable Logic and Setting Group Methods for adaptive overcurrent protection in microgrids. Electr. Power Syst. Res. 2017, 151, 273–282. [Google Scholar] [CrossRef]
- Eladl, A.A.; Saeed, M.A.; Sedhom, B.E.; Guerrero, J.M. IoT Technology-Based Protection Scheme for MT-HVDC Transmission Grids With Restoration Algorithm Using Support Vector Machine. IEEE Access 2021, 9, 86268–86284. [Google Scholar] [CrossRef]
- Swathika, O.V.G.; Hemamalini, S. Prims-Aided Dijkstra Algorithm for Adaptive Protection in Microgrids. IEEE J. Emerg. Sel Top. Power Electron. 2016, 4, 1279–1286. [Google Scholar] [CrossRef]
- Coffele, F.; Booth, C.; Dysko, A. An Adaptive Overcurrent Protection Scheme for Distribution Networks. IEEE Trans. Power Deliv. 2015, 30, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Bukhari, S.B.; Haider, R.; Zaman, M.S.; Oh, Y.; Cho, G.; Kim, C. An interval type-2 fuzzy logic-based strategy for microgrid protection. Int. J. Electr. Power Energy Syst. 2018, 98, 209–218. [Google Scholar] [CrossRef]
- Li, X.; Dysko, A.; Burt, G.M. Traveling Wave-Based Protection Scheme for Inverter-Dominated Microgrid Using Mathematical Morphology. IEEE Trans. Smart Grid 2014, 5, 2211–2218. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.J.Q.; Hou, Y.; Lam, A.Y.S.; Li, V.O.K. Intelligent Fault Detection Scheme for Microgrids With Wavelet-Based Deep Neural Networks. IEEE Trans. Smart Grid 2017, 10, 1694–1703. [Google Scholar] [CrossRef]
- Soleimanisardoo, A.; Karegar, H.K.; Zeineldin, H.H. Differential Frequency Protection Scheme Based on Off-Nominal Frequency Injections for Inverter-Based Islanded Microgrids. IEEE Trans. Smart Grid 2019, 10, 2107–2114. [Google Scholar] [CrossRef]
- Hatata, A.Y.; Essa, M.A.; Sedhom, B.E. Adaptive Protection Scheme for FREEDM Microgrid Based on Convolutional Neural Network and Gorilla Troops Optimization Technique. IEEE Access 2022, 10, 55583–55601. [Google Scholar] [CrossRef]
- Aboelezz, A.; Sedhom, B.; El-Saadawi, M. Intelligent distance relay based on IEC 61850 for D.C. zonal shipboard microgrid protection. In Proceedings of the 2nd International Conference on Power, Control and Computing Technologies (ICPC2T), Raipur, India, 1–3 March 2022. [Google Scholar]
- Aboelezz, A.; Sedhom, B.; El-Saadawi, M. Pilot distance protection scheme for D.C. zonal shipboard microgrid. In Proceedings of the 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Alkhobar, Saudi Arabia, 6–8 December 2021. [Google Scholar]
- Sharma, N. Novel Directional Protection Scheme for the FREEDM Smart Grid System. Master′s Thesis, Arizona State University, Tempe, AZ, USA, August 2015. [Google Scholar]
- Alex, Q.H.; Mariesa, L.C.; Gerald, T.H.; Jim, P.Z.; Steiner, J.D. The future renewable electric energy delivery and management (FREEDM) system: The energy internet. Proc. IEEE 2011, 99, 133–148. [Google Scholar]
- Romero, J.G.; Cisneros, R.; Khan, M.T.; Mendez, C.F. Adaptive observer—Based tracking controller designs for a distributed energy storage. IFAC 2018, 51, 615–620. [Google Scholar] [CrossRef]
- Adetokunbo, A. Intelligent Home Energy Management Systems for Distributed Renewable Generators, Dispatchable Residential Loads and Distributed Energy Storage Devices. Master’s Thesis, University of Michigan-Dearbor, Dearborn, MI, USA, 2017. [Google Scholar]
- Lasantha, M.; Manoj, D.; Inam, N.; James, C. Role of fault ride—Through strategies for power grids with 100% power electronic—Interfaced distributed renewable energy resources. WIREs Energy Environ. 2018, 7, e292. [Google Scholar]
- Langarizadeh, A.; Hasheminejad, S. A new differential algorithm based on S-transform for the micro-grid protection. Electr. Power Syst. Res. 2021, 202, 107590. [Google Scholar] [CrossRef]
- Zhou, C.; Zou, G.; Du, X.; Zang, L. Adaptive current differential protection for active distribution network considering time synchronization error. Int. J. Electr. Power Energy Syst. 2022, 140, 108085. [Google Scholar] [CrossRef]
- Adewole, A.; Rajapakse, A.; Ouellette, D.; Forsyth, P. Protection of active distribution networks incorporating microgrids with multi-technology distributed energy resources. Electr. Power Syst. Res. 2022, 202, 107575. [Google Scholar] [CrossRef]
- Nikolaidias, C.; Michaloudis, G.; Tsimtsios, A.; Tzelepis, D.; Booth, C. A coordinated multi-element current differential protection scheme for active distribution systems. IEEE Trans. Power Deliv. 2022. [Google Scholar] [CrossRef]
- Saxena, A.; Sharma, N.; Samantaray, S. An enhanced differential protection scheme for LVDC microgrid. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 2114–2125. [Google Scholar] [CrossRef]
- Zhou, C.; Zou, G.; Zang, L.; Du, X. Current Differential Protection for Active Distribution Networks Based on Improved Fault Data Self-Synchronization Method. IEEE Trans. Smart Grid 2022, 13, 166–178. [Google Scholar] [CrossRef]
- Rao, G.; Jena, P. Fault detection in D.C. microgrid based on the resistance estimation. IEEE Syst. J. 2022, 16, 1009–1020. [Google Scholar] [CrossRef]
- Sharma, N.; Saxena, A.; Samantaray, S. An intelligent differential protection scheme for D.C. microgrid. In Proceedings of the 9th IEEE International Conference on Power Systems (ICPS), Kharagpur, India, 16–18 December 2021. [Google Scholar]
- Dashtdar, M.; Rubanenko, O.; Danylchenko, D.; Sadegh, S.; Sharma, V.; Baiai, M. Protection of D.C. microgrids based on differential method by fuzzy systems. In Proceedings of the IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 13–17 September 2021. [Google Scholar]
- Barnes, A.; Mate, A. Dynamic state estimation for radial microgrid protection. In Proceedings of the IEEE/IAS 57th Industrial and Commercial Power Systems Technical Conference (I&CPS), Las Vegas, NV, USA, 27–30 April 2021. [Google Scholar]
- Zhang, W.; Zhang, H.; Zhi, N. Novel protection scheme for ring D.C. microgrids. In Proceedings of the IEEE 12th Energy Conversion Congress & Exposition—Asia (ECCE-Asia), Singapore, 24–27 May 2021. [Google Scholar]
- Asuhaimi, F.A.; Bu, S.; Nadas, J.P.B.; Imran, M.A. Delay-Aware Energy-Efficient Joint Power Control and Mode Selection in Device-to-Device Communications for FREEDM Systems in Smart Grids. IEEE Access 2019, 7, 87369–87381. [Google Scholar] [CrossRef]
- Ronan, E.; Sudhoff, S.; Glover, S.; Galloway, D. A power electronic-based distribution transformer. IEEE Trans. Power Deliv. 2002, 17, 537–543. [Google Scholar] [CrossRef]
- Falcones, S.; Mao, X.; Ayyanar, R. Topology comparison for Solid State Transformer implementation. In Proceedings of the Power and Energy Society General Meeting, Minneapolis, MN, USA, 25–29 July 2010. [Google Scholar]
- Hossain, M.; Leevongwat, I.; Rastgoufard, P. Design and testing of a bus differential protection scheme using partial operating current (POC) algorithm. Electr. Power Syst. Res. 2018, 157, 29–38. [Google Scholar] [CrossRef]
Item | Value |
---|---|
Line length | 1000 m |
Line inductance | 1.8674 mH |
Line resistance | 0.0254 Ω |
Rated voltage of system | 380 V |
Frequency of microgrids | 50 Hz |
Rated voltage of microgrids | 6.6 kV (L-L) |
Active load | 100 kW |
Reactive load | 10 kVAr |
Fault Types | Number of Cases | Dependability | Security | Accuracy |
---|---|---|---|---|
SLG | 621 | 99.103 | 98.821 | 97.371 |
LL | 621 | 100 | 99.643 | 99.126 |
LLG | 621 | 98.17 | 99.14 | 97.882 |
3L | 80 | 100 | 100 | 100 |
Overall | 1943 | 99.25 | 99.401 | 98.825 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatata, A.Y.; Essa, M.A.; Sedhom, B.E. Implementation and Design of FREEDM System Differential Protection Method Based on Internet of Things. Energies 2022, 15, 5754. https://doi.org/10.3390/en15155754
Hatata AY, Essa MA, Sedhom BE. Implementation and Design of FREEDM System Differential Protection Method Based on Internet of Things. Energies. 2022; 15(15):5754. https://doi.org/10.3390/en15155754
Chicago/Turabian StyleHatata, Ahmed Y., Mohamed A. Essa, and Bishoy E. Sedhom. 2022. "Implementation and Design of FREEDM System Differential Protection Method Based on Internet of Things" Energies 15, no. 15: 5754. https://doi.org/10.3390/en15155754
APA StyleHatata, A. Y., Essa, M. A., & Sedhom, B. E. (2022). Implementation and Design of FREEDM System Differential Protection Method Based on Internet of Things. Energies, 15(15), 5754. https://doi.org/10.3390/en15155754