Modeling and Design of Split-Pi Converter
Abstract
:1. Introduction
2. Small-Signal Modeling: Split-Pi Converter
2.1. Boost Mode
2.2. Buck Mode
2.3. Pass-Through Mode
3. Control Design of Split-Pi Converter
3.1. Boost Mode of Operation
3.2. Buck Mode of Operation
4. Experimental Prototype of Split-Pi Converter
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bellur, M.; Kazimierczuk, M.K. DC–DC Converters for Electric Vehicle Applications. In Proceedings of the Electrical Insulation Conference and Electrical Manufacturing Expo, Nashville, TN, USA, 22–24 October 2007. [Google Scholar]
- Sangtaek, H.; Divan, D. Bi-directional DC/DC converters for plug-in hybrid electric vehicle (PHEV) applications. In Proceedings of the IEEE Applied Power Electronic Conference and Exposition, Austin, TX, USA, 24–28 February 2008; pp. 784–789. [Google Scholar]
- Wai, R.J.; Duan, R.Y.; Jheng, K.H. High-efficiency bidirectional DC–DC converter with high-voltage gain. IET Power Electron. 2012, 5, 173–184. [Google Scholar] [CrossRef]
- Rehman, Z.; Al-Bahadly, I.; Mukhopadhyay, S. Dual input-dual output single inductor DC–DC converter for renewable energy applications. In Proceedings of the International Conference on Renewable Energy Research and Applications, Yokohama, Japan, 9–12 November 2015; pp. 783–788. [Google Scholar]
- Anurag, M.B.; Thrinath, G.S.; Karanki, S.B.; Yallamili, R. Design of ZVS based high gain DC–DC converter for PV applications. In Proceedings of the IEEE International Conference on Renewable Energy Research and Applications, Birmingham, UK, 20–23 November 2016; pp. 584–589. [Google Scholar]
- Tytelmaier, K.; Husev, O.; Veligorskyi, O.; Yershov, R. A review of non-isolated bidirectional DC–DC converters for energy storage systems. In Proceedings of the 2016 II International Young Scientists Forum on Applied Physics and Engineering (YSF), Kharkiv, Ukraine, 10–14 October 2016; pp. 22–28. [Google Scholar]
- Mumtaz, F.; Yahaya, N.Z.; Meraj, S.T.; Singh, B.; Kannan, R.; Ibrahim, O. Review on non-isolated DC-DC converters and their control techniques for renewable energy applications. Ain Shams Eng. J. 2021, 12, 3747–3763. [Google Scholar] [CrossRef]
- Xue, F.; Yu, R.; Huang, A.Q. A 98.3% efficient gain isolated bidirectional DC–DC converter for DC microgrid energy storage system applications. IEEE Trans. Ind. Electron. 2017, 64, 9094–9103. [Google Scholar] [CrossRef]
- Chen, J.; Sha, D.; Yan, Y.; Liu, B.; Liao, X. Cascaded high voltage conversion ratio bidirectional non-isolated DC–DC converter with variable frequency control. IEEE Trans. Power Electron. 2017, 33, 1399–1409. [Google Scholar] [CrossRef]
- Gorji, S.A.; Sahebi, H.G.; Ektesabi, M.; Rad, A.B. Topologies and Control Schemes of Bidirectional DC–DC Power Converters: An Overview. IEEE Access 2019, 7, 117997–118019. [Google Scholar] [CrossRef]
- Chub, A.; Vinnikov, D.; Kosenko, R.; Liivik, E.; Galkin, I. Bidirectional DC–DC Converter for Modular Residential Battery Energy Storage Systems. IEEE Trans. Ind. Electron. 2020, 67, 1944–1955. [Google Scholar] [CrossRef]
- Odo, P. A Comparative Study of Single-phase Non-isolated Bidirectional DC–DC Converters Suitability for Energy Storage Application in a DC Microgrid. In Proceedings of the 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Dubrovnik, Croatia, 28 September–1 October 2020; pp. 391–396. [Google Scholar]
- Rajini, V.; Magdalene, A. Investigations on Interleaved and Coupled Split-Pi DC–DC Converter for Hybrid Electric Vehicle Applications. Int. J. Renew. Energy Res. 2021, 11, 808–817. [Google Scholar]
- Alzahrani, A.; Shamsi, P.; Ferdowsi, M. Single and interleaved split-pi DC–DC converter. In Proceedings of the 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, USA, 5–8 November 2017; pp. 995–1000. [Google Scholar]
- Ahmad, T.; Sobhan, S. Performance analysis of bidirectional split-Pi converter integrated with passive ripple cancelling circuit. In Proceedings of the 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, 16–18 February 2017; pp. 433–437. [Google Scholar]
- Karbivska, T.; Kozhushko, Y.; Nataraj Barath, J.G.; Bondarenko, O. Split-Pi Converter for resistance welding Application. In Proceedings of the 2020 IEEE KhPI Week on Advanced Technology (KhPI Week), Kharkiv, Ukraine, 5–10 October 2020; pp. 391–395. [Google Scholar] [CrossRef]
- Sobhan, S.; Bashar, K.L. A novel Split-Pi converter with high step-up ratio. In Proceedings of the 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Dhaka, Bangladesh, 21–23 December 2017; pp. 255–258. [Google Scholar]
- Crocker, T.R. Power Converter and Method for Power Conversion. U.S. Patent 20040212357 A1, 28 October 2004. [Google Scholar]
- Singhal, M.; Pilli, N.K.; Singh, S.K. Modeling and analysis of split-Pi converter using State space averaging technique. In Proceedings of the 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Mumbai, India, 16–19 December 2014; pp. 1–6. [Google Scholar]
- Monteiro, V.; Oliveira, C.; Rodrigues, A.; Sousa, T.J.C.; Pedrosa, D.; Machado, L.; Afonso, J.L. A Novel Topology of Multilevel Bidirectional and Symmetrical Split-Pi Converter. In Proceedings of the 2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Setubal, Portugal, 8–10 July 2020; pp. 511–516. [Google Scholar]
- Luna, M.; Sferlazza, A.; Accetta, A.; di Piazza, M.C.; la Tona, G.; Pucci, M. Modeling and Performance Assessment of the Split-Pi Used as a Storage Converter in All the Possible DC Microgrid Scenarios. Part I: Theoretical Analysis. Energies 2021, 14, 4902. [Google Scholar] [CrossRef]
- Maclaurin, A.; Okou, R.; Barendse, P.; Khan, M.A.; Pillay, P. Control of a Flywheel Energy Storage System for Rural Applications Using a Split-Pi DC–DC Converter. In Proceedings of the IEEE International electric Machines & Drives Conference, Niagara Falls, ON, Canada, 15–18 May 2011. [Google Scholar]
- Ang, S.; Oliva, A. Power-Switching Converters, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Jiao, W.; Gao, Y.; Yan, W.; Wu, S.; Gao, F.; Yang, X. Simulation Analysis of Totem Pole PFC Using Steady Error Free Quadratic Optimal PID Control. In Proceedings of the 2021 11th International Conference on Power and Energy Systems (ICPES), Shanghai, China, 18–20 December 2021; pp. 290–294. [Google Scholar]
- Çalışkan, A.C.; Kocaağa, E.; Kasnakoğlu, C. Average and Peak Current Mode Control Comparison for Full-Bridge Converter. In Proceedings of the 2021 8th International Conference on Electrical and Electronics Engineering (ICEEE), Antalya, Turkey, 9–11 April 2021; pp. 202–206. [Google Scholar]
- Venkataramana, S. Small Signal Modeling of Non-Isolated High Gain DC–DC converter. In Proceedings of the 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 5–7 June 2020; pp. 1–5. [Google Scholar]
- Laddha, A.; Satyanarayana, N.; Vijayakumar, K. State-space Modeling for a 4-Port DC–DC Converter. In Proceedings of the 2019 National Power Electronics Conference (NPEC), Tiruchirappalli, India, 13–15 December 2019; pp. 1–6. [Google Scholar]
Sl. No. | Parameter | Rating |
---|---|---|
1 | Input Voltage (Vin) | 35.7 to 48 V |
2 | Output Voltage (Vo) | 48 V |
3 | Frequency (f) | 25 kHz |
4 | Inductors (L1 = L2) | 100 mH |
5 | Capacitors (C1 = C2) | 100 µF |
6 | Capacitor (C3) | 80 µF |
7 | Duty Cycle (d) | 0.75 |
Rated Power | 500 W |
Voltage Range | 24–48 V |
Switching Frequency | 25 kHz |
Load | 4.6 Ω |
Inductances L1, L2 | 178 µH |
Capacitances C1, C3 | 100 µF |
Capacitance C2 | 80 µF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subramaniyan, G.; Krishnasamy, V.; Mohammed, J.S. Modeling and Design of Split-Pi Converter. Energies 2022, 15, 5690. https://doi.org/10.3390/en15155690
Subramaniyan G, Krishnasamy V, Mohammed JS. Modeling and Design of Split-Pi Converter. Energies. 2022; 15(15):5690. https://doi.org/10.3390/en15155690
Chicago/Turabian StyleSubramaniyan, Geethanjali, Vijayakumar Krishnasamy, and Jagabar Sathik Mohammed. 2022. "Modeling and Design of Split-Pi Converter" Energies 15, no. 15: 5690. https://doi.org/10.3390/en15155690
APA StyleSubramaniyan, G., Krishnasamy, V., & Mohammed, J. S. (2022). Modeling and Design of Split-Pi Converter. Energies, 15(15), 5690. https://doi.org/10.3390/en15155690