Disposal of Wastewater from Mazout-Fired Boiler Plants by Burning Water–Mazout Emulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Objects
2.2. Technical and Technological Solution
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Departament Rynków Energii Elektrycznej i Ciepła URE. Energetyka Cieplna w Liczbach-2019; Urzad Regulacji Energetyki: Warszawa, Poland, 2020; ISBN 978-83-948942-2-1. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions the European Green Deal; COM(2019) 640; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Polish Nuclear Power Programme. Published in in the Journal of Laws of the Republic of Poland, Item 946 of 16 October 2020. 2020. Available online: https://www.gov.pl/attachment/4cddd10a-5e8b-414d-bb95-670f6507d73e (accessed on 19 May 2022).
- Available online: https://pgnig.pl/aktualnosci/-/news-list/id/pgnig-mniej-gazu-z-rosji-rosnie-import-lng/newsGroupId/10184?changeYear=2020¤tPage=1 (accessed on 19 May 2022).
- Lee, C.; Jou, C.G.; Tai, H.; Wang, C.; Hsieh, S.; Wang, H.P. Reduction of Nitrogen Oxide Emission of a Medium-Pressure Boiler by Fuel Control. Aerosol Air Qual. Res. 2006, 6, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Szkarowski, A.; Janta-Lipińska, S. Modeling of Optimum Burning of Fuel in Industrial Heating Boilers. Rocz. Ochr. Śr. 2011, 13, 511–524. [Google Scholar]
- Szkarowski, A.; Janta-Lipińska, S.; Gawin, R. Reducing Emissions of Nitrogen Oxides from DKVR Boilers. Rocz. Ochr. Śr. 2016, 18, 565–578. [Google Scholar]
- Szkarowski, A. Detailed Problems of the Effective and Ecologically Clean Combustion of Fuel in the Pregrates of the Furnaces. Rocz. Ochr. Śr. 2003, 5, 67–78. [Google Scholar]
- Szkarowski, A.; Janta-Lipińska, S. Experimental Research vs. Accuracy of the Elaborated Model. Rocz. Ochr. Śr. 2015, 17, 576–584. [Google Scholar]
- Szkarowski, A.; Janta-Lipińska, S. Examination of Boiler Operation Energy-ecological Indicators during Fuel Burning with Controlled Residual Chemical Underburn. Rocz. Ochr. Śr. 2013, 15, 981–995. [Google Scholar]
- Szkarowski, A.; Janta-Lipińska, S. Automatic Control of Burning Quality of Solid Fuel in Industrial Heating Boilers. Rocz. Ochr. Śr. 2009, 11, 241–255. [Google Scholar]
- Xue, S.; Hui, S.E.; Liu, T.S.; Zhou, Q.L.; Xu, T.M.; Hu, H.L. Experimental investigation on NOx emission and carbon burnout from a radially biased pulverized coal whirl burner. Fuel Process. Technol. 2009, 90, 1142–1147. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Sun, S.; Sun, R.; Qin, M. Numerical investigation of low NOx combustion strategies in tangentially-fired coal boilers. Fuel 2015, 142, 215–221. [Google Scholar] [CrossRef]
- Dadashzadeh, M.; Faisal, K.; Kelly, A.; Rouzbeh, H. Emission Factor Estimation for Oil and Gas Facilities. Process Saf. Environ. Prot. 2011, 89, 295–299. [Google Scholar]
- Janta-Lipińska, S.; Shkarovskiy, A. Investigations of nitric oxides reduction in industrial-heating boilers with the use of the steam injection method. Arch. Environ. Prot. 2020, 46, 100–107. [Google Scholar] [CrossRef]
- Janta-Lipińska, S.; Shkarovskiy, A. The study on decreasing of nitrogen oxides emission carried out on DKVR 10-13 industrial heating boilers. E3S Web Conf. 2018, 44, 00056. [Google Scholar] [CrossRef]
- Janta-Lipińska, S.; Shkarovskiy, A. Investigations of advantages of simultaneous combustion of natural gas and mazout in medium power steam boilers. J. Eng. Thermophys. 2020, 29, 331–337. [Google Scholar] [CrossRef]
- Szkarowski, A.; Janta-Lipińska, S.; Dąbrowski, T. Research on Co-Combustion of Gas and Oil Fuels. Annu. Set Environ. Prot. 2018, 20, 1515–1529. [Google Scholar]
- Ivanov, V.M.; Smetannikov, B.N.; Pisarev, Y.K. Thermal processing of sludges from the coal liquefaction process. Solid Fuel Chem. 1978, 12, 60–67. [Google Scholar]
- Miccio, F.; Okasha, F.M. Fluidized bed combustion and desulfurization of a heavy liquid fuel. Chem. Eng. J. 2005, 105, 81–89. [Google Scholar]
- Okasha, F.M.; El-Emam, S.H.; Mostafa, H.K. The fluidized bed combustion of a heavy liquid fuel. Exp. Therm. Fluid Sci. 2003, 27, 473–480. [Google Scholar]
- Dolinsky, A.; Pavlenko, A.; Basok, B. Thermophysical Processes in Emulsion. Reception Use Salvaging; Naukova Dumka: Kyiv, Ukraine, 2005. [Google Scholar]
- Gidrometeoizdat, Goskomgidromet. Collection of Methods for Calculating Emissions of Pollutants into the Atmosphere by Various Industries; Gidrometeoizdat, Goskomgidromet: Leningrad, Russia, 1986. [Google Scholar]
- Gulyaeva, L.A.; Vinogradova, N.Y.; Khavkin, V.A.; Gorlov, E.G.; Shumovskii, A.V.; Bitiev, G.V. Preparation of an oil shale suspension in a water–mazout emulsion as a raw material for gasification. Solid Fuel Chem. 2016, 50, 346–351. [Google Scholar]
- Kouravand, S.; Kermani, A.M. Clean power production by simultaneous reduction of NOx and SOx contaminants using Mazout Nano-Emulsion and wet flue gas desulfurization. J. Clean. Prod. 2018, 201, 229–235. [Google Scholar]
- Okasha, F. Modeling of liquid fuel combustion in fluidized bed. Fuel 2007, 86, 2241–2253. [Google Scholar]
- Saario, A.; Rebola, A.; Coelho, P.J.; Costa, M.; Oksanen, A. Heavy fuel oil combustion in a cylindrical laboratory furnace: Measurements and modeling. Fuel 2005, 84, 359–369. [Google Scholar]
- PN-C-96024:2020-12; Petroleum Products. Heating Oils- polish version. Polish Committee for Standardization: Warsaw, Poland, 2020.
- Kormilitsyn, V.I.; Lyskov, M.G.; Rumynskij, A.A. Complex eco-compatible technology of combustion of water-mazout emulsion and natural gas with additions of sewage. Teploenergetika 1996, 9, 13–17. [Google Scholar]
- Janta-Lipińska, S. The method of nitrogen oxide emission reduction during the combustion of gaseous fuel in municipal thermal power boilers. Rocz. Ochr. Śr. 2020, 22, 376–390. [Google Scholar]
- Dubose, D.A.; Steinmetz, J.I.; Harris, G.E. Frequency of Leak Occurrence and Emission Factors for Natural Gas Liquid Plants; U.S. Environmental Protection Agency: Washington, DC, USA; Research Triangle Park: Triangle Park, NC, USA, 1982. [Google Scholar]
- Pavlenko, A. Dispersed phase breakup in boiling of emulsion. Heat Transf. Res. 2018, 49, 633–641. [Google Scholar] [CrossRef]
- Pavlenko, A. Energy conversion in heat and mass transfer processes in boiling emulsions. Therm. Sci. Eng. Prog. 2019, 15, 100439. [Google Scholar] [CrossRef]
- Pavlenko, A.; Melnyk, V. Destruction of the Structure of Boiling Emulsions. Annu. Set Environ. Prot. 2020, 22, 70–81. [Google Scholar]
- Szkarowski, A. Technology of NOx Emission Reduction Using Method of Flame Dosed Directional Ballasting. Rocz. Ochr. Śr. 2001, 3, 53–73. [Google Scholar]
- Szkarowski, A. Principles of Calculation at Suppression of NOx Formation by a Method of the Dosed Directed Injection of Water Ballast. Annu. Set Environ. Prot. 2002, 4, 365–378. [Google Scholar]
- Pavlenko, A.; Shkarovskiy, A.; Janta-Lipińska, S. Research on Burning of Water Black Oil Emulsions. Annu. Set Environ. Prot. 2014, 16, 376–385. [Google Scholar]
- GOST 10585-75; Oil Fuel. Mazout. Specifications. Gosstandart: Moscow, Russia, 1975.
- Trembovla, W.I.; Finger, E.D.; Avdeeva, A.A. Thermal Engineering Tests of Boiler Plants; Energoatomizdat: Moscow, Russian, 1991. [Google Scholar]
- Buzukov, A.A.; Timoshenko, B.P. Self-ignition and combustion of a water-fuel emulsion during its injection into heated air. II. Ignition delay time of M-40 fuel oil. Combust. Explos. Shock. Waves 1995, 31, 419–424. [Google Scholar]
- Man, C.K.; Gibbins, J.R.; Witkamp, J.G.; Zhang, J. Coal characterization for NOx prediction in air-staged combustion of pulverised coals. Fuel 2005, 84, 2190–2195. [Google Scholar] [CrossRef]
- Park, H.Y.; Baek, S.H.; Kim, Y.J.; Kim, T.H.; Kang, D.S.; Kim, D.W. Numerical and experimental investigations on the gas temperature deviation in a large scale, advanced low NOx, tangentially fired pulverized coal boiler. Fuel 2013, 104, 641–646. [Google Scholar] [CrossRef]
- Szyszlak-Bargłowicz, J.; Zając, G.; Słowik, T. Hydrocarbon Emissions during Biomass Combustion. Pol. J. Environ. Stud. 2015, 24, 1349–1354. [Google Scholar] [CrossRef]
No | Parameter | Unit | Combustion of Mazout | Combustion of Water–Mazout Emulsion (WME) | |||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||||
1. | The number of working burners | pcs. | 2 | 2 | |||
2. | Fuel characteristics | - | low-sulfur mazout Wp = 5% | Water–mazout emulsion Wp = 11–13% | |||
3. | Fuel calorific value | MJ/kg | 38.10 | 34.75 | |||
4. | Density | kg/m3 | 0.95 | 0.955 | |||
5. | Temperature | °C | 100–110 | 100–110 | |||
6. | Overpressure before injectors | bar | 2.0 | 1.0 | 2.0 | 3.0 | 3.5 |
7. | Actual fuel consumption | kg/h | 152 | 109 | 156 | 191 | 206 |
No | Parameter | Unit | Combustion of Mazout | Combustion of Water–Mazout Emulsion (WME) | |||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||||
1. | Overpressure in the upper-boiler drum | bar | 7.0 | 7.0 | |||
2. | Saturated-steam temperature | °C | 169.6 | 169.6 | |||
3. | Enthalpy of saturated steam | MJ/kg | 2.76 | 2.76 | |||
4. | Steam capacity | t/h | 1.98 | 1.29 | 1.94 | 2.34 | 2.53 |
5. | Feed-water temperature | °C | 102 | 102 | |||
6. | Thermal capacity of the boiler | MW | 1.21 | 0.79 | 1.19 | 1.38 | 1.46 |
7. | Thermal capacity of the boiler unit | MW | 1.29 | 0.84 | 1.27 | 1.52 | 1.63 |
No | Parameter | Unit | Combustion of Mazout | Combustion of Water–Mazout Emulsion (WME) | |||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||||
1. | Air pressure before the burners: | ||||||
- primary | Pa | 400 | 150 | 280 | 460 | 300 | |
- secondary | Pa | 600 | 400 | 500 | 600 | 650 | |
2. | Air temperature | °C | 20 | ||||
3. | Negative pressure in the boiler furnace | Pa | 15–20 | ||||
4. | Negative pressure after the boiler | Pa | 90 | 70 | 100 | 140 | 180 |
5. | Negative pressure after the economizer | Pa | 550 | 400 | 500 | 650 | 730 |
6. | Boiler aerodynamic drag | Pa | 70 | 50 | 80 | 120 | 160 |
7. | Economizer aerodynamic drag | Pa | 460 | 330 | 400 | 510 | 550 |
8. | The aerodynamic drag of the boiler unit | Pa | 530 | 380 | 480 | 630 | 710 |
No | Parameter | Unit | Combustion of Mazout | Combustion of Water–Mazout Emulsion (WME) | |||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||||
1. | Maximum content of triatomic gases | % vol. | 16.5 | 15.5 | |||
2. | The composition of exhaust gases after the boiler: | ||||||
-RO2 (sum of CO2 and SO2) | % vol. | 9.4 | 10.6 | 11.5 | 12.3 | 12.6 | |
- oxygen | % vol. | 9.0 | 6.6 | 5.4 | 4.4 | 3.9 | |
- nitrogen | % vol. | 81.6 | 82.8 | 83.1 | 83.3 | 83.5 | |
- carbon monoxide | % vol. | 0.016 | on average (below 0.01% vol.) | ||||
3. | The composition of exhaust gases after the boiler unit: | ||||||
-RO2 (sum of CO2 and SO2) | % vol. | 7.7 | 7.1 | 7.9 | 8.6 | 8.9 | |
- oxygen | % vol. | 11.2 | 11.4 | 10.3 | 9.4 | 9.0 | |
- nitrogen | % vol. | 81.1 | 81.5 | 81.8 | 82.0 | 82.1 | |
4. | Concentration of nitrogen oxides (at α = 1) | mg/m3 | 310 | 195 | 220 | 240 | 260 |
5. | Air-excess coefficient: | ||||||
- after the boiler | - | 1.71 | 1.43 | 1.32 | 1.25 | 1.21 | |
- after the boiler unit | - | 2.08 | 2.11 | 1.90 | 1.76 | 1.70 | |
6. | Suction air in the economizer | - | 0.37 | 0.68 | 0.58 | 0.51 | 0.49 |
7. | Exhaust temperature after the boiler | °C | 615 | 590 | 610 | 630 | 640 |
8. | Exhaust temperature after the boiler unit | °C | 210 | 185 | 200 | 220 | 230 |
9. | Cooling exhaust in the economizer | °C | 405 | 405 | 410 | 410 | 410 |
No | Parameter | Unit | Combustion of Mazout | Combustion of Water–Mazout Emulsion (WME) | |||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||||
1. | Heat loss after the boiler: | ||||||
- with the exhausts | % | 40.24 | 32.70 | 31.64 | 31.08 | 30.83 | |
- to environment | % | 2.45 | 3.67 | 2.45 | 1.98 | 1.85 | |
2. | Gross efficiency of boiler | % | 57.31 | 63.63 | 65.91 | 66.94 | 67.32 |
3. | Heat loss of the boiler unit: | ||||||
- with the exhausts | % | 14.69 | 12.96 | 12.83 | 13.29 | 13.56 | |
- to environment | % | 4.96 | 7.34 | 4.91 | 3.95 | 3.69 | |
4. | Gross efficiency of the boiler unit | % | 80.36 | 79.70 | 82.26 | 82.76 | 82.75 |
5. | Increasing the efficiency with the use of an economizer | % | 23.05 | 16.07 | 16.35 | 15.82 | 15.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janta-Lipińska, S.; Shkarovskiy, A.; Chrobak, Ł.B. Disposal of Wastewater from Mazout-Fired Boiler Plants by Burning Water–Mazout Emulsions. Energies 2022, 15, 5554. https://doi.org/10.3390/en15155554
Janta-Lipińska S, Shkarovskiy A, Chrobak ŁB. Disposal of Wastewater from Mazout-Fired Boiler Plants by Burning Water–Mazout Emulsions. Energies. 2022; 15(15):5554. https://doi.org/10.3390/en15155554
Chicago/Turabian StyleJanta-Lipińska, Sylwia, Alexander Shkarovskiy, and Łukasz Bartłomiej Chrobak. 2022. "Disposal of Wastewater from Mazout-Fired Boiler Plants by Burning Water–Mazout Emulsions" Energies 15, no. 15: 5554. https://doi.org/10.3390/en15155554
APA StyleJanta-Lipińska, S., Shkarovskiy, A., & Chrobak, Ł. B. (2022). Disposal of Wastewater from Mazout-Fired Boiler Plants by Burning Water–Mazout Emulsions. Energies, 15(15), 5554. https://doi.org/10.3390/en15155554