Experimental Investigation on the Heat Transfer Characteristics of Multi-Point Heating Microchannels for Simulating Solar Cell Cooling
Abstract
:1. Introduction
2. Experimental Setup
2.1. Experimental System
2.2. Test Section
3. Data reduction and Uncertainty Analysis
3.1. Data Reduction
3.2. Uncertainty Analysis
4. Results and Discussion
4.1. Heat Transfer Efficiency
4.2. Effect of Heat Flux
4.3. Effect of Mass Flux
5. Conclusions
- The microchannel heat sink prepared with diamond is an effective means to solve the heat dissipation problem of multi-point heat sources. The surface temperature of the heat source is maintained below 65.9 °C under the heat flux of 351.5 W/cm2, and the maximum temperature difference between multi-point heat sources of the upstream heat sink is only 1.4 °C.
- Heat transfer at the solid–fluid interface of the heat sink is dominated by the nucleation boiling mechanism. The heat transfer capacity increases with the increase of heat flux, which is less affected by the mass flux. The surface temperature of the heat sources and thermal resistance of the series heat sink varies in the same trend.
- The inlet states of upstream and downstream heat sinks are different, resulting in the difference in heat transfer capacities of the two heat sinks. The working fluid at the inlet of upstream heat sink has a small subcooling degree, leading to a high thermal resistance. While the two-phase inlet state of the downstream heat sink brings a worse temperature uniformity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
heat transfer efficiency | |
direct heating area m2 | |
specific heat capacity of liquid | |
δ | distance m |
hydraulic diameter mm | |
mass flux | |
thermal conductivity | |
mass flux | |
Pressure kPa | |
heat load W | |
heat flux W/cm2 | |
thermal resistance K/W | |
temperature | |
average temperature | |
upper surface temperature | |
surface temperature uniformity | |
Volume flux | |
Subscripts | |
effective value | |
fluid | |
inlet | |
outlet | |
total value | |
Abbreviations | |
CPV | Concentrating photovoltaic |
CV | Chemical vapor deposition |
DARPA | Defence Advanced Research Projects Agency |
GWP | Global warming potential |
HCPV | High concentrated photovoltaic |
ODP | Ozone depletion potential |
OM | Optical microscope |
References
- Capellán-Pérez, I.; de Castro, C.; Arto, I. Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios. Renew. Sustain. Energy Rev. 2017, 77, 760–782. [Google Scholar] [CrossRef] [Green Version]
- Daneshazarian, R.; Cuce, E.; Cuce, P.M.; Sher, F. Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications. Renew. Sustain. Energy Rev. 2018, 81, 473–492. [Google Scholar] [CrossRef]
- Jakhar, S.; Soni, M.S.; Gakkhar, N. Historical and recent development of concentrating photovoltaic cooling technologies. Renew. Sustain. Energy Rev. 2016, 60, 41–59. [Google Scholar] [CrossRef]
- Green, M.; Dunlop, E.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 57). Prog. Photovolt. Res. Appl. 2021, 29, 3–15. [Google Scholar] [CrossRef]
- Bevilacqua, P.; Perrella, S.; Cirone, D.; Bruno, R.; Arcuri, N. Efficiency improvement of photovoltaic modules via back surface cooling. Energies 2021, 14, 895. [Google Scholar] [CrossRef]
- Agyekum, E.B.; PraveenKumar, S.; Alwan, N.T.; Velkin, V.I.; Adebayo, T.S. Experimental study on performance enhancement of a photovoltaic module using a combination of phase change material and aluminum fins—exergy, energy and economic (3E) analysis. Inventions 2021, 6, 69. [Google Scholar] [CrossRef]
- Agyekum, E.B.; PraveenKumar, S.; Alwan, N.T.; Velkin, V.I.; Shcheklein, S.E.; Yaqoob, S.J. Experimental investigation of the effect of a combination of active and passive cooling mechanism on the thermal characteristics and efficiency of solar PV module. Inventions 2021, 6, 63. [Google Scholar] [CrossRef]
- Skoplaki, E.; Palyvos, J.A. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Sol. Energy 2009, 83, 614–624. [Google Scholar] [CrossRef]
- An, Y.; Sheng, C.; Li, X. Radiative cooling of solar cells: Opto-electro-thermal physics and modeling. Nanoscale 2019, 11, 17073–17083. [Google Scholar] [CrossRef]
- Zhao, B.; Hu, M.; Ao, X.; Pei, G. Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module. Sol. Energy 2018, 176, 248–255. [Google Scholar] [CrossRef]
- Sato, D.; Yamada, N. Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method. Renew. Sustain. Energy Rev. 2019, 104, 151–166. [Google Scholar] [CrossRef]
- Royne, A.; Dey, C.J.; Mills, D.R. Cooling of photovoltaic cells under concentrated illumination: A critical review. Sol. Energy Mater. Sol. Cells 2005, 86, 451–483. [Google Scholar] [CrossRef]
- Praveen Kumar, S.; Agyekum, E.B.; Velkin, V.I.; Yaqoob, S.J.; Adebayo, T.S. Thermal management of solar photovoltaic module to enhance output performance: An experimental passive cooling approach using discontinuous aluminum heat sink. Int. J. Renew. Energy Res. (IJRER) 2021, 11, 1700–1712. [Google Scholar]
- Royne, A.; Dey, C.J. Design of a jet impingement cooling device for densely packed PV cells under high concentration. Sol. Energy 2007, 81, 1014–1024. [Google Scholar] [CrossRef]
- Barrau, J.; Rosell, J.; Chemisana, D.; Tadrist, L.; Ibáñez, M. Effect of a hybrid jet impingement/micro-channel cooling device on the performance of densely packed PV cells under high concentration. Sol. Energy 2011, 85, 2655–2665. [Google Scholar] [CrossRef]
- Barrau, J.; Omri, M.; Chemisana, D.; Rosell, J.; Ibañez, M.; Tadrist, L. Numerical study of a hybrid jet impingement/micro-channel cooling scheme. Appl. Therm. Eng. 2012, 33, 237–245. [Google Scholar] [CrossRef]
- Barrau, J.; Chemisana, D.; Rosell, J.; Tadrist, L.; Ibáñez, M. An experimental study of a new hybrid jet impingement/micro-channel cooling scheme. Appl. Therm. Eng. 2010, 30, 2058–2066. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, V.V.; Shamirzaev, A.S. Flow boiling heat transfer of refrigerant R-134a in copper microchannel heat sink. Heat Transf. Eng. 2016, 37, 1105–1113. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Zhao, J.; Huang, Y.; Zhu, X.; Fu, W.; Li, C.; Miao, J. A diamond made microchannel heat sink for high-density heat flux dissipation. Appl. Therm. Eng. 2019, 158, 113804. [Google Scholar] [CrossRef]
- Huang, H.; Thome, J.R. Local measurements and a new flow pattern based model for subcooled and saturated flow boiling heat transfer in multi-microchannel evaporators. Int. J. Heat Mass Transf. 2016, 103, 701–714. [Google Scholar] [CrossRef]
- Huang, H.; Borhani, N.; Thome, J.R. Experimental investigation on flow boiling pressure drop and heat transfer of R1233zd (E) in a multi-microchannel evaporator. Int. J. Heat Mass Transf. 2016, 98, 596–610. [Google Scholar] [CrossRef]
- Bogojevic, D.; Sefiane, K.; Walton, A.J.; Lin, H.; Cummins, G.; Kenning, D.B.R.; Karayiannis, T.G. Experimental investigation of non-uniform heating effect on flow boiling instabilities in a microchannel-based heat sink. Int. J. Therm. Sci. 2011, 50, 309–324. [Google Scholar] [CrossRef] [Green Version]
- Chao, P.C.; Chu, K.; Diaz, J.; Creamer, C.; Sweetland, S.; Kallaher, R.; McGray, C.; Via, G.D.; Blevins, J. GaN-on-diamond HEMTs with 11W/mm output power at 10GHz. MRS Adv. 2016, 1, 147–155. [Google Scholar] [CrossRef]
- Yang, Q.; Miao, J.; Zhao, J.; Huang, Y.; Fu, W.; Shen, X. Flow boiling of ammonia in a diamond-made microchannel heat sink for high heat flux hotspots. J. Therm. Sci. 2020, 29, 1333–1344. [Google Scholar] [CrossRef]
- Hong, S.; Dang, C.; Hihara, E. Experimental investigation on flow boiling characteristics of radial expanding minichannel heat sinks applied for two-phase flow inlet. Int. J. Heat Mass Transf. 2020, 151, 119316. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Liu, W.; Liu, Z. Heat transfer and pressure drop characteristics of r134a flow boiling in the parallel/tandem microchannel heat sinks. Energy Convers. Manag. 2017, 148, 1082–1095. [Google Scholar] [CrossRef]
- He, J.; Wu, Y.; Chen, X.; Lu, Y.; Ma, C.; Du, C.; Liu, G.; Ma, R. Experimental study of a miniature vapor compression refrigeration system with two heat sink evaporators connected in series or in parallel. Int. J. Refrig. 2015, 49, 28–35. [Google Scholar] [CrossRef]
- Miler, J.L.; Flynn, R.; Refai-Ahmed, G.; Touzelbaev, M.; David, M.; Steinbrenner, J.; Goodson, K.E. Effects of transient heating on two-phase flow response in microchannel heat exchangers. In Proceedings of the International Electronic Packaging Technical Conference and Exhibition, San Francisco, CA, USA, 19–23 July 2009; pp. 563–569. [Google Scholar]
- Cho, E.S.; Koo, J.M.; Jiang, L.; Prasher, R.S.; Kim, M.S.; Santiago, J.G.; Kenny, T.W.; Goodson, K.E. Experimental study on two-phase heat transfer in microchannel heat sinks with hotspots. In Proceedings of the Ninteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 11–13 March 2003; pp. 242–246. [Google Scholar]
- Yin, L.; Xu, R.; Jiang, P.; Cai, H.; Jia, L. Subcooled flow boiling of water in a large aspect ratio microchannel. Int. J. Heat Mass Transf. 2017, 112, 1081–1089. [Google Scholar] [CrossRef]
- Moffat, R.J. Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1988, 1, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Deng, D.; Wan, W.; Qin, Y.; Zhang, J.; Chu, X. Flow boiling enhancement of structured microchannels with micro pin fins. Int. J. Heat Mass Transf. 2017, 105, 338–349. [Google Scholar] [CrossRef]
- Kuang, Y.W.; Wang, W.; Miao, J.Y.; Yu, X.G.; Zhang, H.X.; Zhuan, R. Flow boiling of ammonia and flow instabilities in mini-channels. Appl. Therm. Eng. 2017, 113, 831–842. [Google Scholar] [CrossRef]
- Faulkner, D.; Khotan, M.; Shekarriz, R. Practical design of a 1000 W/cm2 cooling system. In Proceedings of the Ninteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 11–13 March 2003; pp. 223–230. [Google Scholar]
- Agostini, B.; Fabbri, M.; Park, J.E.; Wojtan, L.; Thome, J.R.; Michel, B. State of the art of high heat flux cooling technologies. Heat Transf. Eng. 2007, 28, 258–281. [Google Scholar] [CrossRef]
- Agostini, B.; Revellin, R.; Thome, J.R.; Fabbri, M.; Michel, B.; Calmi, D.; Kloter, U. High heat flux flow boiling in silicon multi-microchannels–part III: Saturated critical heat flux of R236fa and two-phase pressure drops. Int. J. Heat Mass Transf. 2008, 51, 5426–5442. [Google Scholar] [CrossRef]
- Park, J.E.; Thome, J.R. Critical heat flux in multi-microchannel copper elements with low pressure refrigerants. Int. J. Heat Mass Transf. 2010, 53, 110–122. [Google Scholar] [CrossRef] [Green Version]
- Mastrullo, R.; Mauro, A.W.; Thome, J.R.; Vanoli, G.P.; Viscito, L. Critical heat flux: Performance of R1234yf, R1234ze and R134a in an aluminum multi-minichannel heat sink at high saturation temperatures. Int. J. Therm. Sci. 2016, 106, 124349811. [Google Scholar] [CrossRef]
- Kitto, J.B., Jr.; Robertson, J.M. Effects of maldistribution of flow on heat transfer equipment performance. Heat Transf. Eng. 1989, 10, 18–25. [Google Scholar] [CrossRef]
- Zhuan, R.; Wang, W. Boiling heat transfer characteristics in a microchannel array heat sink with low mass flow rate. Appl. Therm. Eng. 2013, 51, 65–74. [Google Scholar] [CrossRef]
- Alam, T.; Lee, P.S.; Yap, C.R.; Jin, L. A comparative study of flow boiling heat transfer and pressure drop characteristics in microgap and microchannel heat sink and an evaluation of microgap heat sink for hotspot mitigation. Int. J. Heat Mass Transf. 2013, 58, 335–347. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Jagirdar, M.; Lee, P.S.; Teo, C.J.; Chou, S.K. Experimental investigation of flow boiling heat transfer and instabilities in straight microchannels. Int. J. Heat Mass Transf. 2013, 66, 655–671. [Google Scholar] [CrossRef]
- Anwar, Z.; Palm, B.; Khodabandeh, R. Flow boiling heat transfer and dryout characteristics of R152a in a vertical mini-channel. Exp. Therm. Fluid Sci. 2014, 53, 207–217. [Google Scholar] [CrossRef]
- Bao, Z.Y.; Fletcher, D.F.; Haynes, B.S. Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages. Int. J. Heat Mass Transf. 2000, 43, 3347–3358. [Google Scholar] [CrossRef]
Direct Measurement Parameters | Uncertainty | Indirect Measurement Parameters | Uncertainty |
---|---|---|---|
Pressure, P/kPa | ±0.1% | Heat flux of heat source, q/W/cm2 | ±2.9% |
Temperature, T/°C | ±0.3 °C | Surface temperature of heat source, Th/°C | ±1.4% |
Volume flux, | ±1% | Surface temperature difference of heat source, /°C | ±2.0% |
Hydraulic diameter, /mm | ±0.005 mm | Thermal resistance, /K/W | ±3.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Huang, Y.; Niu, Z.; Guo, Y.; Wu, Q.; Miao, J. Experimental Investigation on the Heat Transfer Characteristics of Multi-Point Heating Microchannels for Simulating Solar Cell Cooling. Energies 2022, 15, 5315. https://doi.org/10.3390/en15155315
Yang Q, Huang Y, Niu Z, Guo Y, Wu Q, Miao J. Experimental Investigation on the Heat Transfer Characteristics of Multi-Point Heating Microchannels for Simulating Solar Cell Cooling. Energies. 2022; 15(15):5315. https://doi.org/10.3390/en15155315
Chicago/Turabian StyleYang, Qi, Yanpei Huang, Zitian Niu, Yuandong Guo, Qi Wu, and Jianyin Miao. 2022. "Experimental Investigation on the Heat Transfer Characteristics of Multi-Point Heating Microchannels for Simulating Solar Cell Cooling" Energies 15, no. 15: 5315. https://doi.org/10.3390/en15155315
APA StyleYang, Q., Huang, Y., Niu, Z., Guo, Y., Wu, Q., & Miao, J. (2022). Experimental Investigation on the Heat Transfer Characteristics of Multi-Point Heating Microchannels for Simulating Solar Cell Cooling. Energies, 15(15), 5315. https://doi.org/10.3390/en15155315