The Characterization of the Electric Double-Layer Capacitor (EDLC) Using Python/MATLAB/Simulink (PMS)-Hybrid Model
Abstract
:1. Introduction
2. Literature Review
3. Theory of the EDLC
3.1. Structure
3.2. Equivalent Circuit Model
3.3. Mathematical Equations of the “Two-Branch Model”
4. Materials and Methods
4.1. Two-Branch-Model Parameter Extraction Using Circuit Experiments
4.2. Python/MATLAB/Simulink (PMS)-Hybrid Model
4.3. Equivalent-Series Resistance (ESR) and Capacitance Calculation
5. Experimental
5.1. Parameter-Acquisition Procedure and Experimental Setup
5.2. Python/MATLAB/Simulink (PMS) Modeling
6. Results
6.1. Experimental Charge/Discharge Results
6.2. Simulated Results from the PMS Model
7. Discussion
Superimpostion of Experimental-Charge/Discharge Profiles on Simulated-PMS-Charge/Discharge Profiles
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cultura, A.B.; Salameh, Z.M. Performance evaluation of a supercapacitor module for energy storage applications. In Proceedings of the IEEE Power & Energy Society General Meeting—Conversion & Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–7. [Google Scholar] [CrossRef]
- Argyrou, M.C.; Christodoulides, P.; Marouchos, C.C.; Kalogirou, S.A. Hybrid battery-supercapacitor mathematical modeling for PV application using Matlab/Simulink. In Proceedings of the 53rd International Universities Power Engineering Conference (UPEC), Glasgow, UK, 4–7 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Sahin, M.E. An investigation on supercapacitors applications with module designing and testing. J. Eng. Res. 2021. [Google Scholar] [CrossRef]
- Faranda, R.; Gallina, M.; Son, D.T. A new simplified model of Double-Layer Capacitors. In Proceedings of the International Conference on Clean Electrical Power, Capri, Italy, 21–23 May 2007; pp. 1–5. [Google Scholar] [CrossRef]
- Sahin, M.E.; Blaabjerg, F. A Hybrid PV-Battery/Supercapacitor System and a Basic Active Power Control Proposal in MATLAB/Simulink. Electronics 2020, 9, 129. Available online: https://www.mdpi.com/2079-9292/9/1/129 (accessed on 20 March 2022). [CrossRef] [Green Version]
- Zubieta, L.; Bonert, R. Characterization of Double-Layer Capacitors for Power Electronics Applications. IEEE Trans. Ind. Appl. 2000, 36, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Gualous, H.; Louahlia, H.; Gallay, R. Supercapacitor Characterization and Thermal Modelling With Reversible and Irreversible Heat Effect. IEEE Trans. Power Electron. 2011, 26, 3402–3409. [Google Scholar] [CrossRef]
- Popoola, K. Modelling and Simulation of Supercapacitor for Energy Storage Applications. ADBU-J. Eng. Technol. (AJET) 2018, 7, 1–6. Available online: https://journals.dbuniversity.ac.in/ojs/index.php/AJET/article/view/448 (accessed on 20 March 2022).
- Sahin, M.E.; Blaabjerg, F.; Sangwongwanich, A. Modelling of Supercapacitors Based on Simplified Equivalent Circuit. CPSS Trans. Power Electron. Appl. 2021, 6, 31–39. [Google Scholar] [CrossRef]
- Gaswi, A.A.; Tennakoon, S.B. Modelling of Super Capacitor Modules and Parameter Extraction. In Proceedings of the 46th International Universities’ Power Engineering Conference, Soest, Germany, 5–8 September 2011; Available online: https://ieeexplore.ieee.org/document/6125630 (accessed on 20 March 2022).
- Kai, W.; Baosen, R.; Liwei, L.; Yuhao, L.; Hongwei, Z.; Zongqiang, S. A review of Modeling Research on Supercapacitor. In Proceedings of the Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 5998–6001. [Google Scholar] [CrossRef]
- Negroiu, R.; Svasta, P.; Vasile, A.; Ionescu, C.; Marghescu, C. Comparison between Zubieta Model of Supercapacitors and their Real Behavior. In Proceedings of the IEEE 22nd International Symposium for Design and Technology in Electronic Packaging (SIITME), Oradea, Romania, 20–23 October 2016; pp. 196–199. [Google Scholar] [CrossRef]
- Oussama, H.; Othmane, A.; Amine, S.M.; Amine, H.M.; Abdeselem, C.; Abdelkader, A.B. Modelling and Comtrol a DC-Microgrid Based on PV and HESS Hyvrid Energy Storage System. In Proceedings of the First International Conference on Smart Grids, CIREI’2019, ENP-Oran, Algeria, 4–5 March 2019; pp. 1–5. [Google Scholar]
- Khan, S.A.; Rajkumar, R.K.; Wan, W.Y.; Syed, A. Supercapacitor-Based Hybrid Energy Harvesting for Low-Voltage System. In Supercapacitors; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Raman, S.R.; Cheng, K.-W.; Xue, X.-D.; Fong, Y.-C.; Cheung, S. Hybrid Energy Storage System with Vehicle Body Integrated Super-Capacitor and Li-Ion Battery: Model, Design and Implementation, for Distributed Energy Storage. Energies 2021, 14, 6553. [Google Scholar] [CrossRef]
Parameters | Lead–Acid Battery | Lithium-Ion Battery | EDLC |
---|---|---|---|
Specific energy density (Wh/kg) | 10–100 | 150–200 | 1–10 |
Specific power density (W/kg) | <1000 | <2000 | <10,000 |
Cycle life | 1000 | 5000 | >500,000 |
Charge/discharge efficiency | 70–85% | 99% | 85–98% |
Fast-charge time | 1–5 h | 0.5–3 h | 0.3–30 s |
Discharge time | 0.3–3 h | 0.3–3 h | 0.3–30 s |
Calendar life (year) | 5–15 | 10–20 | 20 |
Capacitance | Max Voltage | ESR |
---|---|---|
400 F | 2.7 V | 3.2 mΩ |
300 F | 2.7 V | 6 mΩ |
Parameter | Eaton 300 F | Eaton 400 F |
---|---|---|
[Ω] | 0.01 | 0.01 |
[F] | 243.42 | 297.05 |
[F/V] | 50.4 | 70.46 |
[Ω] | 12.26 | 8.77 |
[F] | 19.57 | 27.36 |
ESR and Capacitance | 300 F | 400 F |
---|---|---|
Load [Ω] | 0.280 | 0.280 |
Current [A] | 2 | 2 |
[Volt] | 2.752 | 2.744 |
[Volt] | 2.688 | 2.704 |
ΔV [Volt] | 0.064 | 0.040 |
ESR [Ω] | 0.0065 | 0.00408 |
Capacitance [F] | 319 F | 421 F |
ESR and Capacitance | 300 F | 400 F | ||
---|---|---|---|---|
ESR (mΩ) | Capacitance (Farads) | ESR | Capacitance (Farads) | |
Datasheet | 6 mΩ | 300 F | 3.2 mΩ | 400 F |
Experimental | 6.5 mΩ | 319 F | 4.08 mΩ | 421 F |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tshiani, C.T.; Umenne, P. The Characterization of the Electric Double-Layer Capacitor (EDLC) Using Python/MATLAB/Simulink (PMS)-Hybrid Model. Energies 2022, 15, 5193. https://doi.org/10.3390/en15145193
Tshiani CT, Umenne P. The Characterization of the Electric Double-Layer Capacitor (EDLC) Using Python/MATLAB/Simulink (PMS)-Hybrid Model. Energies. 2022; 15(14):5193. https://doi.org/10.3390/en15145193
Chicago/Turabian StyleTshiani, Chrispin Tumba, and Patrice Umenne. 2022. "The Characterization of the Electric Double-Layer Capacitor (EDLC) Using Python/MATLAB/Simulink (PMS)-Hybrid Model" Energies 15, no. 14: 5193. https://doi.org/10.3390/en15145193
APA StyleTshiani, C. T., & Umenne, P. (2022). The Characterization of the Electric Double-Layer Capacitor (EDLC) Using Python/MATLAB/Simulink (PMS)-Hybrid Model. Energies, 15(14), 5193. https://doi.org/10.3390/en15145193