Extended Carbon Emission Pinch Analysis for the Low-Carbon Tobacco Industry
Abstract
:1. Introduction
2. Problem Statement
- A set of carbon sources, including agricultural materials (A1), agricultural energy (A2), farmland management (A3), tobacco-processing-to-finished-product handling processes in a silk workshop (A4), wrapping workshop (A5), power workshop (A6), comprehensive workshop (A7), management and control workshop (A8), and office (A9).
 - A set of carbon sinks, including carbon sequestration by photosynthesis (B1) and soil carbon sequestration (B2).
 - The corresponding carbon emissions and investment costs are given for all carbon sources.
 - There are corresponding carbon emissions and investment costs for all carbon sinks.
 
3. Methodology
3.1. Llife-Cycle Assessment (LCA)
3.1.1. The Tobacco-Planting Stage (TP)
3.1.2. The Tobacco-Processing-to-Finished-Product Handling Processes (TPFP)
3.2. Source-Sink Model (SSM)
4. Results and Discussion
4.1. Scenario 1 without Renewable Energy
4.2. Scenario 2 with 15% of Energy Substituted by Renewable Energy
4.3. Scenario 3 with 30% of Energy Substituted by Renewable Energy
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dudley, B. BP statistical review of world energy. BP Stat. Rev. 2018, 6, 116. [Google Scholar]
 - Fatima, T.; Xia, E.; Cao, Z.; Khan, D.; Fan, J.-L. Decomposition analysis of energy-related CO2 emission in the industrial sector of China: Evidence from the LMDI approach. Environ. Sci. Pollut. Res. 2019, 26, 21736–21749. [Google Scholar] [CrossRef] [PubMed]
 - Pollitt, H. Analysis: Going carbon neutral by 2060 ‘will make China richer’. Carbon Brief. 2020. Available online: https://www.carbonbrief.org/analysis-going-carbon-neutral-by-2060-will-make-china-richer/ (accessed on 10 December 2021).
 - Feng, C.; Wang, M.; Zhang, Y.; Liu, G.-C. Decomposition of energy efficiency and energy-saving potential in China: A three-hierarchy meta-frontier approach. J. Clean. Prod. 2018, 176, 1054–1064. [Google Scholar] [CrossRef]
 - Ke, J.; Price, L.; Ohshita, S.; Fridley, D.; Khanna, N.Z.; Zhou, N.; Levine, M. China’s industrial energy consumption trends and impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects. Energy Policy 2012, 50, 562–569. [Google Scholar] [CrossRef] [Green Version]
 - Gao, P.; Yue, S.; Chen, H. Carbon emission efficiency of China’s industry sectors: From the perspective of embodied carbon emissions. J. Clean. Prod. 2021, 283, 124655. [Google Scholar] [CrossRef]
 - Lin, B.; Wang, X. Exploring energy efficiency in China’s iron and steel industry: A stochastic frontier approach. Energy Policy 2014, 72, 87–96. [Google Scholar] [CrossRef]
 - Wang, Q.; Zhou, P.; Zhao, Z.; Shen, N. Energy Efficiency and Energy Saving Potential in China: A Directional Meta-Frontier DEA Approach. Sustainability 2014, 6, 5476–5492. [Google Scholar] [CrossRef] [Green Version]
 - An, Y.; Zhou, D.; Yu, J.; Shi, X.; Wang, Q. Carbon emission reduction characteristics for China’s manufacturing firms: Implications for formulating carbon policies. J. Environ. Manag. 2021, 284, 112055. [Google Scholar] [CrossRef]
 - Jin, B.; Han, Y. Influencing factors and decoupling analysis of carbon emissions in China’s manufacturing industry. Environ. Sci. Pollut. Res. 2021, 28, 64719–64738. [Google Scholar] [CrossRef]
 - Tan, R.R.; Foo, D. Pinch analysis approach to carbon-constrained energy sector planning. Energy 2007, 32, 1422–1429. [Google Scholar] [CrossRef]
 - Linnhoff, B.; Townsend, D.; Boland, D.; Hewitt, G.; Thomas, B.; Guy, A.; Marshall, R. User Guide on Process Integration for the Efficient Use of Energy; IchemE: Rugby, UK, 1982. [Google Scholar]
 - Lee, S.C.; Ng, D.K.S.; Foo, D.C.Y.; Tan, R.R. Extended pinch targeting techniques for carbon-constrained energy sector planning. Appl. Energy 2009, 86, 60–67. [Google Scholar] [CrossRef]
 - Foo, D.C.; Tan, R.R.; Ng, D.K. Carbon and footprint-constrained energy planning using cascade analysis technique. Energy 2008, 33, 1480–1488. [Google Scholar] [CrossRef]
 - Tan, R.R.; Foo, D.C.Y.; Aviso, K.B.; Ng, D.K.S. The use of graphical pinch analysis for visualizing water footprint constraints in biofuel production. Appl. Energy 2009, 86, 605–609. [Google Scholar] [CrossRef]
 - Jia, X.; Li, Z.; Wang, F.; Foo, D.C.; Tan, R.R. Multi-dimensional pinch analysis for sustainable power generation sector planning in China. J. Clean. Prod. 2016, 112, 2756–2771. [Google Scholar] [CrossRef]
 - Li, Z.; Jia, X.; Foo, D.C.; Tan, R.R. Minimizing carbon footprint using pinch analysis: The case of regional renewable electricity planning in China. Appl. Energy 2016, 184, 1051–1062. [Google Scholar] [CrossRef]
 - Jia, X.; Wang, S.; Li, Z.; Wang, F.; Tan, R.R.; Qian, Y. Pinch analysis of GHG mitigation strategies for municipal solid waste management: A case study on Qingdao City. J. Clean. Prod. 2018, 174, 933–944. [Google Scholar] [CrossRef]
 - Lu, D.F.; Yan, Y.M.; Liu, X.P. Discussion on Energy Consumption Status and Energy Saving Measures in Cigarette Enterprises; Chinese Society for Environmental Sciences: Beijing, China, 2013. [Google Scholar]
 - Li, H.T.; Yan, Y.M.; Liu, C.X. Application of input-output model in energy consumption analysis of cigarette enterprise. Tob. Sci. Technol. 2009, 258, 5–8. [Google Scholar]
 - Zhang, Z.H.; Shao, G.Y. Energy management modes of tobacco industrial corporation based on the key nodes. Energy Res. Mang. 2011, 4, 87–89. [Google Scholar]
 - Gao, W.; Chen, K.; Xiang, Z.; Yang, F.; Zeng, J.; Li, J.; Yang, R.; Rao, G.; Tao, H. Kinetic study on pyrolysis of tobacco residues from the cigarette industry. Ind. Crops Prod. 2013, 44, 152–157. [Google Scholar] [CrossRef]
 - Wang, Q.; Yuan, Q. Energy-saving and emission reduction potential of the tobacco industry: A case study of China’s 18 cigarette enterprises. J. Clean. Prod. 2020, 244, 118429. [Google Scholar] [CrossRef]
 - Zhang, R.Y.; Chen, R.; Wang, X.J.; Jiang, Z.D. Carbon effect of modern tobacco agriculture: Based on tobacco cooperatives in Shaanxi Province. Chin. J. Eco-Agric. 2019, 27, 1903–1915. [Google Scholar]
 









| Tobacco Industrial Chain | Standard Coal Equivalent a  tce a−1  | Average Carbon Emissions per Hectare kgCO2 hm−2 a−1 | Average Carbon Sequestration per Hectare kg(C) hm−2 a−1 | |
|---|---|---|---|---|
| Sources | Management workshop | 112.5 | N/A | N/A | 
| Comprehensive workshop | 674.9 | N/A | N/A | |
| Power workshop | 184.6 | N/A | N/A | |
| Farmland management b | N/A | 329.6 | N/A | |
| Agricultural materials c | N/A | 1274.9 | N/A | |
| Agricultural energy d | N/A | 3661.8 | N/A | |
| Wrapping workshop | 3156.3 | N/A | N/A | |
| Silk workshop | 5009.9 | N/A | N/A | |
| Office | 436.5 | N/A | N/A | |
| Sinks | Soil carbon sequestration e | N/A | N/A | 1820 | 
| Carbon sequestration by crop photosynthesis f | N/A | N/A | 3000 | 
| Tobacco Industrial Chain | kt CO2 | 104 CNY | Carbon Cost (CNY/t) | |
|---|---|---|---|---|
| Sources | Management workshop | 1.2 | 329.2 | 2743.33 | 
| Comprehensive workshop | 0.3 | 72.6 | 2420.00 | |
| Power workshop | 4.7 | 328.2 | 698.30 | |
| Farmland management | 13.4 | 769.8 | 574.48 | |
| Agricultural materials | 1.9 | 65.4 | 344.21 | |
| Agricultural energy | 0.5 | 17.4 | 348.00 | |
| Wrapping workshop | 8.8 | 34.5 | 39.20 | |
| Slicing workshop | 13.9 | 44.5 | 32.01 | |
| Office | 1.2 | 62.8 | 523.33 | |
| Sinks | Soil carbon sequestration | 39.8 | 293.6 | 73.77 | 
| Carbon sequestration by crop photosynthesis | 21.8 | 89.7 | 41.15 | 
| Tobacco Industrial Chain | kt CO2 | 104 CNY | Carbon Cost (CNY/t) | |
|---|---|---|---|---|
| Sources | Farmland management | 1.2 | 329.2 | 2743.33 | 
| Management workshop | 0.3 | 52.1 | 1736.67 | |
| Agricultural materials | 4.7 | 328.2 | 698.30 | |
| Agricultural energy | 13.4 | 769.8 | 574.48 | |
| Comprehensive workshop | 1.7 | 48.9 | 287.65 | |
| Power workshop | 0.5 | 12.2 | 244.00 | |
| Wrapping workshop | 7.7 | 27.1 | 35.19 | |
| Slicing workshop | 12.3 | 40.1 | 32.60 | |
| Office | 1.1 | 59.9 | 544.55 | |
| Sinks | Soil carbon sequestration | 39.8 | 293.6 | 73.77 | 
| Carbon sequestration by crop photosynthesis | 21.8 | 89.7 | 41.15 | 
| Tobacco Industrial Chain | kt CO2 | 104 CNY | Carbon Cost (CNY/t) | |
|---|---|---|---|---|
| Sources | Farmland management | 1.2 | 329.2 | 2743.33 | 
| Management workshop | 0.2 | 50.2 | 2510.00 | |
| Agricultural materials | 4.7 | 328.2 | 698.30 | |
| Agricultural energy | 13.4 | 769.8 | 574.48 | |
| Comprehensive workshop | 1.4 | 47.3 | 337.86 | |
| Power workshop | 0.4 | 11.7 | 292.50 | |
| Wrapping workshop | 6.7 | 23.9 | 35.67 | |
| Silk workshop | 10.7 | 36 | 33.64 | |
| Office | 0.9 | 57.1 | 634.44 | |
| Sinks | Soil carbon sequestration | 39.8 | 293.6 | 73.77 | 
| Carbon sequestration by crop photosynthesis | 21.8 | 89.7 | 41.15 | 
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.  | 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, H.; Zhou, T.; Li, Z.; Jia, X. Extended Carbon Emission Pinch Analysis for the Low-Carbon Tobacco Industry. Energies 2022, 15, 4611. https://doi.org/10.3390/en15134611
Zhang Y, Wang H, Zhou T, Li Z, Jia X. Extended Carbon Emission Pinch Analysis for the Low-Carbon Tobacco Industry. Energies. 2022; 15(13):4611. https://doi.org/10.3390/en15134611
Chicago/Turabian StyleZhang, Yang, Hekun Wang, Taomeizi Zhou, Zhiwei Li, and Xiaoping Jia. 2022. "Extended Carbon Emission Pinch Analysis for the Low-Carbon Tobacco Industry" Energies 15, no. 13: 4611. https://doi.org/10.3390/en15134611
APA StyleZhang, Y., Wang, H., Zhou, T., Li, Z., & Jia, X. (2022). Extended Carbon Emission Pinch Analysis for the Low-Carbon Tobacco Industry. Energies, 15(13), 4611. https://doi.org/10.3390/en15134611
        
                                                