# Optimization-Based Capacitor Balancing Method with Selective DC Current Ripple Reduction for CHB Converters

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Fundaments and Strategy

#### 2.1. DC-Link Independent Voltage Control

#### 2.2. Active Power Control and Ripple Reduction

#### 2.3. Complete Linear Optimization Problem

## 3. Materials and Methods

#### 3.1. Materials

#### 3.2. Methods

#### 3.2.1. Proposed Method

- Obtain ${B}_{Akj}$ and ${B}_{Bkj}$ as in Equations (11) and (12), respectively.
- Obtain ${U}_{kj}{}^{*}$ as in Equation (5).
- Obtain ${U}_{Tk}{}^{\prime}$ as in Equation (14).
- Obtain ${U}_{Akj}$ and ${U}_{Bkj}$ by solving the LOP in Equation (16).
- Obtain ${U}_{kj}$ as in Equation (6).

#### 3.2.2. State-of-the-Art-Method

- Select the common-mode voltage.
- Distribute each phase voltage reference among the modules of that phase.

## 4. Tests and Results

#### 4.1. Permanent State

#### 4.2. Response upon a Step Reference

#### 4.3. Effect of the Voltage Gains

#### 4.4. Ripple Reduction

## 5. Discussions and Conclusions

- It can consider different voltage set points for each module, which is useful for maximum power point tracking (MPPT) on photovoltaic applications.
- It can consider power set points for some or all modules. These work better than voltage set points on modules connected to batteries, whose voltage is approximately constant with their energy.
- It can reduce the DC current ripple on some modules. On modules with ultra-capacitors, this can extend the life of the ultra-capacitors.
- It can consider different priorities on some modules, making it more adaptable to converters where modules have different applications.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Acknowledgments

## Conflicts of Interest

## Nomenclature

Variables Notation, Meaning, and Introduction | ||

Symbol | Meaning | Definition |

${B}_{Akj}$ | Global benefit of increasing ${U}_{Akj}$ towards the total objective function | (11) |

${B}_{Bkj}$ | Global benefit of increasing ${U}_{Bkj}$ towards the total objective function | (12) |

${B}_{PAkj}$ | Benefit of increasing ${U}_{Akj}$ towards the power and ripple objective function | (8) |

${B}_{PBkj}$ | Benefit of increasing ${U}_{Bkj}$ towards the power and ripple objective function | (9) |

${B}_{Vkj}$ | Benefit of increasing ${U}_{kj}$ towards the voltage objective | (4) |

${C}_{kj}$ | DC-Link capacity of the k-th phase j-th module | Figure 1 |

$f$ | Global objective function | (10) |

${f}_{P}$ | Objective function for the power regulation and ripple reduction alone | (7) |

${F}_{V}$ | Function to measure the (pondered) quadratic DC-Link voltage deviation | (1) |

${f}_{V}$ | Objective function for DC-Link voltage regulation alone | (3) |

${G}_{Pkj}$ | Power and ripple gain for the k-th phase j-th module | (8) and (9) |

${G}_{Vkj}$ | Voltage regulation gain for the k-th phase j-th module | (1) |

${i}_{\alpha}{i}_{\beta}$ | Power-invariant α and β components of the phase currents ^{2} (^{2} The sign criteria from Figure 1 is selected for the voltages and currents there defined.) | |

${i}_{d}{i}_{q}$ | Power-invariant d and q components of the phase currents ^{2} (^{2} The sign criteria from Figure 1 is selected for the voltages and currents there defined.) | |

${i}_{k}$ | Current of the k-th phase ^{2} (^{2} The sign criteria from Figure 1 is selected for the voltages and currents there defined.) | Figure 1 |

$j$ | Subscript ^{1} indicating the module inside the phase, $j\in \left\{1,2,3\dots N\right\}$ (^{1} Subscripts other than $j$ and $k$ do not represent any numerical values.) | |

$k$ | Subscript ^{1} indicating the phase, $k\in \left\{1,2,3\right\}$ (^{1} Subscripts other than $j$ and $k$ do not represent any numerical values.) | |

$L$ | Phase inductance | Figure 1 |

$N$ | Number of modules on each phase | |

${p}_{k}^{*}$ | Balance power reference for the k-th phase ^{3} (^{3} ${p}_{k}^{*}$ and ${v}_{0}$ belong to the method from [28] and are introduced on Section 3.2.2.) | |

${P}_{kj}$ | Actual active power received by the k-th phase j-th module | |

${P}_{kj}{}^{*}$ | Desired active power received by the k-th phase j-th module | |

${U}_{Akj}$ | Positive output voltage deviation of the k-th phase j-th module from ${U}_{kj}{}^{*}$ | (6) |

${U}_{Bkj}$ | Negative output voltage deviation of the k-th phase j-th module from ${U}_{kj}{}^{*}$ | (6) |

${U}_{kj}$ | Voltage output selected for the k-th phase j-th module ^{2} (^{2} The sign criteria from Figure 1 is selected for the voltages and currents there defined.) | Figure 1 |

${U}_{kj}{}^{*}$ | Voltage output for the k-th phase j-th corresponding to its desired power | (5) |

${U}_{Tk}{}^{*}$ | Total voltage reference for the k-th phase given by the current regulator | |

${U}_{Tk}{}^{\u2019}$ | ${U}_{Tk}{}^{*}$ after discounting the voltage corresponding to the desired power | (14) |

${v}_{0}$ | Zero-sequence voltage ^{3} (^{3} ${p}_{k}^{*}$ and ${v}_{0}$ belong to the method from [28] and are introduced on Section 3.2.2.) | (17) |

${V}_{Gk}$ | Voltage ^{2} of the grid k-th phase (^{2} The sign criteria from Figure 1 is selected for the voltages and currents there defined.) | Figure 1 |

${V}_{kj}$ | Actual DC-Link voltage of the k-th phase j-th module | Figure 1 |

${V}_{kj}{}^{*}$ | Desired DC-Link voltage of the k-th phase j-th module |

## References

- Franquelo, L.G.; Rodriguez, J.; Leon, J.I.; Kouro, S.; Portillo, R.; Prats, M.A.M. The age of multilevel converters arrives. IEEE Ind. Electron. Mag.
**2008**, 2, 28–39. [Google Scholar] [CrossRef] [Green Version] - Yu, Y.; Konstantinou, G.; Hredzak, B.; Agelidis, V.G. Power balance of cascaded H-bridge multilevel converters for large-scale photovoltaic integration. IEEE Trans. Power Electron.
**2016**, 31, 292–303. [Google Scholar] [CrossRef] [Green Version] - Xiong, L.; Gui, Y.; Liu, H.; Yang, W.; Gong, J. A hybrid CHB multilevel inverter with supercapacitor energy storage for grid-connected photovoltaic systems. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 3195–3199. [Google Scholar] [CrossRef]
- Tafti, H.D.; Maswood, A.I.; Konstantinou, G.; Townsend, C.D.; Acuna, P.; Pou, J. Flexible control of photovoltaic grid-connected cascaded H-bridge converters during unbalanced voltage sags. IEEE Trans. Ind. Electron.
**2018**, 65, 6229–6238. [Google Scholar] [CrossRef] - Yu, Y.; Konstantinou, G.; Townsend, C.; Aguilera, R.P.; Agelidis, V.G. Delta-connected cascaded H-bridge multilevel converters for large-scale photovoltaic grid integration. IEEE Trans. Ind. Electron.
**2017**, 64, 8877–8886. [Google Scholar] [CrossRef] [Green Version] - Kumar, T.S.; Shanrnugam, J. Design and anlaysis of CHB inverter by using Pi fuzzy and ANN techniques with grid connected PV System. In Proceedings of the 2020 IEEE International Conference for Innovation in Technology (INOCON), Bangluru, India, 6–8 November 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Gomez-Merchan, R.; Vazquez, S.; Alcaide, A.M.; Tafti, H.D.; Leon, J.I.; Pou, J.; Rojas, C.A.; Kouro, S.; Franquelo, L.G. Binary search based flexible power point tracking algorithm for photovoltaic systems. IEEE Trans. Ind. Electron.
**2021**, 68, 5909–5920. [Google Scholar] [CrossRef] - Romero-Cadaval, E.; Spagnuolo, G.; Franquelo, L.G.; Ramos-Paja, C.A.; Suntio, T.; Xiao, W. Grid-connected photovoltaic generation plants: Components and operation. IEEE Ind. Electron. Mag.
**2013**, 7, 6–20. [Google Scholar] [CrossRef] [Green Version] - Nasiri, M.R.; Farhangi, S.; Rodriguez, J. Model predictive control of a multilevel CHB STATCOM in wind farm application using diophantine equations. IEEE Trans. Ind. Electron.
**2019**, 66, 1213–1223. [Google Scholar] [CrossRef] - Rodriguez, E.; Farivar, G.G.; Beniwal, N.; Townsend, C.D.; Tafti, H.D.; Vazquez, S.; Pou, J. Closed-loop analytic filtering scheme of capacitor voltage ripple in multilevel cascaded H-bridge converters. IEEE Trans. Power Electron.
**2020**, 35, 8819–8832. [Google Scholar] [CrossRef] - Ge, X.; Gao, F. Flexible third harmonic voltage control of low capacitance cascaded H-bridge STATCOM. IEEE Trans. Power Electron.
**2018**, 33, 1884–1889. [Google Scholar] [CrossRef] - Neyshabouri, Y.; Chaudhary, S.K.; Teodorescu, R.; Sajadi, R.; Iman-Eini, H. Improving the reactive current compensation capability of cascaded H-bridge based STATCOM under unbalanced grid voltage. IEEE J. Emerg. Sel. Top. Power Electron.
**2020**, 8, 1466–1476. [Google Scholar] [CrossRef] - Sajadi, R.; Iman-Eini, H.; Bakhshizadeh, M.K.; Neyshabouri, Y.; Farhangi, S. Selective harmonic elimination technique with control of capacitive DC-link voltages in an asymmetric cascaded H-bridge inverter for STATCOM application. IEEE Trans. Ind. Electron.
**2018**, 65, 8788–8796. [Google Scholar] [CrossRef] [Green Version] - Marzoughi, A.; Neyshabouri, Y.; Imaneini, H. Control scheme for cascaded H-bridge converter-based distribution network static compensator. IET Power Electron.
**2014**, 7, 2837–2845. [Google Scholar] [CrossRef] - Qiu, W.; Zheng, Z.; Guo, M.; Chen, Z. An interconnection strategy for flexible arc-suppression device based on cascaded H-bridge converter in distribution network. In Proceedings of the 2018 China International Conference on Electricity Distribution (CICED), Tianjin, China, 17–19 September 2018; pp. 233–237. [Google Scholar] [CrossRef]
- Raveendran, V.; Andresen, M.; Buticchi, G.; Liserre, M.G. Thermal stress based power routing of smart transformer with CHB and DAB converters. IEEE Trans. Power Electron.
**2020**, 35, 4205–4215. [Google Scholar] [CrossRef] - Marquez, A.; Leon, J.I.; Monopoli, V.G.; Vazquez, S.; Liserre, M.; Franquelo, L.G. Generalized harmonic control for CHB converters with unbalanced cells operation. IEEE Trans. Ind. Electron.
**2020**, 67, 9039–9047. [Google Scholar] [CrossRef] - Alcaide, A.M.; Leon, J.I.; Portillo, R.; Yin, J.; Luo, W.; Vazquez, S.; Kouro, S.; Franquelo, L.G. Variable-Angle PS-PWM Technique for multilevel cascaded H-bridge converters with large number of power cells. IEEE Trans. Ind. Electron.
**2021**, 68, 6773–6783. [Google Scholar] [CrossRef] - Leon, J.I.; Dominguez, E.; Wu, L.; Alcaide, A.M.; Reyes, M.; Liu, J. Hybrid energy storage systems: Concepts, advantages, and applications. IEEE Ind. Electron. Mag.
**2021**, 15, 74–88. [Google Scholar] [CrossRef] - Monopoli, V.G.; Alcaide, A.M.; Leon, J.I.; Liserre, M.; Buticchi, G.; Franquelo, L.G.; Vazquez, S. Applications and modulation methods for modular converters enabling unequal cell power sharing: Carrier variable-angle phase-displacement modulation methods. IEEE Ind. Electron. Mag.
**2021**, 2–13. [Google Scholar] [CrossRef] - Liu, Y.; Huang, A.Q.; Song, W.; Bhattacharya, S.; Tan, G. Small-signal model-based control strategy for balancing individual DC capacitor voltages in cascaded multilevel inverter-based STATCOM. IEEE Trans. Ind. Electron.
**2009**, 56, 2259–2269. [Google Scholar] [CrossRef] - Lizana, R.; Perez, M.A.; Arancibia, D.; Espinoza, J.R.; Rodriguez, J. Decoupled current model and control of modular multilevel converters. IEEE Trans. Ind. Electron.
**2015**, 62, 5382–5392. [Google Scholar] [CrossRef] - Ayob, S.M.; Salam, Z.; Jusoh, A. Trapezoidal PWM scheme for cascaded multilevel inverter. In Proceedings of the IEEE International Power Energy Conference, Putra Jaya, Malaysia, 28–29 November 2006; pp. 368–372. [Google Scholar]
- Ye, M.; Ren, W.; Chen, L.; Wei, Q.; Song, G.; Li, S. Research on power-balance control strategy of CHB multilevel inverter based on TPWM. IEEE Access
**2019**, 7, 157226–157240. [Google Scholar] [CrossRef] - Sreenivasarao, D.; Agarwal, P.; Das, B. Performance evaluation of carrier rotation strategy in level-shifted pulse-width modulation technique. IET Power Electron.
**2014**, 7, 667–680. [Google Scholar] [CrossRef] - Angulo, M.; Lezana, P.; Kouro, S. Level-shifted PWM for cascaded multilevel inverters with even power distribution. In Proceedings of the IEEE Power Electronics Specialists Confefeence (PESC), Orlando, FL, USA, 17–21 June 2007; pp. 2373–2378. [Google Scholar]
- Hu, Y.; Zhang, X.; Mao, W.; Zhao, T.; Wang, F.; Dai, Z. An optimized third harmonic injection method for reducing DC-link voltage fluctuation and alleviating power imbalance of three-phase cascaded H-bridge photovoltaic inverter. IEEE Trans. Ind. Electron.
**2020**, 67, 2488–2498. [Google Scholar] [CrossRef] - Aguilera, R.P.; Acuna, P.; Rojas, C.A.; Konstantinou, G.; Pou, J. Instantaneous zero sequence voltage for grid energy balancing under unbalanced power generation. In Proceedings of the 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019; pp. 2572–2577. [Google Scholar] [CrossRef]
- Townsend, C.D.; Summers, T.J.; Betz, R.E. Control and modulation scheme for a Cascaded H-Bridge multi-level converter in large scale photovoltaic systems. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; pp. 3707–3714. [Google Scholar] [CrossRef]
- Qi, C.; Chen, X.; Tu, P.; Wang, P. Cell-by-cell-based finite-control-set model predictive control for a single-phase cascaded H-bridge rectifier. IEEE Trans. Power Electron.
**2018**, 33, 1654–1655. [Google Scholar] [CrossRef] - Galván, L.; Galván, E.; Carrasco, J.M. Optimal modulation method for DC-link control in cascaded H-bridge multilevel converters. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; pp. 5763–5768. [Google Scholar] [CrossRef]
- Gómez, P.J.; Galván, L.; Galván, E.; Carrasco, J.M. Energy storage systems current ripple reduction for DC-link balancing method in hybrid CHB topology. In Proceedings of the IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020; pp. 1808–1813. [Google Scholar] [CrossRef]
- Montero-Robina, P.; Marquez, A.; Dahidah, M.; Vazquez, S.; Leon, J.I.; Konstantinou, G.G.; Franquelo, L.G. Feedforward modulation technique for more accurate operation of modular multilevel converters. IEEE Trans. Power Electron.
**2022**, 37, 1700–1710. [Google Scholar] [CrossRef]

**Figure 1.**Scheme of the CHB topology. The figure also shows the nomenclature considered in this paper, including the sign criteria and the ordering of the subscripts.

**Figure 3.**General control scheme. The proposed method as well as the state-of-the-art alternative belong in the modulation layer.

**Figure 5.**DC-Link voltage ripple: (

**a**) proposed method; (

**b**) state-of-the-art alternative. The plots show voltage (25 V/div) vs. time (10 ms/div).

**Figure 6.**Modules output: (

**a**) proposed method; (

**b**) state-of-the-art alternative. The plots show 2.5 grid periods.

**Figure 7.**DC-Link voltage dynamics upon set point swap at 5 kVAr: (

**a**) proposed method; (

**b**) state-of-the-art alternative. The plots show voltage (25 V/div) vs. time (50 ms/div).

**Figure 8.**DC-Link voltage dynamics upon set point swap at 9 kVAr: (

**a**) proposed method; (

**b**) state-of-the-art alternative. The plots show voltage (25 V/div) vs. time (20 ms/div).

**Figure 9.**DC-Link voltage dynamics upon set point swap at 1 kVAr: (

**a**) proposed method; (

**b**) state-of-the-art alternative. The plots show voltage (25 V/div) vs. time (100 ms/div).

**Figure 10.**DC-Link voltage dynamics upon a reference step with different voltage gains: (

**a**) gain by phase; (

**b**) gain by module. The plots show voltage (25 V/div) vs. time (50 ms/div).

**Figure 11.**Modules DC-Link voltage when reducing ripple. The plot shows voltage (25 V/div) vs. time (50 ms/div).

Parameter | Value | Parameter | Value |
---|---|---|---|

Nominal phase-to-phase voltage | 400 V | Type of transistors | IGBT |

Nominal RMS phase current | 30 A | Maximum DC-Link voltage | 800 V |

Phase inductance (L) | 6 mH | DC-Link capacitance (C_{kj}) ^{1} | 4.1 mF |

Control frequency | 4 kHz | Modulation carrier frequency | 2 kHz |

^{1}All DC-Links have the same capacitance.

Module | Phase 1 | Phase 2 | Phase 3 |
---|---|---|---|

First | Yellow | Green | Purple |

Second | Blue | Red | Orange |

Method | Phase | Harmonic Amplitude (%) | THD (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|

2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | |||

Proposed method | 1st | 1.0 | 1.1 | 0.8 | 2.7 | 0.4 | 1.4 | 0.3 | 0.2 | 0.2 | 0.5 | 3.6 |

2nd | 1.1 | 1.0 | 0.9 | 2.1 | 0.4 | 1.6 | 0.3 | 0.2 | 0.2 | 0.5 | 3.4 | |

3rd | 0.9 | 1.2 | 0.8 | 2.7 | 0.3 | 1.5 | 0.2 | 0.2 | 0.2 | 0.4 | 3.6 | |

State-of-the-art alternative | 1st | 1.0 | 1.0 | 0.8 | 3.0 | 0.4 | 0.9 | 0.3 | 0.2 | 0.2 | 0.3 | 3.6 |

2nd | 1.1 | 1.0 | 0.7 | 2.8 | 0.4 | 1.1 | 0.3 | 0.2 | 0.2 | 0.4 | 3.5 | |

3rd | 0.8 | 0.9 | 0.7 | 2.8 | 0.4 | 1.0 | 0.2 | 0.2 | 0.2 | 0.2 | 3.4 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Galván, L.; Gómez, P.J.; Galván, E.; Carrasco, J.M.
Optimization-Based Capacitor Balancing Method with Selective DC Current Ripple Reduction for CHB Converters. *Energies* **2022**, *15*, 243.
https://doi.org/10.3390/en15010243

**AMA Style**

Galván L, Gómez PJ, Galván E, Carrasco JM.
Optimization-Based Capacitor Balancing Method with Selective DC Current Ripple Reduction for CHB Converters. *Energies*. 2022; 15(1):243.
https://doi.org/10.3390/en15010243

**Chicago/Turabian Style**

Galván, Luis, Pablo Jesús Gómez, Eduardo Galván, and Juan Manuel Carrasco.
2022. "Optimization-Based Capacitor Balancing Method with Selective DC Current Ripple Reduction for CHB Converters" *Energies* 15, no. 1: 243.
https://doi.org/10.3390/en15010243