The Performance Assessment of Six Global Horizontal Irradiance Clear Sky Models in Six Climatological Regions in South Africa
Abstract
:1. Introduction
2. Description of the Six Models in This Study
2.1. McClear Clear Sky Model
2.2. Berger–Duffie Clear Sky Model
2.3. Haurwitz Clear Sky Model
2.4. Ineichen–Perez Clear Sky Model
2.5. Bird Clear Sky Model
2.6. Simple Solis Model
3. Materials and Methods
3.1. Data
3.1.1. Observation Data
3.1.2. Surface Albedo Data
3.1.3. Cloud Data
3.1.4. Atmospheric Ozone
3.1.5. Linke Turbidity
3.1.6. Aerosol Optical Depth
- is the optical thickness at an unknown wavelength (, and ).
- is the optical thickness at the known wavelength ( or ).
- is the wavelength of the unknown AOD (, and ).
- is the wavelength of the known AOD ( or ).
- is the angstrom or alpha exponent of the aerosol and it is related to the size distribution of the particles.
3.1.7. Water Vapor
3.1.8. Solar Geometry
3.1.9. Extra-Terrestrial Solar Irradiance
3.2. Methodology
4. Results and Discussions
4.1. Clear Sky Detection
4.2. Validation Results
4.3. Validation and Comparison of the Results with Other Literature
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Abbreviation | Full Description | Units |
BSRN | Baseline Solar Radiation Network | |
SPA | Solar Position Algorithm | |
CAMS | Copernicus Atmosphere Monitoring Service | |
SoDa | Solar Radiation Data | |
CM SAF | Satellite Application Facility on Climate Monitoring | |
ECMWF | European Centre for Medium-Range Weather Forecasts | |
EUMETSAT | European Organization for the Exploitation of Meteorological Satellites | |
NOAA | National Oceanic and Atmospheric Administration | |
GOME | Global Ozone Monitoring Experiment | |
AVHRR | Advanced Very High-Resolution Radiometer | |
RTM | Radiative Transfer Modelling | |
Enhanced Top of the atmosphere Direct Normal Irradiance | W/m2 | |
Solar zenith angle | Degrees | |
Solar altitude | Degrees | |
Degrees of latitude | Degrees | |
δ | Solar declination | Degrees |
ω | Hour angle | Degrees |
ST | Solar Time | Minutes |
STD | Local standard time | Minutes |
Standard meridian for local time zone | ||
E | Equation of time | Minutes |
Solar constant | W/m2 | |
Middle distance of Earth from the Sun | Kilometres (km) | |
Instantaneous distance of the Earth from the Sun | Kilometres (km) | |
Eccentricity factor | ||
D | Day of the year | |
Relative air mass | ||
Absolute relative air mass | ||
Clearness index threshold | ||
Kasten model’s altitude coefficients | ||
Coefficients that relate the site altitude with the altitude of the atmospheric interactions | ||
h | Altitude of the site | Metres (m) |
Transmittance after aerosol absorptance and scattering | ||
Transmittance after ozone absorptance in the stratosphere | ||
Transmittance after water vapor absorptance | ||
Transmittance after absorptance by uniformly mixed gases | ||
Transmittance after Rayleigh scattering | ||
Ground albedo | ||
Sky albedo | ||
Transmittance of aerosol scattering | ||
Transmittance of aerosol absorbance | ||
Asymmetric factor or the forward scattering ratio | ||
Total atmospheric optical depth | ||
b | Constant of adjustment for Direct Normal Irradiance | |
Global Horizontal Irradiance total optical depth | ||
Global Horizontal Irradiance fitting parameter | ||
AOD | Aerosol optical depth | |
Aerosol optical depth at 380 nanometres | ||
Aerosol optical depth at 500 nanometres | ||
Aerosol optical depth at 550 nanometres | ||
Aerosol optical depth at 700 nanometres | ||
Aerosol optical depth at 1240 nanometres | ||
Optical thickness at unknown wavelength | ||
Optical thickness at known wavelength | ||
Wavelength of the unknown aerosol optical depth | Angstrom | |
Wavelength of the known aerosol optical depth | Angstrom | |
Angstrom of the aerosol | nanometres (nm) | |
Precipitable water or water vapour | Centimetres (cm) | |
Apparent water vapor scale height | Kilometres (km) | |
Surface water vapor density | . | |
T | Temperature | Degrees Celsius ( |
RH | Relative Humidity | Percentage (%) |
p | Surface pressure | Pascals (Pa) |
TL | Linke Turbidity factor | |
Atmospheric ozone | Dobson units |
References
- Polo, J.; Martín-Pomares, L.; Gueymard, C.A.; Balenzategui, J.L.; Fabero, F.; Silva, J.P. Fundamentals: Quantities, Definitions, and Units. In Solar Resource Mapping—Fundamentals and Applications; Green Energy and Technology; Polo, J., Martín-Pomares, L., Sanfilippo, A., Eds.; Springer: Zurich, Switzerland, 2019; pp. 1–14. [Google Scholar] [CrossRef]
- Reno, M.J.; Hansen, C.W.; Stein, J.S. Global Horizontal Irradiance Clear Sky Models: Implementation and Analysis; SAND2012-2389; Sandia National Laboratories: Albuquerque, NM, USA; Livermore, CA, USA, 2012; Available online: https://scholar.google.com/scholar?q=related:NRwgbk5tC6sJ:scholar.google.com/&scioq=&hl=en&as_sdt=0,5 (accessed on 23 June 2020).
- Gairaa, K.; Benkaciali, S.; Guermoui, M. Clear-sky models evaluation of two sites over Algeria for PV forecasting purpose. Eur. Phys. J. Plus 2019, 134, 534. [Google Scholar] [CrossRef]
- Sun, X.; Bright, J.M.; Gueymard, C.A.; Acord, B.; Wang, P.; Engerer, N.A. Worldwide performance assessment of 75 global clear sky irradiance models using Principal Component Analysis. Renew. Sustain. Energy Rev. 2019, 111, 550–570. [Google Scholar] [CrossRef]
- Engerer, N.A.; Mills, F.P. Validating nine clear sky radiation models in Australia. Sol. Energy 2015, 120, 9–24. [Google Scholar] [CrossRef]
- Dazhia, Y.; Jirutitijaroena, P.; Walshb, W.M. The Estimation of Clear Sky Global Horizontal Irradiance at the Equator. Energy Procedia 2012, 25, 141–148. [Google Scholar] [CrossRef][Green Version]
- Antonanzas-Torres, F.; Urraca, R.; Polo, J.; Perpiñán-Lamigueiro, O.; Escobar, R. Clear sky solar irradiance models: A review of seventy models. Renew. Sustain. Energy Rev. 2019, 107, 374–387. [Google Scholar] [CrossRef]
- Badescu, V.; Gueymard, C.A.; Cheval, S.; Oprea, C.; Baciu, M.; Dumitrescu, A.; Iacobescu, F.; Milos, I.; Rada, C. Accuracy analysis for fifty-four clear-sky solar radiation models using routine hourly global irradiance measurements in Romania. Renew. Energy 2013, 55, 85–103. [Google Scholar] [CrossRef]
- Mikofski, M.M.; Hansen, C.W.; Holmgren, W.F.; Kimbal, G.M. Use of measured aerosol optical depth and precipitable water to model clear sky irradiance. In Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, USA, 25–30 June 2017; pp. 110–116. Available online: https://ieeexplore.ieee.org/abstract/document/8366314 (accessed on 15 June 2020).
- Laguarda, A.; Abal, G. Clear-sky broadband irradiance: First model assessment in Uruguay. In Proceedings of the Publicado en las Actas del ISES Solar World Congress, Abu Dabi, United Arab Emirates, 10 July 2017; Available online: https://www.colibri.udelar.edu.uy/jspui/handle/20.500.12008/21620?mode=full (accessed on 16 September 2020). [CrossRef]
- Fourie, C.H.; Winkler, H.; Roro, K. Modelling atmospheric radiative transfer conditions and its comparison to empirical solar irradiance in South Africa. In Proceedings of the South African Solar Energy Conference (SASEC), Mpekweni Beach Resort, Eastern Cape Province, South Africa, 25–27 November 2019; Available online: https://www.sasec.org.za/papers2019/7.pdf (accessed on 25 February 2020).
- Martín-Pomares, L.; Romeo, M.G.; Polo, J.; Frías-Paredes, L.; Fernández-Peruchena, C. Sampling Design Optimization of Ground Radiometric Stations. In Solar Resources Mapping. Green Energy and Technology; Springer: Cham, Switzerland, 2019; pp. 253–281. [Google Scholar] [CrossRef]
- Masoom, A.; Kashap, Y.; Bansal, A. Solar Radiation Assessemnt and Forecasting Using Satellite Data; Tyagi, H., Agarwal, A.K., Chakraborty, P.R., Powar, S., Eds.; Springer: Singapore, 2019; pp. 45–71. [Google Scholar] [CrossRef]
- Dev, S.; Manandhar, S.; Lee, Y.H.; Winkler, S. Study of clear sky models for Singapore. In Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL); Singapore. 2017, pp. 1418–1420. Available online: https://ieeexplore.ieee.org/abstract/document/8293352 (accessed on 1 November 2020).
- Lefèvre, M.; Oumbe, A.; Blanc, P.; Espinar, B.; Gschwind, B.; Qu, Z.; Wald, L.; Schroedter-Homscheidt, M.; Hoyer-Klick, C.; Arola, A.; et al. Mcclear: A new model estimating downwelling solar radiation at ground level in clear-sky conditions. Atmos. Meas. Tech. 2013, 6, 2403–2418. Available online: www.atmos-meas-tech.net/6/2403/2013/doi:10.5194/amt-6-2403-2013 (accessed on 14 July 2020). [CrossRef][Green Version]
- Ineichen, P. Comparison of eight clear sky broadband models against 16 independent data banks. Sol. Energy 2006, 80, 468–478. [Google Scholar] [CrossRef][Green Version]
- Bird, R.E.; Hulstrom, R.L. Simplified Clear Sky Model for Direct and Diffuse Insolation on Horizontal Surfaces; No. SERI/TR-642-761; Solar Energy Research Inst.: Golden, CO, USA, 1981. [Google Scholar]
- Daryl, R.M. Solar Radiation, Practical Modeling for Renewable Energy Applications. Energy and the Environment; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteor. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Reno, M.J.; Hansen, C.W. Identification of periods of clear sky irradiance in time series of GHI measurements. Renew. Energy 2016, 90, 520–531. [Google Scholar] [CrossRef][Green Version]
- Zhandire, E. Predicting clear-sky global horizontal irradiance at eight locations in South Africa using four models. J. Energy S. Afr. 2017, 28, 77–86. [Google Scholar] [CrossRef]
- Patel, S.S.; Rix, A.J. Water surface albedo modelling for floating photovoltaic plants. In Proceedings of the South African Solar Energy Conference (SASEC), Mpekweni Beach Resort, Eastern Cape Province, South Africa, 25–27 November 2019; Available online: https://www.sasec.org.za/papers2019/8.pdf (accessed on 27 February 2020).
- Javu, L.; Winkler, H.; Roro, K. Validating clear-sky irradiance models in five South African locations. In Proceedings of the South African Solar Energy Conference (SASEC), Mpekweni Beach Resort, Eastern Cape Province, South Africa, 25–27 November 2019; Available online: https://www.sasec.org.za/papers2019/6.pdf (accessed on 15 February 2020).
- Mueller, R.; Dagestad, K.; Ineichen, P.; Schroedter-Homscheidt, M.; Cros, S.; Dumortier, D.; Kuhlemann, R.; Olseth, J.; Piernavieja, G.; Resie, C.; et al. Rethinking satellite based solar irradiance modelling. The SOLIS clear-sky module. Remote Sens. Environ. 2004, 91, 160–174. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0034425704000690 (accessed on 27 September 2020). [CrossRef]
- Ineichen, P. A broadband simplified version of the Solis clear sky model. Sol. Energy 2008, 82, 758–762. [Google Scholar] [CrossRef][Green Version]
- Ineichen, P.; Perez, R. A new airmass independent formulation for the Linke turbidity coefficient. Sol. Energy 2002, 73, 151–157. [Google Scholar] [CrossRef][Green Version]
- Perez, R.; Ineichen, P.; Moore, K.; Kmiecik, M.; George, R.; Vignola, F. A new operational model for satellite-derived irradiances: Description and validation. Sol. Energy 2002, 73, 307–317. [Google Scholar] [CrossRef][Green Version]
- Haurwitz, B. Insolation in relation to cloudiness and cloud density. J. Meteorol. 1945, 2, 154–166. [Google Scholar] [CrossRef]
- Haurwitz, B. Isolation in relation to cloud type. J. Meteorol. 1948, 5, 110–113. [Google Scholar] [CrossRef][Green Version]
- Berger, X. Etude du Climat en Region Nicoise en vue d’Applications a l’Habitat Solaire; CNRS: Paris, France, 1979. [Google Scholar]
- Solar Radiation Data (SoDa) Service. Available online: http://www.soda-pro.com/web-services (accessed on 2 March 2020).
- Copernicus Portal. Available online: https://atmosphere.copernicus.eu/data (accessed on 16 March 2020).
- Gschwind, B.; Wald, L.; Blanc, P.; Lefèvre, M.; Schroedter-Homscheidt, M.; Arola, A. Improving the McClear model estimating the downwelling solar radiation at ground level in cloud-free conditions–McClear-v3. Meteorol. Z. 2019, 28, 147–163. [Google Scholar] [CrossRef]
- Ineichen, P. Quatre Années de Mesures D’ensoleillement à Genève. Ph.D. Thesis, University of Geneva, Geneva, Switzerland, 1983. [Google Scholar] [CrossRef]
- Kasten, F. Parametrisierung der Globalstrahlung durch Bedeckungsgrad und Truebungsfaktor. In Proceedings of the Deutsche Meteorologen-Tagung 1983, Bad Kissingen, Germany, 16–19 May 1983; pp. 49–50. Available online: https://ci.nii.ac.jp/naid/10021899342/ (accessed on 11 June 2020).
- Mabasa, B.; Lysko, M.D.; Tazvinga, H.; Mulaudzi, S.T.; Zwane, N.; Moloi, S.J. The Ångström–Prescott Regression Coefficients for Six Climatic Zones in South Africa. Energies 2020, 13, 5418. [Google Scholar] [CrossRef]
- Karlsson, K.; Anttila, K.; Trentmann, J.; Stengel, M.; Meirink, J.F.; Devasthale, A.; Hanschmann, T.; Kothe, S.; Jääskeläinen, E.; Sedlar, J.; et al. CLARA-A2.1: CM SAF cLoud, Albedo and Surface RAdiation Dataset from AVHRR Data—Edition 2.1; Satellite Application Facility on Climate Monitoring (CM-SAF): Offenbach, Germany, 2020. [Google Scholar] [CrossRef]
- Frederick, J.E. Ozone Depletion and Related Topic, Ozone as a UV Filter; Elsevier: Amsterdam, The Netherlands, 2015; pp. 359–363. [Google Scholar]
- SODA Portal. Available online: http://www.soda-pro.com/web-services/atmosphere/linke-turbidity-factor-ozone-water-vapor-and-angstroembeta (accessed on 21 April 2020).
- Diabate, L.; Remund, J.; Wald, L. Linke turbidity factors for several sites in Africa. Sol. Energy 2003, 75, 111–119. [Google Scholar] [CrossRef][Green Version]
- SODA Portal. Available online: http://www.soda-pro.com/web-services/atmosphere/cams-aod (accessed on 21 February 2020).
- Ångström, A. On the Atmospheric Transmission of Sun Radiation and on Dust in the Air. Geogr. Ann. 1929, 11, 156–166. [Google Scholar] [CrossRef]
- Ångström, A. Techniques of Determinig the Turbidity of the Atmosphere. Tellus 1961, 13, 214–223. [Google Scholar] [CrossRef][Green Version]
- Keogh, W.M.; Blakers, A.W. Accurate measurement, using natural sunlight, of silicon solar cells. Prog. Photovolt. Res. Appl. 2004, 12, 1–19. [Google Scholar] [CrossRef]
- Gueymard, C. Analysis of monthly average atmospheric precipitable water and turbidity in Canada and northern United States. Sol. Energy 1994, 53, 57–71. [Google Scholar] [CrossRef]
- Gueymard, C. Assessment of the accuracy and computing speed of simplified saturation vapour equations using a new ref-erence dataset. J. Appl. Meteorol. 1993, 32, 1294–1300. [Google Scholar] [CrossRef][Green Version]
- Reda, I.; Andreas, A. Solar position algorithm for solar radiation applications. Sol. Energy 2004, 76, 577–589. [Google Scholar] [CrossRef]
- Holmgren, W.F.; Hansen, C.; Mikofski, M. Pvlib python: A python package for modeling solar energy systems. J. Open Source Softw. 2018, 3, 884. [Google Scholar] [CrossRef][Green Version]
- Iqbal, M. An Introduction to Solar Radiation; Academic Press: Toronto, ON, Canada, 1983. [Google Scholar]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1980; pp. 6–13. [Google Scholar]
- Cooper, P.I. The absorption of radiation in solar stills. Sol. Energy 1961, 12, 333–346. [Google Scholar] [CrossRef]
- Spencer, J.W. Fourier series reprensentation of the position of the sun. Search 1971, 2, 172. Available online: https://ci.nii.ac.jp/naid/10005108360/ (accessed on 2 April 2020).
- Kasten, F.; Young, A.T. Revised optical air mass tables and approximation formula. Appl. Opt. 1989, 28, 4735–4738. [Google Scholar] [CrossRef]
- Gueymard, C.A. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol. Energy 2004, 76, 423–453. [Google Scholar] [CrossRef]
- Long, C.N.; Dutton, E.G. BSRN Global Network Recommended QC Tests, V2. 2010. Available online: https://epic.awi.de/30083/1/BSRN_recommended_QC_tests_V2.pdf (accessed on 11 December 2019).
- Driemel, A.; Augustine, J.; Behrens, K.; Colle, S.; Cox, C.; Cuevas-Agulló, E.; Denn, F.M.; Duprat, T.; Fukuda, M.; Grobe, H.; et al. Baseline Surface Radiation Network (BSRN): Structure and data description (1992–2017). Earth Syst. Sci. Data 2018, 10, 1491–1501. [Google Scholar] [CrossRef][Green Version]
- Maupin, K.A.; Swiler, L.P.; Porter, N.W. Validation Metrics for Deterministic and Probabilistic Data. J. Verificat. Valid. Uncertain. Quantif. 2018, 3, 031002. [Google Scholar] [CrossRef]
- Long, C.; Shi, Y. An automated quality assessment and control algorithm for surface radiation measurements. Open Atmos. Sci. J. 2008, 2, 23–37. Available online: https://openatmosphericsciencejournal.com/VOLUME/2/PAGE/23/FULLTEXT/ (accessed on 15 February 2020). [CrossRef][Green Version]
Input/Model | Bird | Simple Solis | Ineichen–Perez | McClear | Haurwitz | Berger–Duffie |
---|---|---|---|---|---|---|
Zenith Angle | X | X | X | X | X | X |
Albedo | X | - | - | X | - | - |
AOD1240nm | X | X | - | - | - | - |
AOD550nm | X | X | - | X | - | - |
AOD380nm | X | - | - | - | - | - |
AOD500nm | X | - | - | - | - | - |
AOD700nm | - | X | - | - | - | - |
Temperature | X | X | - | X | - | - |
Humidity | X | X | - | X | - | - |
X | X | X | X | - | X | |
D (Julian day) | X | X | X | X | X | X |
1367 (solar constant) | X | X | X | X (1362) | - | - |
Pressure | X | X | X | X | - | - |
Altitude | X | X | X | X | X | X |
Linke Turbidity | - | - | X | - | - | - |
Ozone | X | - | - | X | - | - |
Absolute airmass | - | - | X | - | - | - |
Relative airmass | X | - | X | - | - | - |
Apparent Elevation | - | X | - | - | - | - |
Asymmetry | X | - | - | - | - | - |
Total inputs | 16 | 13 | 9 | 12 | 3 | 4 |
Model Skill | rMBE | rRMSE | R2 |
---|---|---|---|
Poor | ≥| ± 10|% | ≥15% | ≤0.97 |
Average | ≥|±5|%, <|±10|% | ≥10%, <15% | >0.97, ≤0.98, |
Good | ≥|±2|%, < |±5|% | 0 ≥ 5%, <10% | >0.98, ≤0.99, |
Excellent | <| ± 2|% | <5% | >0.99 |
Station | Minimum rMBE | Minimum rRMSE | Maximum R2 |
---|---|---|---|
Cape Point | Berger-Duffie | McClear | McClear |
George | McClear | McClear | Bird |
De Aar | Simple Solis | Bird | Bird |
Bethlehem | Simple Solis | Simple Solis | Bird |
Upington | McClear | McClear | McClear |
Prieska | Bird | Bird | Bird |
Mthatha | Haurwitz | Bird | Bird |
Durban | Bird | Bird | Bird |
Mahikeng | Ineichen-Perez | Ineichen-Perez | McClear |
Irene | Simple Solis | Simple Solis | Bird |
Polokwane | Simple Solis | Bird | Bird |
Thohoyandou | Ineichen-Perez | Ineichen-Perez | McClear |
Nelspruit | Simple Solis | Bird | Bird |
Clear Sky Model | Number of Stations with Minimum rMBE | Number of Stations with Minimum rRMSE | Number of Stations with Maximum R2 |
---|---|---|---|
Berger-Duffie | 1 | 0 | 0 |
Bird | 2 | 6 | 9 |
McClear | 2 | 3 | 4 |
Haurwitz | 1 | 0 | 0 |
Ineichen-Perez | 2 | 2 | 0 |
Simple Solis | 5 | 2 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mabasa, B.; Lysko, M.D.; Tazvinga, H.; Zwane, N.; Moloi, S.J. The Performance Assessment of Six Global Horizontal Irradiance Clear Sky Models in Six Climatological Regions in South Africa. Energies 2021, 14, 2583. https://doi.org/10.3390/en14092583
Mabasa B, Lysko MD, Tazvinga H, Zwane N, Moloi SJ. The Performance Assessment of Six Global Horizontal Irradiance Clear Sky Models in Six Climatological Regions in South Africa. Energies. 2021; 14(9):2583. https://doi.org/10.3390/en14092583
Chicago/Turabian StyleMabasa, Brighton, Meena D. Lysko, Henerica Tazvinga, Nosipho Zwane, and Sabata J. Moloi. 2021. "The Performance Assessment of Six Global Horizontal Irradiance Clear Sky Models in Six Climatological Regions in South Africa" Energies 14, no. 9: 2583. https://doi.org/10.3390/en14092583