Blockchain Technology in Life Cycle Assessment—New Research Trends
Abstract
:1. Introduction
2. Blockchain
3. Life-Cycle Assessment
4. Life-Cycle Assessment Based on Blockchain Technology
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Commission Website. A European Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 8 October 2020).
- International Organization for Standardization Website. ISO 14001:2015. Environmental Management Systems—Requirements with Guidance for Use. Available online: https://www.iso.org/standard/60857.html (accessed on 8 October 2021).
- Hauschild, M.Z.; Rosenbaum, R.K.; Olsen, S.I. Life Cycle Assessment. In Theory and Practice; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Haes, H.A.; Van der Voet, E.; Wrisberg, M.N. Life Cycle Assessment, an Operational Guide to ISO Standards. Available online: https://www.nikkakyo.org/sites/default/files/ICCA_LCA_Executive_Guide_en_0.pdf (accessed on 10 October 2021).
- Guinée, J.B.; Heijungs, R.; Huppes, G.; Zamagni, A.; Masoni, P.; Buonamici, R.; Ekvall, T.; Rydberg, T. Life Cycle Assessment: Past, Present, and Future. Environ. Sci. Technol. 2011, 45, 90–96. [Google Scholar] [CrossRef]
- Karaszewski, R.; Modrzyński, P.; Modrzyńska, J. The Use of Blockchain Technology in Public Sector Entities Management: An Example of Security and Energy Efficiency in Cloud Computing Data Processing. Energies 2021, 14, 1873. [Google Scholar] [CrossRef]
- Kumar, V.D. How Blockchain Impact Energy Sector. Available online: https://www.blockchain-council.org/blockchain/how-blockchain-impact-energy-sector/ (accessed on 22 February 2021).
- Lakshmi, N.; Sricharan, S. Blockchain: Single Source of truth in Shared Services? An Empirical Paper on the Relevance of Blockchain for Shared Services. Int. J. Recent Technol. Eng. 2019, 7, 6. [Google Scholar]
- Lin, Y.-P.; Petway, J.R.; Lien, W.-Y.; Settele, J. Blockchain with Artificial Intelligence to Efficiently Manage Water Use under Climate Change. Environment 2018, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Paech, P. The Governance of Blockchain Financial Networks. Mod. Law Rev. 2017, 80, 1073–1110. [Google Scholar] [CrossRef]
- World Energy Council. The Developing Role of Blockchain White Paper; World Energy Council: London, UK, 2017. [Google Scholar]
- Zikratov, I.; Kuzmin, A.; Akimenko, V.; Niculichev, V.; Yalansky, L. Ensuring data integrity using blockchain technology. In Proceedings of the 2017 20th Conference of Open Innovations Association (FRUCT), Saint Petersburg, Russia, 3–7 April 2017. [Google Scholar]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 17 October 2021).
- Iansiti, M.; Lakhani, K.R. The truth about blockchain. Harv. Bus. Rev. 2017, 95, 118–127. [Google Scholar]
- Engelhardt, M.A. Hitching Healthcare to the Chain: An Introduction to Blockchain Technology in the Healthcare Sector. Technol. Innov. Manag. Rev. 2017, 7, 22–34. [Google Scholar] [CrossRef]
- Hyvarinen, H.; Risius, M.; Friis, G. A Blockchain-based approach towards overcoming financial fraud in public sector services. Bus. Inf. Syst. Eng. 2017, 59, 441–456. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.M.; Laskowski, M. Toward an ontology-driven blockchain design for supply-chain provenance. Intell. Syst. Account. Financ. Manag. 2018, 25, 18–27. [Google Scholar] [CrossRef]
- O’Dair, M.; Beaven, Z. The networked record industry: How blockchain technology could transform the record industry. Strateg. Chang. 2017, 26, 471–480. [Google Scholar] [CrossRef]
- Radanovic, I.; Likić, R. Opportunities for Use of Blockchain Technology in Medicine. Appl. Health Econ. Health Policy 2018, 16, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Savelyev, A. Copyright in the blockchain era: Promises and challenges. Comput. Law Secur. Rev. 2018, 34, 550–561. [Google Scholar] [CrossRef] [Green Version]
- Christidis, K.; Devetsikiotis, M. Blockchains and smart contracts for the internet of things. IEEE Access 2016, 4, 2292–2303. Available online: https://people.cs.pitt.edu/~mosse/courses/cs3720/blockchain-iot.pdf (accessed on 12 October 2021). [CrossRef]
- Cruz, J.P.; Kaji, Y.; Yanai, N. RBAC-SC: Role-based access control using smart contract. IEEE Access 2016, 6, 12240–12251. Available online: https://ieeexplore.ieee.org/document/8307397 (accessed on 14 October 2021). [CrossRef]
- Kraft, D. Difficulty control for blockchain-based consensus systems. Peer-Peer Netw. Appl. 2015, 9, 397–413. [Google Scholar] [CrossRef]
- Xu, M.; Chen, X.; Kou, G. A systematic review of blockchain. Financ. Innov. 2019, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Chau, C.K.; Leung, T.M.; Ng, W.Y. A review on life cycle assessment, life cycle energy assessment and life cycle carbon emis-sions assessment on buildings. Appl. Energy 2015, 143, 395–413. [Google Scholar] [CrossRef]
- Säynäjoki, A.; Heinonen, J.; Junnila, S.; Horvath, A. Can life-cycle assessment produce reliable policy guidelines in the building sector? Environ. Res. Lett. 2017, 12, 13001. [Google Scholar] [CrossRef] [Green Version]
- Soust-Verdaguer, B.; Llatas, C.; García-Martínez, A. Simplification in life cycle assessment of single-family houses: A review of recent developments. Build. Environ. 2016, 103, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Swan, M. Anticipating the Economic Benefits of Blockchain. Technol. Innov. Manag. Rev. 2017, 7, 6–13. [Google Scholar] [CrossRef]
- Tapscott, D.; Tapscott, A. Blockchain Revolution: How the Technology behind Bitcoin Is Changing Money, Business, and the World; Portfolio: New York, NY, USA, 2016; 368p. [Google Scholar]
- Zadorozhnyi, Z.-M.V.; Muravskyi, V.; Shevchuk, O.A. Management accounting of electronic transactions with the use of cryptocurrencies. Financ. Credit Act. Probl. Theory Pract. 2018, 3, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Gomber, P.; Kauffman, R.J.; Parker, C.; Weber, B.W. On the Fintech Revolution: Interpreting the Forces of Innovation, Disruption, and Transformation in Financial Services. J. Manag. Inf. Syst. 2018, 35, 220–265. [Google Scholar] [CrossRef]
- Ashta, A.; Biot-Paquerot, G. FinTech evolution: Strategic value management issues in a fast changing industry. Strateg. Chang. 2018, 27, 301–311. [Google Scholar] [CrossRef]
- Matos, S.; Hall, J. Integrating sustainable development in the supply chain: The case of life cycle assessment in oil and gas and agricultural biotechnology. J. Oper. Manag. 2007, 25, 1083–1102. [Google Scholar] [CrossRef]
- Brogan, J.; Baskaran, I.; Ramachandran, N. Authenticating Health Activity Data Using Distributed Ledger Technologies. Comput. Struct. Biotechnol. J. 2018, 16, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Manion, S.T.; Bizouati-Kennedy, Y. Blockchain for Medical Research: Accelerating Trust in Healthcare; Taylor & Francis: Boca Raton, FL, USA, 2020; p. 150. [Google Scholar]
- Ramzi Abujamra, D. Blockchain Applications in Healthcare and the Opportunities and the Advancements due to the New Information Technology Framework, in Advance in Computers. In Role of Blockchain Technology in IoT Applications; Shiho-Kim, G.C.D., Zhang, P., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 115, Chapter 5; pp. 141–154. [Google Scholar]
- Randall, D.; Goel, P.; Abujamra, R. Blockchain Applications and Use Cases in Health Information Technology. J. Health Med. Inform. 2017, 8, 1–4. [Google Scholar] [CrossRef]
- Shae, Z.; Tsai, J.J. On the Design of a Blockchain Platform for Clinical Trial and Precision Medicine. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 1972–1980. [Google Scholar]
- Shetty, S.; Liang, X.; Bowden, D.; Zhao, J.; Zhang, L. Blockchain-Based Decentralized Accountability and Self-Sovereignty in Healthcare Systems. In Business Transformation through Blockchain; Treiblmaier, H., Beck, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 2, pp. 119–149. [Google Scholar]
- Wang, X.; Shi, H. Research on Container Transportation Application Based on Blockchain Technology. In Proceedings of the Asia-Pacific Conference on Intelligent Medical 2018 & International Conference on Transportation and Traffic Engineering, Beijing, China, 21–23 December 2018; pp. 277–281. [Google Scholar]
- Wutthikarn, R.; Hui, Y.G. Prototype of blockchain in dental care service application based on hyperledger composer in hyperledger fabric framework. In Proceedings of the 2018 22nd International Computer Science and Engineering Conference (ICSEC), Chiang Mai, Thailand, 21–24 November 2018; pp. 1–4. [Google Scholar]
- Mehendale, M.S.; Kamble, A. Trust the system–blockchain technology and its application in education. J. Xian Univ. Archit. Technol. 2019. Available online: http://www.xajzkjdx.cn/gallery/128-dec2019.pdf (accessed on 21 November 2021).
- Álvarez-Díaz, N.; Herrera-Joancomartí, J.; Caballero-Gil, P. Smart contracts based on blockchain for logistics management. In Proceedings of the 1st International Conference on Medical and Health Informatics, Taichung, Taiwan, 20–22 May 2017; pp. 1–8. [Google Scholar]
- Polishchuk, A.I.Y.; Dyba, O. SMART-contracts via blockchain as the innovation tool for SMEs development. Econ. Stud. J. 2019, 39–53. Available online: https://www.ceeol.com/search/article-detail?id=831391 (accessed on 29 October 2021).
- Catalini, C.S.; Gans, J.S. Some Simple Economics of the Blockchain. 2016. Available online: https://ssrn.com/abstract=2887234 (accessed on 28 October 2021).
- Hofmann, A. Building Scalable Blockchain Applications—A Decision Process. In Designing for Digital Transformation. Co-Creating Services with Citizens and Industry; Springer International Publishing: Cham, Switzerland, 2020; pp. 309–320. [Google Scholar] [CrossRef]
- Gipp, B.; Meuschke, N.; Gernandt, A. Decentralized Trusted Timestamping using the Crypto Currency Bitcoin. In Proceedings of the iConference 2015 (to Appear), Newport Beach, CA, USA, 24–27 March 2015; Available online: http://ischools.org/the-iconference/ (accessed on 15 September 2021).
- Zyskind, G.; Nathan, O.; Pentland, A. Decentralizing Privacy: Using Blockchain to Protect Personal Data. In Proceedings of the 2015 IEEE Security and Privacy Workshops, San Jose, CA, USA, 21–22 May 2015; pp. 180–184. [Google Scholar] [CrossRef]
- Bui, H.T.; Hussain, O.K.; Saberi, M.; Hussain, F. Assessing the authenticity of subjective information in the blockchain: A survey and open issues. World Wide Web 2021, 24, 483–509. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.; Liu, A.; Lu, Q.; Xu, L.; Tao, F. Blockchain-based trust mechanism for IoT-based smart manufacturing system. IEEE Trans. Comput. Soc. Syst. 2019, 6, 1386–1394. [Google Scholar] [CrossRef]
- Tang, B.; Kang, H.; Fan, J.; Li, Q.; Sandhu, R. IoT Passport. In Proceedings of the 24th ACM Symposium on Access Control Models and Technologies, Toronto, ON, Canada, 3–6 June 2019; pp. 83–92. [Google Scholar]
- Dong, Y.; Ng, S.T.; Liu, P. A comprehensive analysis towards benchmarking of life cycle assessment of buildings based on systematic review. Build. Environ. 2021, 204, 108162. [Google Scholar] [CrossRef]
- Hollberg, A.; Lützkendorf, T.; Habert, G. Top-down or bottom-up?—How environmental benchmarks can support the design process. Build. Environ. 2019, 153, 148–157. [Google Scholar] [CrossRef]
- Buyle, M.; Braet, J.; Audenaert, A. Life cycle assessment in the construction sector: A review. Renew. Sustain. Energy Rev. 2013, 26, 379–388. [Google Scholar] [CrossRef]
- Rashid, A.F.A.; Yusoff, S. A review of life cycle assessment method for building industry. Renew. Sustain. Energy Rev. 2015, 45, 244–248. [Google Scholar] [CrossRef] [Green Version]
- Hellweg, S.; Canals, L.M. Emerging approaches, challenges and opportunities in life cycle assessment. Science 2014, 344, 1109–1113. [Google Scholar] [CrossRef] [PubMed]
- Anand, C.K.; Amor, B. Recent developments, future challenges and new research directions in LCA of buildings: A critical review. Renew. Sustain. Energy Rev. 2017, 67, 408–416. [Google Scholar] [CrossRef]
- Khasreen, M.M.; Banfill, P.F.G.; Menzies, G.F. Life-Cycle Assessment and the Environmental Impact of Buildings: A Review. Sustainability 2009, 1, 674–701. [Google Scholar] [CrossRef]
- Ramesh, T.; Prakash, R.; Shukla, K.K. Life cycle energy analysis of buildings: An overview. Energy Build. 2010, 42, 1592–1600. [Google Scholar] [CrossRef]
- Sharma, A.; Saxena, A.; Sethi, M.; Shree, V. Varun Life cycle assessment of buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, 871–875. [Google Scholar] [CrossRef]
- Islam, H.; Jollands, M.; Setunge, S. Life cycle assessment and life cycle cost implication of residential buildings—A review. Renew. Sustain. Energy Rev. 2015, 42, 129–140. [Google Scholar] [CrossRef]
- Vilches, A.; Garcia-Martinez, A.; Sanchez-Montanes, B. Life cycle assessment (LCA) of building refurbishment: A literature review. Energy Build. 2017, 135, 286–301. [Google Scholar] [CrossRef]
- Lu, K.; Jiang, X.; Yu, J.; Tam, V.W.; Skitmore, M. Integration of life cycle assessment and life cycle cost using building information modeling: A critical review. J. Clean. Prod. 2021, 285, 125438. [Google Scholar] [CrossRef]
- Llatas, C.; Soust-Verdaguer, B.; Passer, A. Implementing Life Cycle Sustainability Assessment during design stages in Building Information Modelling: From systematic literature review to a methodological approach. Build. Environ. 2020, 182, 107164. [Google Scholar] [CrossRef]
- Obrecht, T.P.; Röck, M.; Hoxha, E.; Passer, A. BIM and LCA Integration: A Systematic Literature Review. Sustainability 2020, 12, 5534. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, W.; Wang, J.; Wang, Y.; Xu, Y.; Xiao, J. A review of life cycle assessment of recycled aggregate concrete. Constr. Build. Mater. 2019, 209, 115–125. [Google Scholar] [CrossRef]
- World Business Council for Sustainable Development (WBCSD). The Cement Sustainability Initiative; World Business Council for Sustainable Development: Geneva, Switzerland, 2009. [Google Scholar]
- Singh, R.K.; Murty, H.; Gupta, S.; Dikshit, A.K. An overview of sustainability assessment methodologies. Ecol. Indic. 2012, 15, 281–299. [Google Scholar] [CrossRef]
- Yang, J.; Du, Q.; Bao, Y. Concrete with recycled concrete aggregate and crushed clay bricks. Constr. Build. Mater. 2011, 25, 1935–1945. [Google Scholar] [CrossRef]
- Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; van Oers, L.; Sleeswijk, A.W.; Suh, S.; de Haes, H.A.; et al. Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. I: LCA in Perspective. IIa: Guide. IIb: Operational Annex. III: Scientific Background; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; p. 692. ISBN 1-4020-0228-9. [Google Scholar]
- Kouhizadeh, M.; Sarkis, J. Blockchain Practices, Potentials, and Perspectives in Greening Supply Chains. Sustainability 2018, 10, 3652. [Google Scholar] [CrossRef] [Green Version]
- Gonzales, C.J. Life Cycle Assessment. In Green Metrics; Anastas, P.T., Constable, D.J., Gonzales, C.J., Eds.; Wiley: Hoboken, NJ, USA, 2018; pp. 95–118. [Google Scholar]
- Paik, H.-Y.; Xu, X.; Bandara, H.M.N.D.; Lee, S.U.; Lo, S.K. Analysis of Data Management in Blockchain-Based Systems: From Architecture to Governance. IEEE Access 2019, 7, 186091–186107. [Google Scholar] [CrossRef]
- Linkov, I.; Trump, B.D.; Wender, B.A.; Seager, T.P.; Kennedy, A.J.; Keisler, J.M. Integrate life-cycle assessment and risk analysis results, not methods. Nat. Nanotechnol. 2017, 12, 740–743. [Google Scholar] [CrossRef]
- Ortiz, O.; Castells, F.; Sonnemann, G. Sustainability in the construction industry: A review of recent developments based on LCA. Constr. Build. Mater. 2009, 23, 28–39. [Google Scholar] [CrossRef]
- Sinistore, J. Driving Sustainability through Life Cycle Assessment, Renewable Energy and Blockchain. 2018. Available online: https://www.wsp.com/en-AU/insights/blockchain-driving-sustainability (accessed on 28 November 2021).
- van der Meer, Y. Life Cycle Assessment: Benefts and Limitations. 2018. Available online: https://fibrenet.eu/index.php?id=blog-post-eleven (accessed on 21 November 2021).
- Mortimer, C. Enablers and Barriers to Adoption of Life Cycle Management. NZLCM Centre Working Paper Series: Paper 01/11. 2011. Available online: https://www.lcm.org.nz/sites/default/files/files/Mortimer%20FINAL.pdf (accessed on 27 November 2021).
- Curran, M. Strengths and Limitations of Life Cycle Assessment. In Background and Future Prospects in Life Cycle Assessment. LCA Compendium—The Complete World of Life Cycle Assessment; Klöpffer, W., Ed.; Springer: Dordrecht, The Netherlands. [CrossRef]
- Seth, S. Blockchain Solutions to Grow 75% through 2022: IDC. 2019. Available online: https://www.investopedia.com/news/blockchain-solutions-grow75-through-2022-idc/ (accessed on 28 November 2021).
- Weidema, B.P.; Ekvall, T.; Heijungs, R. Guidelines for application of deepened and broadened LCA. Deliv. D18 Work Package 2009, 5, 17. [Google Scholar]
- Zamagni, A. Critical Review of the Current Research Needs and Limitations Related to ISO-LCA Practice; ENEA: Bologna, Italy, 2008. [Google Scholar]
- Ekvall, T.; Tillman, A.-M.; Molander, S. Normative ethics and methodology for life cycle assessment. J. Clean. Prod. 2005, 13, 1225–1234. [Google Scholar] [CrossRef] [Green Version]
- Tillman, A.-M. Significance of decision-making for LCA methodology. Environ. Impact Assess. Rev. 2000, 20, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Zhong, R.Y.; Farooque, M.; Kang, K.; Venkatesh, V.G. Blockchain-based life cycle assessment: An implementation framework and system architecture. Resour. Conserv. Recycl. 2020, 152, 104512. [Google Scholar] [CrossRef]
- Christensen, T.H.; Bhander, G.; Lindvall, H.; Larsen, A.W.; Fruergaard, T.; Damgaard, A.; Manfredi, S.; Boldrin, A.; Riber, C.; Hauschild, M. Experience with the use of LCA-modelling (EASEWASTE) in waste management. Waste Manag. Res. 2007, 25, 257–262. [Google Scholar] [CrossRef]
- Genovese, A.; Acquaye, A.A.; Figueroa, A.; Koh, S.L. Sustainable supply chain management and the transition towards a circular economy: Evidence and some applications. Omega 2017, 66, 344–357. [Google Scholar] [CrossRef]
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.-P.; Suh, S.; Weidema, B.P.; Pennington, D.W. Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef] [PubMed]
- Jolliet, O.; Dubreuil, A.; Gloria, T.; Hauschild, M.Z. Progresses in Life Cycle Impact Assessment within the UNEP/SETAC Life Cycle Initiative. Int. J. Life Cycle Assess. 2005, 10, 447–448. [Google Scholar] [CrossRef] [Green Version]
- Krishna, I.M.; Manickam, V.; Shah, A.; Davergave, N. Chapter Five—Life Cycle Assessment. In Environmental Management: Science and Engineering for Industry; Butterworth Henneman Elsevier: Oxford, UK, 2017; pp. 57–75. [Google Scholar]
- Cai, Y.; Zhu, D. Fraud detections for online businesses: A perspective from block chain technology. Financ. Innov. 2016, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Tao, F.; Zuo, Y.; Xu, L.D.; Zhang, L. IoT-based intelligent perception and access of manufacturing resource toward cloud manufacturing. IEEE Trans. Ind. Inform. 2014, 10, 1547–1557. [Google Scholar]
- Zhong, R.Y.; Huang, G.Q.; Lan, S.; Dai, Q.Y.; Chen, X.; Zhang, T. A big data ap proach for logistics trajectory discovery from RFID-enabled production data. Int. J. Prod. Econ. 2015, 165, 260–272. [Google Scholar] [CrossRef]
- Zhong, R.Y.; Huang, G.Q.; Dai, Q.Y.; Zhang, T. Mining SOTs and dispatching rules from RFID-enabled real-time shopfloor production data. J. Intell. Manuf. 2012, 25, 825–843. [Google Scholar] [CrossRef]
- Galletti, A.; Papadimitriou, D.-C. How Big Data Analytics Are Perceived as a Driver for Competitive Advantage: A Qualitative Study on Food Retailers; Uppsala University Department of Business Studies: Uppsala, Sweden, 2013; p. 53. Available online: http://www.diva-portal.org/smash/get/diva2:641706/FULLTEXT01.pdf (accessed on 12 October 2021).
- Buyle, M.; Ben, M.; Hernando, D.; Amaryllis, A.; France, C.; Van den Bergh, W. Quantifying the environmental and economic impact of adding RAP and rejuvenators in asphalt pavements using LCA and LCCA. Rejuvebit 2021. [Google Scholar] [CrossRef]
- Curran, M.A.; Mann, M.; Norris, G. The international workshop on electricity data for life cycle inventories. J. Clean. Prod. 2005, 13, 853–862. [Google Scholar] [CrossRef]
- Beck, R.; Müller-Bloch, C.; King, J.L. Governance in the blockchain economy: A framework and research agenda. J. Assoc. Inf. Syst. 2018, 19, 1020–1034. [Google Scholar] [CrossRef]
- Saberi, S.; Kouhizadeh, M.; Sarkis, J.; Shen, L. Blockchain technology and its relationships to sustainable supply chain management. Int. J. Prod. Res. 2019, 57, 2117–2135. [Google Scholar] [CrossRef] [Green Version]
- Trump, B.D.; Florin, M.V.; Matthews, H.S.; Sicker, D.; Linkov, I. Governing the use of blockchain and distributed ledger technologies: Not one-size-fts-all. IEEE Eng. Manag. Rev. 2018, 46, 56–62. [Google Scholar] [CrossRef]
- Davis, C.; Nikolic, I.; Dijkema, G.P.J. Industrial Ecology 2.0. J. Ind. Ecol. 2010, 14, 707–726. [Google Scholar] [CrossRef]
- Teh, D.; Khan, T.; Corbitt, B.; Ong, C.E. Sustainability strategy and blockchain-enabled life cycle assessment: A focus on materials industry. Environ. Syst. Decis. 2020, 40, 605–622. [Google Scholar] [CrossRef]
- Testa, F.; Nucci, B.; Tessitore, S.; Iraldo, F.; Daddi, T. Perceptions on LCA implementation: Evidence from a survey on adopters and nonadopters in Italy. Int. J. Life Cycle Assess. 2016, 21, 1501–1513. [Google Scholar] [CrossRef]
- Norris, C.B. Data for social LCA. Int. J. Life Cycle Assess. 2014, 19, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Miah, J.H.; Griffiths, A.; McNeill, R.; Halvorson, S.; Schenker, U.; Espinoza-Orias, N.; Morse, S.; Yang, A.; Sadhukhan, J. A framework for increasing the availability of life cycle inventory data based on the role of multinational companies. Int. J. Life Cycle Assess. 2018, 23, 1744–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mieras, E.; Gaasbeek, A.; Kan, D. How to seize the opportunities of new technologies in life cycle analysis data collection: A case study of the Dutch Dairy Farming Sector. Challenges 2019, 10, 8. [Google Scholar] [CrossRef] [Green Version]
- Al Halbusia, H.; Tehseenb, S. Corporate Social Responsibility (CSR): A Literature Review. Malays. J. Bus. Econ. 2017, 4, 30–48. [Google Scholar]
- Jackson, A. Corporate Social Responsibility: Tracking the Top Trends, Investopedia. Available online: https://www.investopedia.com/ask/answers/011215/what-are-top-trends-corporate-social-responsibility.asp (accessed on 16 October 2021).
- Chen, Z.; Li, Y.; Wu, Y.; Luo, J. The transition from traditional banking to mobile internet finance: An organizational innovation perspective—A comparative study of Citibank and ICBC. Financ. Innov. 2017, 3, 12. [Google Scholar] [CrossRef]
- Zhao, J.L.; Fan, S.; Yan, J. Overview of business innovations and research opportunities in blockchain and introduction to the special issue. Financ. Innov. 2016, 2, 28. [Google Scholar] [CrossRef] [Green Version]
- Tapscott, D.; Tapscott, A. How blockchain will change organizations. MIT Sloan Manag. Rev. 2017, 58, 10–13. [Google Scholar]
Category | Benchmarks | Description |
---|---|---|
LIFE CYCLE STAGES | Whole life cycle | Benchmark is a value for the whole life cycle of the building. |
Life cycle phase | Benchmark is a value for individual life cycle phases. | |
LEVELS OF VALUES | Lowest acceptable value | The limit value is defined as the lowest acceptable value. |
Present state of the art | The average or median values of the present state of the art. | |
Best-practice value | The best-practice value that has been reached in building projects. | |
TOP-DOWN OR BOTTOM-UP | Top-down | Benchmarks are defined based on political targets. |
Bottom-up | Most of the existing benchmarks are derived from theoretical values. | |
ABSOLUTE OR RELATIVE VALUES | Absolute values | Benchmarks are defined as fixed values. |
Relative values | Internal benchmarks are defined according to a reference building. | |
WHOLE BUILDINGS OR BUILDING ELEMENTS | Whole building | Benchmarks are for the whole building. |
Building elements | Benchmarks are for the individual building elements. |
Impact Category | Indicator | Unit | Referecne Method | Conversion Factors |
---|---|---|---|---|
CLIMATE CHANGE | Global warming potential for time horizon 100 years | kg CO2 eq | CML | Non Specified: 1 TRACI:1.012 IMPACT 2002+: 1.048 ReCiPe: 0.983 |
ENERGY DEPLETION | Abiotic depletion of fossil fuel related to the lower heating value | MJ | CML | Non specified: 1 TRACI: 12.672 IMPACT 2002+: 0.958 ReCiPe: 42.748 |
EUTROPHICATION | Eutrophication potential of emission of nutrients | kg PO4 eq | CML | Non specified: 1 TRACI: 0.471 IMPACT 2002+: 10.397 ReCiPe: 3.951 |
ACIDIFICATION | Acidification potential | kg SO2 eq | CML | Non specified: 1 TRACI: 1.061 IMPACT 2002+: 1.058 ReCiPe: 1.227 |
OZONE DEPLETION | Ozone depletion potential of different gases | kg CFC-11 eq | CML | Non specified: 1 TRACI: 0.770 IMPACT 2002+: 1 ReCiPe: 0.159 |
PARTICULATE MATTER | Fine particulate matter equivalent for respiratory inorganics | kg PM2.5 eq | IMPACT 2002+ | Non specified: 1 TRACI: 0.942 ReCiPe: 0.659 |
HUMAN TOXICITY | Human toxicity potential describing fate, exposure and effects of toxic substances | kg 1,4-DB eq | CML | Non specified: 1 TRACI: N.A. IMPACT 2002+: N.A. ReCiPe: N.A. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaszewski, R.; Modrzyński, P.; Müldür, G.T.; Wójcik, J. Blockchain Technology in Life Cycle Assessment—New Research Trends. Energies 2021, 14, 8292. https://doi.org/10.3390/en14248292
Karaszewski R, Modrzyński P, Müldür GT, Wójcik J. Blockchain Technology in Life Cycle Assessment—New Research Trends. Energies. 2021; 14(24):8292. https://doi.org/10.3390/en14248292
Chicago/Turabian StyleKaraszewski, Robert, Paweł Modrzyński, Gözde Türkmen Müldür, and Jacek Wójcik. 2021. "Blockchain Technology in Life Cycle Assessment—New Research Trends" Energies 14, no. 24: 8292. https://doi.org/10.3390/en14248292
APA StyleKaraszewski, R., Modrzyński, P., Müldür, G. T., & Wójcik, J. (2021). Blockchain Technology in Life Cycle Assessment—New Research Trends. Energies, 14(24), 8292. https://doi.org/10.3390/en14248292