Robust Sliding Mode Control of a Unipolar Power Inverter
Abstract
:1. Introduction
2. Methods
2.1. Proposed Technique
2.1.1. Filter Extraction
2.1.2. Existence of the SM
2.2. PWM Based Hysteresis Sliding Mode Control
2.3. Controller Implementation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ali, M.; Aamir, M.; Khan, H.S.; Waqar, A.; Haroon, F.; Jafri, A.R. Lyapunov Stability and Performance Analysis of the Fractional Order Sliding Mode Control for a Parallel Connected UPS System under Unbalanced and Nonlinear Load Conditions. Energies 2018, 11, 3475. [Google Scholar] [CrossRef] [Green Version]
- Anand, V.; Singh, V. Implementation of cascaded asymmetrical multilevel inverter for renewable energy integration. Int. J. Circuit Theory Appl. 2021, 49, 1776–1794. [Google Scholar] [CrossRef]
- Turksoy, A.; Hames, Y.; Teke, A.; Latran, M.B. A novel adaptive switching method to reduce DC-Link capacitor ripple in PV based grid-connected inverter. Sol. Energy 2018, 173, 702–714. [Google Scholar] [CrossRef]
- Carballo, R.E.; Botterón, F.; Oggier, G.G.; García, G.O. Multiple resonant controllers strategy to achieve fault ride-through and high performance output voltage in UPS applications. IET Power Electron. 2018, 11, 2415–2426. [Google Scholar] [CrossRef]
- Xu, D.; Wang, G.; Yan, W.; Yan, X. A novel adaptive command-filtered backstepping sliding mode control for PV grid-connected system with energy storage. Sol. Energy 2019, 178, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Middlebrook, R. Small-signal modeling of pulse-width modulated switched-mode power converters. Proc. IEEE 1988, 76, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.K.; Ehsami, M. A simplified functional simulation model for three-phase voltage-source inverter using switching function concept. IEEE Trans. Ind. Electron. 2001, 48, 309–321. [Google Scholar]
- Ahmad, A.; Ullah, N.; Ahmed, N.; Ibeas, A.; Mehdi, G.; Herrera, J.; Ali, A. Robust control of grid-tied parallel inverters using nonlinear backstepping approach. IEEE Access 2018, 7, 111982–111992. [Google Scholar] [CrossRef]
- Naji Alhasnawi, B.; Jasim, B.H.; Anvari-Moghaddam, A.; Blaabjerg, F. A New Robust Control Strategy for Parallel Operated Inverters in Green Energy Applications. Energies 2020, 13, 3480. [Google Scholar] [CrossRef]
- Safa, A.; Berkouk, E.M.; Messlem, Y.; Gouichiche, A. A robust control algorithm for a multifunctional grid tied inverter to enhance the power quality of a microgrid under unbalanced conditions. Int. J. Electr. Power Energy Syst. 2018, 100, 253–264. [Google Scholar] [CrossRef]
- Amirkhan, S.; Radmehr, M.; Rezanejad, M.; Khormali, S. A robust control technique for stable operation of a DC/AC hybrid microgrid under parameters and loads variations. Int. J. Electr. Power Energy Syst. 2020, 117, 105659. [Google Scholar] [CrossRef]
- Alsmadi, Y.M.; Chairez, I.; Utkin, V. Sliding mode control of an ozone generator based on dual AC/DC/AC power converters. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2021, 235, 448–460. [Google Scholar] [CrossRef]
- Alsmadi, Y.M.; Utkin, V.; Haj-Ahmed, M.; Xu, L.; Abdelaziz, A.Y. Sliding-mode control of power converters: AC/DC converters & DC/AC inverters. Int. J. Control 2018, 91, 2573–2587. [Google Scholar]
- Tian, Z.; Lyu, Z.; Yuan, J.; Wang, C. UDE-based sliding mode control of DC–DC power converters with uncertainties. Control Eng. Pract. 2019, 83, 116–128. [Google Scholar] [CrossRef]
- Utkin, V.; Guldner, J.; Shijun, M. Sliding Mode Control in Electro-Mechanical Systems; CRC Press: Boca Raton, FL, USA, 1999; Volume 34. [Google Scholar]
- Sudalaimani, M.; Revathi, L.; Senthilkumar, N. Direct Power based Sliding Mode Control of AC-DC Converter with Reduced THD. Teh. Vjesn. 2018, 25, 72–79. [Google Scholar]
- Hu, J.; Shang, L.; He, Y.; Zhu, Z. Direct active and reactive power regulation of grid-connected DC/AC converters using sliding mode control approach. IEEE Trans. Power Electron. 2011, 26, 210–222. [Google Scholar] [CrossRef]
- Wanjekeche, T. Modeling, control and experimental investigation of a cascaded hybrid modular inverter for grid interface application. IEEE Access 2018, 6, 21296–21313. [Google Scholar] [CrossRef]
- Han, J.S.; Kim, T.I.; Oh, T.H.; Lee, S.H. Effective disturbance compensation method under control saturation in discrete-time sliding mode control. IEEE Trans. Ind. Electron. 2019, 67, 5696–5707. [Google Scholar] [CrossRef]
- Homaeinezhad, M.; Yaqubi, S. Discrete-time sliding-surface based control of parametrically uncertain nonlinear systems with unknown time-delay and inaccessible switching mode detection. Int. J. Control 2019, 94, 1–20. [Google Scholar] [CrossRef]
- Repecho, V.; Sierra-González, A.; Ibarra, E.; Biel, D.; Arias, A. Enhanced DC-link voltage utilization for sliding mode controlled PMSM drives. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 2850–2857. [Google Scholar] [CrossRef]
- Alam, W.; Ahmad, S.; Mehmood, A.; Iqbal, J. Robust sliding mode control for flexible joint robotic manipulator via disturbance observer. Interdiscip. Descr. Complex Syst. INDECS 2019, 17, 85–97. [Google Scholar] [CrossRef]
- Yasin, A.R.; Ashraf, M.; Bhatti, A.I.; Uppal, A.A. Fixed frequency sliding mode control of renewable energy resources in DC micro grid. Asian J. Control 2019, 21, 2074–2086. [Google Scholar] [CrossRef]
- Chen, Y.; Fei, J. Dynamic Sliding Mode Control of Active Power Filter With Integral Switching Gain. IEEE Access 2019, 7, 21635–21644. [Google Scholar] [CrossRef]
- Tan, S.C.; Lai, Y.; Tse, C.K.; Cheung, M.K. Adaptive feedforward and feedback control schemes for sliding mode controlled power converters. IEEE Trans. Power Electron. 2006, 21, 182–192. [Google Scholar]
- Repecho, V.; Biel, D.; Olm, J.M.; Colet, E.F. Switching frequency regulation in sliding mode control by a hysteresis band controller. IEEE Trans. Power Electron. 2016, 32, 1557–1569. [Google Scholar] [CrossRef] [Green Version]
- Abrishamifar, A.; Ahmad, A.; Mohamadian, M. Fixed Switching Frequency Sliding Mode Control for Single-Phase Unipolar Inverters. IEEE Trans. Power Electron. 2012, 27, 2507–2514. [Google Scholar] [CrossRef]
- Holmes, D.G.; Davoodnezhad, R.; McGrath, B.P. An improved three-phase variable-band hysteresis current regulator. IEEE Trans. Power Electron. 2012, 28, 441–450. [Google Scholar] [CrossRef]
- Ramos, R.R.; Biel, D.; Fossas, E.; Guinjoan, F. A fixed-frequency quasi-sliding control algorithm: Application to power inverters design by means of FPGA implementation. IEEE Trans. Power Electron. 2003, 18, 344–355. [Google Scholar] [CrossRef]
- Abrishamifar, A.; Ahmad, A.A.; Elahian, S. Fixed frequency sliding mode controller for the buck converter. In Proceedings of the 2011 2nd Power Electronics, Drive Systems and Technologies Conference, Tehran, Iran, 16–17 February 2011; pp. 557–561. [Google Scholar]
- Yasin, A.R.; Ashraf, M.; Bhatti, A.I. Fixed frequency sliding mode control of power converters for improved dynamic response in DC micro-grids. Energies 2018, 11, 2799. [Google Scholar] [CrossRef] [Green Version]
- Jazi, H.N.; Goudarzian, A.; Pourbagher, R.; Derakhshandeh, S.Y. PI and PWM sliding mode control of POESLL converter. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 2167–2177. [Google Scholar] [CrossRef]
- Blaacha, J.; Aboutni, R.; Aziz, A. A Comparative Study Between a Unipolar and a Bipolar PWM Used in Inverters for Photovoltaic Systems. In International Conference on Electronic Engineering and Renewable Energy; Springer: Berlin/Heidelberg, Germany, 2020; pp. 353–360. [Google Scholar]
- Krishna, T.M.; Veni, K.; Babu, G.S.; Sushma, D.; Harish, C. Performance Evaluation of Induction Motor for Unipolar and Bipolar Pulse Width Modulation Techniques. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2019, 8, 3626–3629. [Google Scholar]
- Behera, P.K.; Das, S.; Pattnaik, M. Performance Comparison Between Bipolar and Unipolar Switching Scheme for a Single-Phase Inverter Based Stand-alone Photovoltaic System. In Proceedings of the 2019 IEEE 16th India Council International Conference (INDICON), Rajkot, Gujarat, 13–15 December 2019; pp. 1–4. [Google Scholar]
- Utkin, V.I.; Chang, H.C. Sliding mode control on electro-mechanical systems. Math. Probl. Eng. 2002, 8, 451–473. [Google Scholar] [CrossRef] [Green Version]
- Utkin, V.; Guldner, J.; Shi, J. Sliding Mode Control in Electro-Mechanical Systems; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Yasin, A.R.; Ashraf, M.; Bhatti, A.I. A novel filter extracted equivalent control based fixed frequency sliding mode approach for power electronic converters. Energies 2019, 12, 853. [Google Scholar] [CrossRef] [Green Version]
Controller | Advantage | Disadvantage |
---|---|---|
Variable-frequency SMC | • It is completely parameter invariant. | • It cannot be utilized in power electronic converters and inverters because the frequency is not fixed. |
• Relatively simpler hardware implementation | • It cannot be used in applications where frequency components, such as capacitors and inductors, are used. | |
• Operates at a limited frequency, which is practical. | ||
Fixed-frequency SMC | • Operating at a set frequency, | • Some methods of regulating the frequency put the robustness of the system at risk. |
• They can be used with power electronic converters and inverters. | • Additional hardware is incorporated into the overall design. | |
• They are especially useful in applications where the frequency dependent components such as capacitors and inductors are employed. |
Description | Symbol | Value |
---|---|---|
Input Voltage | 350 V | |
Output Voltage | 220 Vrms | |
Switching Frequency | 25 kHz | |
Power Frequency | F | 50 Hz |
Inductance | L | 860 uH |
Capacitance | C | 10 uF |
Load Resistance | 16–100 |
Description | Symbol | Value |
---|---|---|
Input Voltage | 18 V | |
Output Voltage | 12 Vrms | |
Switching Frequency | 25 kHz | |
Power Frequency | F | 50 Hz |
Inductance | L | 1.4 mH |
Capacitance | C | 2.3 uF |
Load Resistance | 10–100 |
Approaches | Transient Time | Overshoot | Undershoot |
---|---|---|---|
PWM Based Hysteresis SMC | 0.6 ms | 12% | 31% |
Proposed Technique | 0.3 ms | 7% | 18.5% |
Input Voltage | Output Voltage (Vrms) |
---|---|
350 | 220.47 |
340 | 220.34 |
330 | 220.11 |
320 | 219.98 |
310 | 219.56 |
300 | 219.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awais, M.; Yasin, A.R.; Riaz, M.; Saqib, B.; Zia, S.; Yasin, A. Robust Sliding Mode Control of a Unipolar Power Inverter. Energies 2021, 14, 5405. https://doi.org/10.3390/en14175405
Awais M, Yasin AR, Riaz M, Saqib B, Zia S, Yasin A. Robust Sliding Mode Control of a Unipolar Power Inverter. Energies. 2021; 14(17):5405. https://doi.org/10.3390/en14175405
Chicago/Turabian StyleAwais, Muhammad, Abdul Rehman Yasin, Mudassar Riaz, Bilal Saqib, Saba Zia, and Amina Yasin. 2021. "Robust Sliding Mode Control of a Unipolar Power Inverter" Energies 14, no. 17: 5405. https://doi.org/10.3390/en14175405
APA StyleAwais, M., Yasin, A. R., Riaz, M., Saqib, B., Zia, S., & Yasin, A. (2021). Robust Sliding Mode Control of a Unipolar Power Inverter. Energies, 14(17), 5405. https://doi.org/10.3390/en14175405