A Hilbert–Huang Transform-Based Adaptive Fault Detection and Classification Method for Microgrids
Abstract
:1. Introduction
2. Fault Characteristic Extraction Method and Analysis
2.1. Hilbert–Huang Transform
2.1.1. Empirical Mode Decomposition
2.1.2. Hilbert Transform
2.1.3. Sliding Window Strategy
2.2. Extraction and Analysis of the Fault Characteristics
3. Rapid and Self-Adaptive Fault Detection and Classification Method of Microgrid
3.1. Method Framework
3.2. Rapid and Self-Adaptive Fault Detection Method
3.2.1. Procedures of the Fault Detection Method
3.2.2. Setting of Threshold
3.3. Fault Classification Method
4. Discussion
4.1. Section Simulation
4.1.1. Simulation of Fault Conditions
4.1.2. Simulation of Disturbance Situations
4.2. System Simulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barra, P.H.A.; Coury, D.V.; Fernandes, R.A.S. A survey on adaptive protection of microgrids and distribution systems with distributed generators. Renew. Sust. Energ. Rev. 2020, 118, 109524–109539. [Google Scholar] [CrossRef]
- Parhizi, S.; Khodaei, A.; Bahramirad, S. State of the art in research on microgrids: A review. IEEE Access 2015, 3, 890–925. [Google Scholar] [CrossRef]
- Yu, J.Q.; Hou, Y.; Lam, Y.S.; Li, O.K. Intelligent Fault Detection Scheme for Microgrids With Wavelet-Based Deep Neural Networks. IEEE Trans. Smart Grid 2019, 10, 1694–1703. [Google Scholar] [CrossRef]
- Hatziargyriou, N.; Asano, A.; Iravani, R.; Marnay, C. Microgirds. IEEE Power Energy Mag. 2007, 4, 78–94. [Google Scholar] [CrossRef]
- Buraimoh, E.; Davidson, I.E.; Martinez-Rodrigo, F. Fault Ride-Through Enhancement of Grid Supporting Inverter-Based Microgrid Using Delayed Signal Cancellation Algorithm Secondary Control. Energies 2019, 12, 3994–4020. [Google Scholar] [CrossRef] [Green Version]
- Maha, P.; Chen, Z.; Bak-Jensen, B.; Bak, C.L. A Simple Adaptive Overcurrent Protection of Distribution Systems with Distributed Generation. IEEE Trans. Smart Grid 2011, 2, 428–437. [Google Scholar]
- Fahim, S.R.; Sarker, S.K.; Muyeen, S.M.; Sheikh, M.R.I.; Das, S.K. Microgrid Fault Detection and Classification: Machine Learning Based Approach, Comparison, and Reviews. Energies 2020, 13, 3460. [Google Scholar] [CrossRef]
- Jin, D.G.; Choi, J.C.; Won, D.J.; Lee, H.J.; Chae, W.K.; Park, J.S. A Practical Protection Coordination Strategy Applied to Secondary and Facility Microgrids. Energies 2012, 5, 3248–3265. [Google Scholar] [CrossRef]
- Nimpitiwan, N.; Thomas, G.; Ayyanar, R.; Suryanarayanan, S. Fault current contribution from synchronous machine and inverter based distributed generators. IEEE Trans. Power Deliv. 2007, 22, 634–641. [Google Scholar] [CrossRef]
- Brahma, S.M.; Girgis, A.A. Development of adaptive protection scheme for distribution systems with high penetration of distributed generation. IEEE Trans. Power Deliv. 2004, 19, 56–63. [Google Scholar] [CrossRef]
- Cagnanoa, A.; Tugliea, E.D.; Mancarellab, P. Microgrids: Overview and guidelines for practical implementations and operation. Appl. Energy 2020, 258, 114039–114056. [Google Scholar] [CrossRef]
- Kulshrestha, A.; Mahela, O.P.; Gupta, M.K.; Gupta, N.; Patel, N.; Senjyu, T.; Danish, M.S.S.; Khosravy, M. A Hybrid Fault Recognition Algorithm Using Stockwell Transform and Wigner Distribution Function for Power System Network with Solar Energy Penetration. Energies 2020, 13, 3519. [Google Scholar] [CrossRef]
- Najy, W.K.; Zeineldin, H.H.; Woon, W.L. Optimal protection coordination for microgrids with grid-connected and islanded capability. IEEE Trans. Ind. Electron. 2013, 60, 1668–1677. [Google Scholar] [CrossRef]
- Yazdanpanahi, H.; Li, Y.W.; Xu, W. A new control strategy to mitigate the impact of inverter-based DGs on protection system. IEEE Trans. Smart Grid 2012, 3, 1427–1436. [Google Scholar] [CrossRef]
- Sharaf, H.M.; Zeineldin, H.H.; El-Saadany, E. Protection Coordination for Microgrids With Grid-Connected and Islanded Capabilities Using Communication Assisted Dual Setting Directional Overcurrent Relays. IEEE Trans. Smart Grid 2018, 9, 143–151. [Google Scholar] [CrossRef]
- Muda, H.; Jena, P. Superimposed Adaptive Sequence Current Based Microgrid Protection: A New Technique. IEEE Trans. Power Deliv. 2017, 32, 757–767. [Google Scholar] [CrossRef]
- Gusha, T.; Bukharia, S.B.A.; Haidera, R.; Admasiea, S.; Ohb, Y.; Choa, G.; Kima, C. Fault detection and location in a microgrid using mathematical morphology and recursive least square methods. Electr. Power Syst. Res. 2018, 102, 324–331. [Google Scholar] [CrossRef]
- Manditereza, P.T.; Bansal, R.C. Fault detection and location algorithm for DG-integrated distribution systems. J. Eng. 2018, 15, 1286–1290. [Google Scholar] [CrossRef]
- Zhao, J.; Bian, R.; Zhang, X. A Micro-grid Fault Section Positioning Method Based On Fault Steady State Component. In Proceedings of the 2nd International Conference on Electrical, Control and Automation (ICECA2018), Shanghai, China, 10–11 November 2018. [Google Scholar]
- Guo, Z.; Yao, J.; Tan, Z. Hilbert-Huang transform-based transient busbar protection algorithm. IET Gnger. Transm. Distrib. 2015, 14, 2032–2039. [Google Scholar] [CrossRef]
- Fahey, T.S.; Burbure, N.V. Single-phase tripping. IEEE Power Energy Mag. 2008, 6, 46–52. [Google Scholar] [CrossRef]
- Hooshyar, A.; El-Saadany, E.F.; Sanaye-Pasand, M. Fault type classification in microgrids including photovoltaic DGs. IEEE Trans. Smart Grid 2016, 7, 2218–2229. [Google Scholar] [CrossRef]
- Abdelgayed, T.; Morsi, W.; Sidhu, T. A New Approach for Fault Classification in Microgrids Using Optimal Wavelet Functions Matching Pursuit. IEEE Trans. Smart Grid 2017, 9, 4838–4846. [Google Scholar] [CrossRef]
- Baloch, S.; Muhammad, M.S. An Intelligent Data Mining-Based Fault Detection and Classification Strategy for Microgrid. IEEE Access 2021, 9, 22470–22479. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for non linear and non-stationary time series analysis. Proc. R. Soc. Lond. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Yan, R.; Gao, R.X. Hilbert–Huang Transform-Based Vibration Signal Analysis for Machine Health Monitoring. IEEE Trans. Instrum. Meas. 2006, 55, 2320–2329. [Google Scholar] [CrossRef]
- Hemapriya, C.K.; Suganyadevi, M.V.; Krishnakumar, C. Detection and classification of multi-complex power quality events in a smart grid using Hilbert–Huang transform and support vector machine. Electr. Eng. 2020, 102, 1681–1706. [Google Scholar] [CrossRef]
- Gururani, A.; Mohanty, S.R.; Mohanta, J.C. Microgrid protection using Hilbert-Huang transform based-differential scheme. IET Gener. Transm. Distrib. 2016, 10, 3707–3716. [Google Scholar] [CrossRef]
- Chen, Y.M.; Zi, Y.Y.; Cao, H.R.; He, Z.J.; Sun, H.L. A data-driven threshold for wavelet sliding window denoising in mechanical fault detection. Sci. China Technol. Sci. 2014, 57, 589–597. [Google Scholar] [CrossRef]
Impedance/Ω | Double-Ended Power Supply Type | Power-Load Type | ||||
---|---|---|---|---|---|---|
Ag | Bg | Cg | Ag | Bg | Cg | |
0.01 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
1 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
10 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
100 | 2.2 | 2.6 | 4.4 | 3.4 | 1.8 | 28.6 |
500 | 8.4 | 10.6 | 10.0 | 12.0 | 23.2 | 6.2 |
1000 | 13.0 | 158.0 | 12.0 | 8.2 | 167.8 | 44.8 |
Time/s | Load/% | DG |
---|---|---|
0.6 | 100 | On |
0.65 | 100 | Off |
0.7 | 100 | On |
0.8 | 200 | On |
0.9 | 100 | On |
Section | L1 | L2 | L3 | L4 |
---|---|---|---|---|
Fault location | From BUS0 0.2 km | From BUS1 0.7 km | From BUS0 0.4 km | From BUS2 0.3 km |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Lin, J.; Niu, G.; Wu, M.; Wei, X. A Hilbert–Huang Transform-Based Adaptive Fault Detection and Classification Method for Microgrids. Energies 2021, 14, 5040. https://doi.org/10.3390/en14165040
Li Y, Lin J, Niu G, Wu M, Wei X. A Hilbert–Huang Transform-Based Adaptive Fault Detection and Classification Method for Microgrids. Energies. 2021; 14(16):5040. https://doi.org/10.3390/en14165040
Chicago/Turabian StyleLi, Yijin, Jianhua Lin, Geng Niu, Ming Wu, and Xuteng Wei. 2021. "A Hilbert–Huang Transform-Based Adaptive Fault Detection and Classification Method for Microgrids" Energies 14, no. 16: 5040. https://doi.org/10.3390/en14165040
APA StyleLi, Y., Lin, J., Niu, G., Wu, M., & Wei, X. (2021). A Hilbert–Huang Transform-Based Adaptive Fault Detection and Classification Method for Microgrids. Energies, 14(16), 5040. https://doi.org/10.3390/en14165040