Green Concrete Based on Quaternary Binders with Significant Reduced of CO2 Emissions
Abstract
:1. Introduction
- consumption of natural resources;
- consumption of energy;
- CO2 emission.
2. CO2 Emission in the OPC Production Process and Possibility of Its Reduction by Using Green Concrete Based on Quaternary Binders
- 50% is generated by the decomposition of limestone,
- 40% is because of fossil fuel combustion,
- 10% is contributed due to raw material transportation as well as electricity generation.
- their basic mechanical parameters analysis;
- changes that have occurred in their structure as a result of the substitution of cement binder by different compositions of supplements applied;
- reduction of harmful emissions of CO2 by reducing the amount of OPC in the total weight of the binder used.
3. Experimental Section
3.1. Materials
- the total amount of the binder in all composites will be constant;
- amount of the binder substitute at 10% and 5% will be constant for SF and nS, respectively;
- a variable parameter will be the addition of FA, which will replace the OPC in the amount of 0, 5, and 15%;
- the same water-binder ratio at level 0.4 in all mixtures.
3.2. Methods
- the test specimens had rectangular shapes and approximate dimensions of 10 × 10 × 3 mm3;
- the test was conducted using a QUANTA FEG 250, which was equipped with an energy dispersive Spectroscopy (EDS EDAX);
- for each of the composites, the images were taken at the same magnifications, i.e., 8000 and 16,000 times and the same reference scales, i.e., 20, and 10 µm;
- for each type of material, the images were taken on six samples;
- 30 images were taken for each sample, from which representative images were selected;
- on the SEM images, the following were marked or described: areas with the FA grains, areas with clearly distinguishable phases, e.g., calcium silicate hydrate (C-S-H), calcium hydro oxide (CH), or ettringite (E).
4. Results and Discussion
4.1. Strength Parameters
4.2. SEM Studies
4.3. Assessing of Environmental Benefits—CO2 Reduction
5. Conclusions
- (1)
- OPC substitution by each proposed composition of active pozzolan mineral additives brings measurable benefits in the results of the basic strength parameters of quaternary green concrete. The best results were obtained using the synergy of all three substitutes of the cement binder in the proportions used in the concrete of the Q2 series.
- (2)
- The structure of the quaternary green concrete after 28 days of curing is characterized by a dense matrix. In the concrete of the Q1 series, porous places filled with transformation products of the ettringite phase were observed additionally. Concretes containing FA were characterized, however, by tight contacts in places of connection of grains with the matrix—in the case of a composite with a lower content of additive—and minor microdamage on the phase boundary, that were seen at a very high magnifications in the concrete with the addition 15% of FA.
- (3)
- A small percentage of FA additive has a positive effect on the structure of the matrix containing a fine-grained and very active composition of additives in the form of SF and nS. Unfortunately, increasing the content of FA in the binder composition to over a dozen percent causes a clear weakening of the composite structure based on the quaternary binder.
- (4)
- The structure of the reference concrete was disordered and has presented numerous phases during the process of their nucleation and transformation. This definitely translated into the weakest results of the mechanical parameters of this material.
- (5)
- The results of the composites’ mechanical properties testing show the highest convergence in the reference concrete. As the quantity of additives in the composition of the cement binder increases, the level of scatter of results increases. Nevertheless, it takes satisfactory values in all quaternary green concretes.
- (6)
- Reducing the amount of OPC in the composition of the concrete mix in quaternary green concrete causes obvious environmental benefits associated with the significant reduction of CO2 emission in the production of OPC from over 0.6 mln tons to over 1,200,000,000 tons.
- (7)
- Quaternary green concrete containing additives and nanoadditives could be a useful alternative to plain concretes covering both the technical and environmental aspects.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanjuan, M.A.; Estevez, E.; Argiz, C. Carbon dioxide absorption by blast-furnace slag mortars in function of the curing intensity. Energies 2019, 12, 2346. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, J.; Wu, B.; Zhang, Z. Axial compressive behaviour of geopolymer recycled lump concrete. Materials 2020, 13, 533. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Rasul, M.G.; Khan, M.M.K.; Sharma, S. Impact of alternative fuels on the cement manufacturing plant performance: An overview. Proc. Eng. 2013, 56, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Zou, F.; Shen, K.; Hu, C.; Wang, F.; Yang, L.; Hu, S. Effect of sodium sulfate and C-S-H seeds on the reaction of fly ash with different amorphous alumina contents. ACS Sustain. Chem. Eng. 2020, 8, 1659–1670. [Google Scholar] [CrossRef]
- Benehelal, E.; Zahedi, G.; Hashim, H. A novel design for green and economical cement manufacturing. J. Clean. Prod. 2012, 22, 60–66. [Google Scholar] [CrossRef]
- Haw, T.T.; Hart, F.; Rashidi, A.; Pasbakhsh, P. Sustainable cementitious composites reinforced with metakaolin and halloysite nanotubes for construction and building applications. Appl. Clay Sci. 2020, 188, 105533. [Google Scholar] [CrossRef]
- Afkhami, B.; Akbarian, B.; Beheshti, N.; Kakaee, A.H.; Shabani, B. Energy consumption assessment in a cement production plant. Sustain. Energy Technol. Assess. 2015, 10, 84–89. [Google Scholar] [CrossRef]
- Madlool, N.A.; Saidur, R.; Hossain, M.S.; Rahim, N.A. A critical review on energy use and savings in the cement industries. Renew. Sustain. Energy Rev. 2011, 15, 2042–2060. [Google Scholar] [CrossRef]
- Gielen, D.; Taylor, P. Indicators for industrial energy efficiency in India. Energy 2009, 34, 962–969. [Google Scholar] [CrossRef]
- Atmaca, A.; Yumrutas, R. Analysis of the parameters effecting energy consumption of a rotary kiln in cement industry. Appl. Therm. Eng. 2014, 66, 435–444. [Google Scholar] [CrossRef]
- Radwan, A.M. Different possible ways for saving energy in the cement production. Adv. Appl. Sci. Res. 2012, 3, 1162–1174. [Google Scholar]
- Mikulcic, H.; Vujanovic, M.; Duic, N. Improving the sustainability of cement production by using numerical simulation of limestone thermal degradation and pulverized coal combustion in a cement calciner. J. Clean. Prod. 2015, 88, 262–271. [Google Scholar] [CrossRef] [Green Version]
- Grillo Reno, M.L.; Ferrari Alves, L.F.; Escobar Palacio, J.C.; Souza, L.; Centeno González, F.O.; Pacheco Torres, P.J. Environmental analyze of cement production with application of wastes. Engevista 2017, 19, 916–930. [Google Scholar] [CrossRef]
- Long, G.; Gao, Y.; Xie, Y. Designing more sustainable and greener self-compacting concrete. Constr. Build. Mater. 2015, 84, 301–306. [Google Scholar] [CrossRef]
- Mikulcic, H.; Vujanovic, M.; Duic, N. Reducing the CO2 emissions in Croatian cement industry. Appl. Energy Prod. 2013, 101, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Mikulcic, H.; Vujanovic, M.; Markovska, N.; Filkoski, R.V.; Ban, M.; Duic, N. CO2 emission reduction in the cement industry. Chem. Eng. Trans. 2013, 35, 703–708. [Google Scholar]
- Ali, M.B.; Saidur, R.; Hossain, M.S. A review on emission analysis in cement industries. Renew. Sustain. Energy Rev. 2011, 15, 2252–2261. [Google Scholar] [CrossRef]
- Jahromy, S.S.; Azam, M.; Jordan, C.; Harasek, M.; Winter, F. The potential use of fly ash from the pulp and paper industry as thermochemical energy and CO2 storage material. Energies 2021, 14, 3348. [Google Scholar] [CrossRef]
- Voldsund, M.; Gardarsdottir, S.O.; Lena, E.D.; Pérez-Calvo, J.-F.; Jamali, A.; Berstad, D.; Fu, C.; Romano, M.; Roussanaly, S.; Anantharaman, R.; et al. Comparison of technologies for CO2 capture from cement production–Part 1: Technical evaluation. Energies 2019, 12, 559. [Google Scholar] [CrossRef] [Green Version]
- Gardarsdottir, S.O.; Lena, E.D.; Romano, M.; Roussanaly, S.; Voldsund, M.; Pérez-Calvo, J.-F.; Berstad, D.; Fu, C.; Anantharaman, R.; Sutter, D.; et al. Comparison of technologies for CO2 capture from cement production–Part 2: Cost analysis. Energies 2019, 12, 542. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Liu, H.; Hou, Z.; Mehmood, F.; Liao, J.; Feng, W. A review of CO2 storage in view of safety and cost-effectiveness. Energies 2020, 13, 600. [Google Scholar] [CrossRef] [Green Version]
- Sadowski, T.; Golewski, G.L. A failure analysis of concrete composites incorporating fly ash during torsional loading. Compos. Struct. 2018, 183, 527–535. [Google Scholar] [CrossRef]
- Kovacik, J.; Marsavina, L.; Linul, E. Poisson’s ratio of closed-cell aluminum foams. Materials 2018, 11, 1904. [Google Scholar] [CrossRef] [Green Version]
- Raheel, M.; Rahman, F.; Ali, Q. A stoichiometric approach to find optimum amount of fly ash needed in cement concrete. SN Appl. Sci. 2020, 2, 1100. [Google Scholar] [CrossRef]
- Kang, S.-H.; Kwon, Y.-H.; Moon, J. Quntitative analysis of CO2 uptake and mechanical properties of air lime-based materials. Energies 2019, 12, 2903. [Google Scholar] [CrossRef] [Green Version]
- Golewski, G.L.; Gil, D.M. Studies of fracture toughness in concretes containing fly ash and silica fume in the first 28 days of curing. Materials 2021, 14, 319. [Google Scholar] [CrossRef] [PubMed]
- Chajec, A. Granite powder vs. fly ash for the sustainable production of air-cured cementitious mortars. Materials 2021, 14, 1208. [Google Scholar] [CrossRef]
- Miraldo, S.; Lopes, S.; Pcheco-Torgal, F.; Lopes, A. Advantages and shortcomings of the utilization of recycled wastes as aggregates in structural concretes. Constr. Build. Mater. 2021, 298, 123729. [Google Scholar] [CrossRef]
- Golewski, G.L. Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading. Struct. Eng. Mech. 2017, 62, 1–9. [Google Scholar] [CrossRef]
- Golewski, G.L. Effect of fly ash addition on the fracture toughness of plain concrete at third model of fracture. J. Civ. Eng. Manag. 2017, 23, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Torgal, F. High tech startup creation for energy efficient built environment. Ren. Sust. Ener. Rev. 2017, 71, 618–629. [Google Scholar] [CrossRef] [Green Version]
- Deja, J.; Uliasz-Bochenczyk, A.; Mokrzycki, E. CO2 emissions from Polish cement industry. Int. J. Greenh. Gas. Control. 2010, 4, 583–588. [Google Scholar] [CrossRef]
- Ali, N.; Jaffar, A.; Anwer, M.; Khan, S.; Anjum, M.N.; Hussain, A.; Raja, M.; Ming, X. The greenhouse gas emissions produced by cement production and its impact on environment: A review of global cement processing. Int. J. Res. 2015, 2, 488–500. [Google Scholar]
- Benehelal, E.; Zahedi, G.; Shamsaei, E.; Bahadori, A. Global strategies and potentials to curb CO2 emissions in cement industry. J. Clean. Prod. 2013, 51, 142–161. [Google Scholar] [CrossRef]
- Gil, D.M.; Golewski, G.L. Potential of siliceous fly ash and silica fume as a substitute of binder in cementitious concrete. E3S Web Conf. 2018, 49, 00030. [Google Scholar] [CrossRef] [Green Version]
- Gil, D.M.; Golewski, G.L. Effect of silica fume and siliceous fly ash addition on the fracture toughness of plain concrete in mode I. IOP Conf. Ser. Mater. Sci. Eng. 2018, 416, 012065. [Google Scholar] [CrossRef]
- Gursel, A.P.; Maryman, H.; Ostertag, C. A life-cycle approach to environmental, mechanical, and durability properties of “green” concrete mixes with rice husk ash. J. Clean. Prod. 2016, 112, 823–836. [Google Scholar] [CrossRef]
- Meyer, C. The greening of the concrete industry. Cem. Concr. Compos. 2009, 31, 601–605. [Google Scholar] [CrossRef]
- Imbabi, M.S.; Carrigan, C.; McKenna, S. Trends and development in green cement and concrete technology. Int. J. Sust. Bui. Environ. 2012, 1, 194–216. [Google Scholar] [CrossRef] [Green Version]
- Al-Mansour, A.; Chow, C.L.; Feo, L.; Penna, R.; Lau, D. Green concrete: By-products utilization and advanced approaches. Sustainability 2019, 11, 5145. [Google Scholar] [CrossRef] [Green Version]
- USGS. Mineral Commodity Summaries, 2001, 2011, 2020; U.S. Geological Survey: Reston, VA, USA. Available online: https://www.usgs.gov/centers/nmic/mineral-commodity-summaries (accessed on 18 February 2020).
- Golewski, G.L. Validation of the favorable quantity of fly ash in concrete and analysis of crack propagation and its length—Using the crack tip tracking (CTT) method—In the fracture toughness examinations under Mode II, through digital image correlation. Constr. Build. Mater. 2021, 296, 122362. [Google Scholar] [CrossRef]
- Barnat-Hunek, D.; Grzegorczyk-Frańczak, M.; Szymańska-Chargot, M.; Łagód, G. Effect of eco-friendly cellulose nanocrystals on physical properties of cement mortars. Polymers 2019, 11, 2088. [Google Scholar] [CrossRef] [Green Version]
- Thenepalili, T.; Ngoc, N.T.M.; Tuấn, L.; Son, T.H.; Hieu, H.H.; Thuy, D.T.N.; Thao, N.T.T.; Tam, D.T.T.; Huyen, N.; Van, T.T.; et al. Technological solutions for recycling ash slag from the Cao Ngan Coal Power Plant in Vietnam. Energies 2018, 11, 2018. [Google Scholar] [CrossRef] [Green Version]
- Vishwakarma, V.; Ramachadran, D. Green concrete mix using solid waste and nanoparticles as alternatives–A review. Constr. Build. Mater. 2018, 162, 96–103. [Google Scholar] [CrossRef]
- Golewski, G.L. Evaluation of fracture processes under shear with the use of DIC technique in fly ash concrete and accurate measurement of crack path lengths with the use of a new crack tip tracking method. Measurement 2021, 181, 109632. [Google Scholar] [CrossRef]
- Rahimireskati, S.; Ghabraie, K.; Garcez, E.O.; Al-Ameri, R. Improving sorptivity and electrical resistivity of concrete utilizing biomedical polymeric waste sourced from dialysis tratment. Int. J. Sus. Eng. 2021. [Google Scholar] [CrossRef]
- Szeląg, M. Evaluation of cracking patterns in cement composites—From basics to advances: A review. Materials 2020, 13, 2490. [Google Scholar] [CrossRef] [PubMed]
- Huntzinger, D.N.; Eatmon, T.D. A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies. J. Clean. Prod. 2009, 17, 668–675. [Google Scholar] [CrossRef]
- Glavind, M. Guidelines for Green Concrete Structures; fib Bulletin 67; Guide to good practice; International Federation for Structural Concrete (fib): Lusanne, Switzerland, 2012. [Google Scholar]
- Suchorab, Z.; Franus, M.; Barnat-Hunek, D. Properties of fibrous concrete made with plastic fibers from E-Waste. Materials 2020, 13, 2414. [Google Scholar] [CrossRef] [PubMed]
- Szcześniak, A.; Zychowicz, J.; Stolarski, A. Influence of fly ash additive on the properties of concrete with slag cement. Materials 2020, 13, 3265. [Google Scholar] [CrossRef] [PubMed]
- Mehri Khansari, N.; Fakoor, M.; Berto, F. Probabilistic micromechanical damage model for mixed mode I/II fracture investigation of composite materials. Theor. Appl. Fract. Mech. 2019, 99, 177–193. [Google Scholar] [CrossRef]
- Golewski, G.L. Effect of curing time on the fracture toughness of fly ash concrete composites. Compos. Struct. 2018, 185, 105–112. [Google Scholar] [CrossRef]
- Golewski, G.L.; Sadowski, T. A study of mode III fracture toughness in young and mature concrete with fly ash additive. Solid State Phenom. 2016, 254, 120–125. [Google Scholar] [CrossRef]
- Khaji, Z.; Fakoor, M. Strain energy release rate in combination with reinforcement isotropic solid model (SERIS): A new mixed-mode I/II criterion to investigate fracture behavior of orthotropic materials. Theor. Appl. Fract. Mech. 2021, 113, 102962. [Google Scholar] [CrossRef]
- Ji, G.; Peng, X.; Wang, S.; Hu, C.; Ran, P.; Sun, K.; Zeng, L. Influence of magnesium slag as a mineral admixture on the performance of concrete. Constr. Build. Mater. 2021, 295, 123619. [Google Scholar] [CrossRef]
- Figala, P.; Drochytka, R.; Cerny, V.; Kolisko, J. Structure of polymer-cement composite optimized with secondary raw materials. Mater. Struct. Tech. 2018, 1, 26–31. [Google Scholar] [CrossRef]
- Chen, Y.-G.; Guan, L.-L.; Zhu, A.-Y.; Chen, W.-J. Foamed concrete containing fly ash: Properties and application to backfilling. Constr. Build. Mater. 2021, 273, 121685. [Google Scholar] [CrossRef]
- Golewski, G.L. Generalized fracture toughness and compressive strength of sustainable concrete including low calcium fly ash. Materials 2017, 10, 1393. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Sun, H.; Tian, J.; Yang, Q.; Wan, Q. Mechanical and ultrasonic testing of self-compacting concrete. Energies 2019, 12, 2187. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Sun, H.; Zhang, W.; Gou, H.; Yang, Q. Study on mechanical properties of self-compacting concrete and its filled in-line multi-cavity steel tube bundle shear wall. Energies 2019, 12, 3466. [Google Scholar] [CrossRef] [Green Version]
- Abolhasani, A.; Nazarpour, H.; Dehestani, M. Effects of silicate impurities on fracture behavior and microstructure of calcium aluminate cement concrete. Eng. Fract. Mech. 2021, 242, 107446. [Google Scholar] [CrossRef]
- Fakoor, M.; Rafiee, R.; Zare, S. Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials. Steel Compos. Struct. 2019, 30, 1–12. [Google Scholar]
- Berto, F.; Ayatollahi, M.; Marsavina, L. Mixed Mode Fracture. Theoret. Appl. Fract. Mech. 2017, 91, 1. [Google Scholar] [CrossRef]
- Lata, P.; Kaur, I.; Singh, K. Transversely isotropic thin circular plate with multi-dual-phase lag heat transfer. Steel Compos. Struct. 2020, 35, 343–351. [Google Scholar]
- Lata, P.; Kaur, I. Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without Energy dissipation. Steel Compos. Struct. 2019, 32, 779–793. [Google Scholar]
- Shill, S.K.; Al-Deen, S.; Ashraf, M.; Hutchison, W.; Hossain, M.M. Performance of amine cured epoxy and silica fume modified cement mortar under military airbase operating conditions. Constr. Build. Mater. 2020, 232, 117280. [Google Scholar] [CrossRef]
- Shill, S.K.; Al-Deen, S.; Ashraf, M.; Hutchison, W. Resistance of fly ash based geopolymer mortar to both chemicals and high thermal cycles simultaneously. Constr. Build. Mater. 2020, 239, 117886. [Google Scholar] [CrossRef]
- Zhang, P.; Han, S.; Golewski, G.L.; Wang, X. Nanoparticle-reinforced building materials with applications in civil engineering. Adv. Mech. Eng. 2020, 12, 1–4. [Google Scholar] [CrossRef]
- Szeląg, M. Development of cracking patterns in modified cement matrix with microsilica. Materials 2018, 11, 1928. [Google Scholar] [CrossRef] [Green Version]
- Szostak, B.; Golewski, G.L. Effect of nano admixture of CSH on selected strength parameters of concrete including fly ash. IOP Conf. Ser. Mater. Sci. Eng. 2018, 416, 012105. [Google Scholar] [CrossRef]
- Szostak, B.; Golewski, G.L. Improvement of strength parameters of cement matrix with the addition of siliceous fly ash by using nanometric C-S-H seeds. Energies 2020, 13, 6734. [Google Scholar] [CrossRef]
- Lothenbach, B.; Scrivener, K.; Hooton, R.D. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Snellings, R.; Martens, G.; Elsen, J. Supplementary cementitious materials. Rev. Miner. Geochem. 2012, 74, 211–278. [Google Scholar] [CrossRef]
- Booya, E.; Gorospe, K.; Ghaedenia, H.; Das, S. Durability properties of engineered pulp fibre reinforced concretes made with and without supplementary cementitious materials. Compos. B Eng. 2019, 172, 376–386. [Google Scholar] [CrossRef]
- Luhar, S.; Cheng, T.-W.; Luhar, I. Incorporation of natural waste from agricultural and aquacultural farming as Supplementary Materials with green concrete: A review. Compos. B Eng. 2019, 175, 107076. [Google Scholar] [CrossRef]
- Pacewska, B.; Wilińska, I. Usage of supplementary cementitious materials: Advantages and limitations. Part I. C-S-H, C-A-S-H and other products formed in different binding mixtures. J. Therm. Anal. Cal. 2020, 142, 371–393. [Google Scholar] [CrossRef]
- Xie, T.; Yang, G.; Zhao, X.; Xu, J.; Fang, C. A unified model for predicting the compressive strength of recycled aggregate concrete containing supplementary cementitious materials. J. Clean. Prod. 2020, 251, 119752. [Google Scholar] [CrossRef]
- Duchesne, J. Alternative supplementary cementitious materials for sustainable concrete structures: A review on characterization and properties. Waste Biomass Valorization 2021, 12, 1219–1236. [Google Scholar] [CrossRef]
- Yang, K.-H.; Jung, Y.-B.; Cho, M.-S.; Tae, S.-H. Effect of supplementary cementitious materials on reduction of CO2 emission from concrete. J. Clean. Prod. 2016, 112, 4041–4052. [Google Scholar]
- Hossain, M.U.; Poon, C.S.; Dong, Y.H.; Xuan, D. Evaluation of environmental impact distribution methods for supplementary cementitious materials. Renew. Sustain. Energy Rev. 2018, 82, 597–608. [Google Scholar] [CrossRef]
- Golewski, G.L.; Sadowski, T. Experimental investigation and numerical modeling fracture processes in fly ash concrete at early age. Solid State Phenom. 2012, 188, 158–163. [Google Scholar] [CrossRef]
- Wang, X.; Gao, M.; Wang, M.; Wu, C. Chloride removal from municipal solid waste incineration fly ash using lactic acid fermentation broth. Waste Manag. 2021, 130, 23–29. [Google Scholar] [CrossRef]
- Hemalatha, T.; Ramaswamy, A. A review on fly ash characteristics—Towards promoting high volume utilization in developing sustainable concrete. J. Clean. Prod. 2017, 147, 546–559. [Google Scholar] [CrossRef]
- Golewski, G.L. The influence of microcrack width on the mechanical parameters in concrete with the addition of fly ash: Consideration of technological and ecological benefits. Constr. Build. Mater. 2019, 197, 849–861. [Google Scholar] [CrossRef]
- Belviso, C. State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues. Progr. Ener. Combus. Sci. 2018, 65, 109–135. [Google Scholar] [CrossRef]
- Golewski, G.L. Studies of natural radioactivity of concrete with siliceous fly ash addition. Cem. Wapno Beton 2015, 2, 106–114. [Google Scholar]
- Deng, S.; Shu, Y.; Li, S.; Tian, G.; Huang, J.; Zhang, F. Chemical forms of the fluorine, chlorine, oxygen and carbon in coal fly ash and their correlations with mercury retention. J. Hazard. Mater. 2016, 301, 400–406. [Google Scholar] [CrossRef]
- Ikponmwosa, E.E.; Ehikhuenmen, S.O.; Irene, K.K. Comparative study and empirical modelling of pulverized coconut shell, periwinkle shell and palm kernel shell as a pozzolans in concrete. Acta Polytech. 2019, 59, 560–572. [Google Scholar] [CrossRef]
- Golewski, G.L. Energy savings associated with the use of fly ash and nanoadditives in the cement composition. Energies 2020, 13, 2184. [Google Scholar] [CrossRef]
- Barnat-Hunek, D.; Grzegorczyk-Frańczak, M.; Klimek, B.; Pavlikova, M.; Pavlik, Z. Properties of multi-layer renders with fly ash and boiler slag admixtures for salt-laden masonry. Constr. Build. Mater. 2021, 278, 122366. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Afshoon, I.; Bayatpour, M.A.; Davarpanah, A.; Mahmoud Miri, T.Q. Effect of waste glass and curing aging on fracture toughness of self-compacting mortars using ENDB specimen. Constr. Build. Mater. 2021, 282, 122711. [Google Scholar] [CrossRef]
- Rahmani, E.; Sharbatdar, M.K.; Beygi, M.H.A. Influence of cement contents on the fracture parameters of Roller compacted concrete pavement (RCCP). Constr. Build. Mater. 2021, 289, 123159. [Google Scholar] [CrossRef]
- Golewski, G.L.; Sadowski, T. Macroscopic evaluation of fracture processes in fly ash concrete. Solid State Phenom. 2016, 254, 188–193. [Google Scholar] [CrossRef]
- Golewski, G.L. Green concrete composite incorporating fly ash with high strength and fracture toughness. J. Clean. Prod. 2018, 172, 218–226. [Google Scholar] [CrossRef]
- Golewski, G.L. Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure. Mater. Charact. 2017, 134, 335–346. [Google Scholar] [CrossRef]
- Dragas, J.; Tosic, N.; Ignatovic, S.; Marinkovic, S. Mechanical and time-dependent properties of high-volume fly ash concrete for structural use. Mag. Concr. Res. 2016, 68, 632–645. [Google Scholar] [CrossRef]
- Kosior-Kazberuk, M.; Lelusz, M. Strength development of concrete with fly ash addition. J. Civ. Eng. Manag. 2007, 13, 115–122. [Google Scholar] [CrossRef]
- Golewski, G.L. An analysis of fracture toughness in concrete with fly ash addition, considering all models of cracking. IOP Conf. Ser. Mater. Sci. Eng. 2018, 416, 012029. [Google Scholar] [CrossRef] [Green Version]
- Golewski, G.L.; Sadowski, T. The fracture toughness the KIIIC of concretes with fly ash (FA) additive. Constr. Build. Mater. 2017, 143, 444–454. [Google Scholar] [CrossRef]
- Golewski, G.L. Changes in the fracture toughness under mode II loading of low calcium fly ash (LCFA) concrete depending on ages. Materials 2020, 13, 5241. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, A.; Memon, S.A.; Lo, T.Y. The performance of fly ash and metakaolin concrete at elevated temperatures. Constr. Build. Mater. 2014, 62, 67–76. [Google Scholar] [CrossRef]
- Cai, X.; He, Z.; Tang, S.; Chen, X. Abrasion erosion characteristics of concrete made with moderate heat Portland cement, fly ash and silica fume using sandblasting test. Constr. Build. Mater. 2016, 127, 804–814. [Google Scholar] [CrossRef]
- Golewski, G.L. A new principles for implementation and operation of foundations for machines: A review of recent advances. Struct. Eng. Mech. 2019, 71, 317–327. [Google Scholar]
- Golewski, G.L. On the special construction and materials conditions reducing the negative impact of vibrations on concrete structures. Mater. Today. Procs. 2021, 45, 4344–4348. [Google Scholar] [CrossRef]
- Park, S.; Beak, J.; Kim, K.; Park, Y.-J. Study on reduction effect of vibration propagation due to internal explosion using composite materials. Int. J. Concr. Struct. Mater. 2021, 15, 30. [Google Scholar] [CrossRef]
- Craciun, E.M. Energy criteria for crack propagation in prestresses elastic composites. Sol. Mech. Appl. 2008, 154, 193–237. [Google Scholar]
- Szostak, B.; Golewski, G.L. Rheology of cement pastes with siliceous fly ash and the C-S-H nano-admixture. Materials 2021, 14, 3640. [Google Scholar] [CrossRef]
- Hu, X.; Shi, C.; Shi, Z.; Tong, B.; Wang, D. Early age shrinkage and heat of hydration of cement-fly ash-slag ternary blends. Constr. Build. Mater. 2017, 153, 857–865. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Rukzon, S. Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar. Constr. Build. Mater. 2008, 22, 1601–1606. [Google Scholar] [CrossRef]
- Golewski, G.L.; Sadowski, T. An analysis of shear fracture toughness toughness KIIC and microstructure in concretes containing fly-ash. Constr. Build. Mater. 2014, 51, 207–214. [Google Scholar] [CrossRef]
- Joshaghani, A. The effect of trass and fly ash in minimizing alkali-carbonate reaction in concrete. Constr. Build. Mater. 2017, 150, 583–590. [Google Scholar] [CrossRef]
- Jingjing, L.; Fusheng, Z.; Long, X.; Bo, K.; Xiaohui, T.; Yongfeng, D.; Chengbin, Y. Mechanisms of stabilized/solidified heavy metal contaminated soils with cement-fly ash based on electrical resistivity measurements. Measurement 2019, 141, 85–94. [Google Scholar]
- Golewski, G.L. A novel specific requirements for materials used in reinforced concrete composites subjected to dynamic loads. Compos. Struct. 2019, 223, 110939. [Google Scholar] [CrossRef]
- Golewski, G.L. Physical characteristics of concrete, essential in design of fracture-resistant, dynamically loaded reinforced concrete structures. Mater. Des. Proc. Comm. 2019, 1, e82. [Google Scholar] [CrossRef] [Green Version]
- Mehdizadeh, M.; Maghshenas, A.; Khosnari, M.M. On the effect of internal friction on torsional and axial cyclic loading. Inter. J. Fat. 2021, 145, 106113. [Google Scholar] [CrossRef]
- Golewski, G.L. The beneficial effect of the addition of fly ash on reduction of the size of microcracks in the ITZ of concrete composites under dynamic loading. Energies 2021, 14, 668. [Google Scholar] [CrossRef]
- Biricik, H.; Sarier, N. Comparative study of the characteristics of nanosilica–, silica fume– and fly ash–incorporated cement mortars. Mater. Res. 2014, 17, 570–582. [Google Scholar] [CrossRef]
- Karim, M.R.; Zain, M.F.M.; Jamil, M.; Lai, F.C. Development of a zero-cement binder using slag, fly ash, and rice husk ash with chemical activator. Adv. Mater. Sci. Eng. 2015, 2015, 247065. [Google Scholar] [CrossRef] [Green Version]
- Golewski, G.; Sadowski, T. Fracture toughness at shear (mode II) of concretes made of natural and broken aggregates. Brittle Matrix Compos. 2006, 8, 537–546. [Google Scholar]
- Patel, N.; Dave, R.; Modi, S.; Joshi, C.; Vora, S.; Solanki, M. Effect of binary and quaternary blends on compressive strength. Int. J. Civ. Eng. Technol. 2016, 7, 242–246. [Google Scholar]
- El-Chabib, H.; Ibrahim, A. The performance of high-strength flowable concrete made with binary, ternary, or quaternary binder in hot climate. Constr. Build. Mater. 2013, 47, 245–253. [Google Scholar] [CrossRef]
- Manju, R.; Premalatha, J. Binary, ternary and quaternary effect of pozzolanic binders and filler materials on the properties of self compacting concrete (SCC). Int. J. Adv. Eng. Technol. 2016, 7, 674–683. [Google Scholar]
- Chinnaraju, K.; Subramanian, K.; Senthil Kumar, S.R.R. Strength properties of HPC using binary, ternary and quaternary cementitious blends. Struct. Concr. 2010, 11, 191–198. [Google Scholar] [CrossRef]
- More, S.; Londhe, R.S. Experimental analysis of quaternary cement binder. Recent Trends Civ. Eng. Technol. 2020, 10, 12–17. [Google Scholar]
- Pipilikaki, P.; Katsioti, M. Study of the hydration process of quaternary blended cements and durability of the produced mortars and concretes. Constr. Build. Mater. 2009, 23, 2246–2250. [Google Scholar] [CrossRef]
- Dave, N.; Misra, A.K.; Srivastava, A.; Sharma, A.K.; Kaushik, S.K. Study on quaternary micro-structure, strength, durability considering the influence of multi-factors. Constr. Build. Mater. 2017, 139, 447–457. [Google Scholar] [CrossRef]
- Dave, N.; Misra, A.K.; Srivastava, A.; Kaushik, S.K. Setting time and standard consistency of quaternary binders: The influence of cementitious material addition and mixing. Int. J. Sustain. Built Environ. 2017, 6, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Dave, N.; Misra, A.K.; Srivastava, A.; Kaushik, S.K. Experimental analysis of strength and durability properties of quaternary cement binder and mortar. Constr. Build. Mater. 2016, 107, 117–124. [Google Scholar] [CrossRef]
- Dave, N.; Misra, A.K.; Srivastava, A.; Sharma, A.K.; Kaushik, S.K. Green quaternary concrete composites: Characterization and evaluation of the mechanical properties. Struct. Concr. 2018, 19, 1280–1289. [Google Scholar] [CrossRef]
- Dhrangadharia, S.; Vishwakarma, S.; Kumar, A.; Saran, B. Effect of quaternary binders systems on mechanical properties of concrete. Int. J. Eng. Sci. Res. 2018, 6, 1–10. [Google Scholar]
- Manju, R.; Premalatha, J. Binary, ternary and quaternary effect of fillers on fresh and hardened properties of self compacting concrete (SCC). Int. J. Adv. Inf. Sci. Technol. 2014, 21, 12–19. [Google Scholar]
- Bassuoni, M.T.; Nehdi, M.L. Resistance of self-consolidating concrete of sulfuric acid attack with consecutive pH reduction. Cem. Concr. Res. 2007, 37, 1070–1084. [Google Scholar] [CrossRef]
- Papatzani, S.; Paine, K. Optimization of low-carbon footprint quaternary and quinary (37% fly ash) cementitious nanocomposites with polycarboxylate or aqueous nanosilica particles. Adv. Mater. Sci. Eng. 2019, 2019, 5931306. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ng, S.T.; Hossain, M.U. Approach to establish carbon emission benchmarking for construction materials. Car. Manag. 2019, 9, 1–18. [Google Scholar] [CrossRef]
- Keun-Hyeok, Y. Assessment of CO2 reduction of alkali-activated concrete. J. Clean. Prod. 2013, 39, 265–272. [Google Scholar]
- Mehta, P.K. Reducing the environmental impact of concrete. Concr. Inter. 2001, 23, 61–66. [Google Scholar]
- Mehta, P.K. Greening of the concrete industry for sustainable development. Concr. Inter. 2002, 24, 23–28. [Google Scholar]
- Habert, G.; Billard, C.; Rossi, P.; Chen, C.; Roussel, N. Cement production technology improvement compared to factor 4 objectives. Cem. Concr. Res. 2010, 40, 820–826. [Google Scholar] [CrossRef]
- Rathish Kumar, P.; Sumanth Reddy, C.; Saleem Baig, M. Compressive strength performance of high strength concretes using binary supplementary cementitious materials. Cem. Wapno Beton 2014, 1, 8–16. [Google Scholar]
- Warguła, Ł.; Kukla, M.; Lijewski, P.; Dobrzyński, M.; Markiewicz, F. Influence of innovative woodchipper speed control systems on exhaust gas emissions and fuel consumption in urban areas. Energies 2020, 13, 3330. [Google Scholar] [CrossRef]
- Shimizu, O.; Nagai, S.; Fujita, T.; Fujimoto, H. Potential for CO2 reduction by dynamic wireless power transfer for passenger vehicles in Japan. Energies 2020, 13, 3342. [Google Scholar] [CrossRef]
- Sanjuan, M.A.; Argiz, C.; Mora, P.; Zaragoza, A. Carbon dioxide uptake in the roadmap 2050 of the Spanish cement industry. Energies 2020, 13, 3452. [Google Scholar] [CrossRef]
- Miller, S.A.; Horvath, A.; Monteiro, P.J.M.; Ostertag, C.P. Greenhouse gas emissions from concrete can be reduced by using mix proportions, geometric aspects, and age as design factors. Environ. Res. Lett. 2015, 10, 114017. [Google Scholar] [CrossRef] [Green Version]
- Mikulcic, H.; Vujanovic, M.; Fidaros, D.K.; Priesching, P.; Minic, I.; Tatschl, R.; Duic, N.; Stefanovic, G. The application of CFD modelling to support the reduction of CO2 emissions in cement industry. Energy 2012, 45, 264–473. [Google Scholar] [CrossRef] [Green Version]
- Mikulcic, H.; Klemes, J.J.; Vujanovic, M.; Urbaniec, K.; Duic, N. Reducing greenhouse gasses emissions by fostering the deployment of alternative raw materials and energy sources in the cleaner cement manufacturing process. J. Clean. Prod. 2016, 136, 119–132. [Google Scholar] [CrossRef]
- Golewski, G.L. An assessment of microcracks in the Interfacial Transition Zone of durable concrete composites with fly ash additives. Compos. Struct. 2018, 200, 515–520. [Google Scholar] [CrossRef]
- Jin, R.; Chen, Q.; Soboyejo, A. Survey of the current status of sustainable concrete production in the U.S. Res. Conser. Recyc. 2015, 105, 148–159. [Google Scholar] [CrossRef]
- Kurdowski, W. Cement and Concrete Chemistry; Springer: Dordrecht, The Netherlands; New York, NY, USA, 2014. [Google Scholar]
- Beddu, S.; Ahmad, M.; Mohamad, D.; bin Noorul Ameen, M.I.; Itam, Z.; Mohd Kamal, N.L.; Nadiah Basri, N.A. Utilization of fly ash cenosphere to study mechanical and thermal properties of lightweight concrete. AIMS Mater. Sci. 2020, 7, 911–925. [Google Scholar] [CrossRef]
- Beaudoin, J.J. Comparision of mechanical properties of compacted calcium hydroxide and Portland cement paste systems. Cem. Concr. Res. 1983, 13, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Beaudoin, J.J.; Gu, P.; Myers, R.E. The fracture of C-S-H and C-S-H/CH mixtures. Cem. Concr. Res. 1998, 28, 341–347. [Google Scholar] [CrossRef]
- Golewski, G.L. Measurement of fracture mechanics parameters of concrete containing fly ash thanks to use of Digital Image Correlation (DIC) method. Measurement 2019, 135, 96–105. [Google Scholar] [CrossRef]
- Zhang, M.H. Microstructure, crack propagation, and mechanical properties of cement pastes containing high volumes of fly ashes. Cem. Concr. Res. 1995, 25, 1165–1178. [Google Scholar] [CrossRef]
- Golewski, G.L. Evaluation of morphology and size of cracks of the Interfacial Transition Zone (ITZ) in concrete containing fly ash (FA). J. Hazard. Mater. 2018, 357, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, V.G. Effect of fly ash of Portland cement systems. Part I. Low-calcium fly ash. Cem. Concr. Res. 1999, 29, 1727–1736. [Google Scholar] [CrossRef]
- Siddique, R. Effect of fine aggregate replacement with Class F fly ash on the mechanical properties of concrete. Cem. Concr. Res. 2003, 33, 539–547. [Google Scholar] [CrossRef]
- EN 197-1:2011. Cement–Part 1: Composition, Specifications and Conformity Criteria for Common Cements; NSAI Standard: Dublin, Ireland, 2011. [Google Scholar]
- EN 12390-3: 2011+AC: 2012. Testing Hardened Concrete–Part. 3: Compressive Strength of Test Specimens; British Standards Institution (BSI): London, UK, 2012. [Google Scholar]
- EN 12390-6: 2009. Testing Hardened Concrete–Part 6: Tensile Splitting Strenght of Test Specimens; British Standards Institution (BSI): London, UK, 2009. [Google Scholar]
- Golewski, G.L. Estimation of the optimum content of fly ash in concrete composite based on the analysis of fracture toughness tests using various measuring systems. Constr. Build. Mater. 2019, 213, 142–155. [Google Scholar] [CrossRef]
- Fraay, A.L.A.; Bijen, J.M.; de Haan, Y.M. The reaction of fly ash in concrete. A critical examination. Cem. Concr. Res. 1989, 19, 235–246. [Google Scholar] [CrossRef]
- Odler, I. Strength of cement (final report). Mater. Struct. 1991, 24, 143–157. [Google Scholar] [CrossRef]
Country | Production of Cement (mln ton) | Share(%) | Production of Clinker (mln ton) | Share(%) | Clinker/Cement Ratio |
---|---|---|---|---|---|
China | 2200 | 53.7 | 1970 | 53.2 | 0.90 |
India | 320 | 7.8 | 280 | 7.6 | 0.88 |
Vietnam | 95 | 2.3 | 90 | 2.4 | 0.95 |
United States | 89 | 2.2 | 103 | 2.8 | 1.16 |
Egypt | 76 | 1.9 | 48 | 1.3 | 0.63 |
Indonesia | 74 | 1.8 | 78 | 2.1 | 1.05 |
Iran | 60 | 1.5 | 81 | 2.2 | 1.35 |
Russia | 57 | 1.4 | 80 | 2.2 | 1.40 |
Republic of Korea | 55 | 1.3 | 50 | 1.4 | 0.91 |
Brazil | 55 | 1.3 | 60 | 1.6 | 1.09 |
Japan | 54 | 1.3 | 53 | 1.4 | 0.98 |
Turkey | 51 | 1.2 | 92 | 2.5 | 1.80 |
Poland | 19 | 0.5 | 13 | 0.4 | 0.68 |
Other Countries | 881 | 21.5 | 707 | 19.1 | 0.80 |
World total | 4100 | 100 | 3700 | 100 | 0.90 |
Phase Number | Stage | Activities |
---|---|---|
Phase 1 | Place of raw material acquisition |
|
Phase 2 | Concrete plant |
|
Phase 3 | Construction |
|
Phase 4 | Period of facility use |
|
Phase 5 | “The second life of the structure” |
|
Origin | Kind of SCMs | |||
---|---|---|---|---|
OPC | FA | SF | nS | |
Country | Poland | South Korea | ||
City | Chełm | Puławy | Łaziska | Seul |
Manufacturer | Cement Plant | Thermal-electric power station | Ironworks | OCI Chemical Company Ltd. |
Chemical | Component (wt %) | |||
---|---|---|---|---|
OPC | FA | SF | nS | |
SiO2 | 15.00 | 55.27 | 91.90 | >99.8 |
Al2O3 | 2.78 | 26.72 | 0.71 | - |
Fe2O3 | 2.72 | 6.66 | 2.54 | - |
CaO | 71.06 | 2.35 | 0.31 | - |
K2O | 1.21 | 3.01 | 1.53 | - |
SO3 | 4.56 | 0.47 | 0.45 | - |
MgO | 1.38 | 0.81 | 1.14 | - |
P2O5 | - | 1.92 | 0.63 | - |
TiO2 | - | 1.89 | 0.01 | - |
Ag2O | - | 0.10 | 0.07 | - |
MnO | - | - | 0.26 | - |
Cl | 0.08 | - | 0.28 | - |
Physical Parameter | Kind of SCMs | |||
---|---|---|---|---|
OPC | FA | SF | nS | |
Specific gravity (g/cm3) | 3.11 | 2.14 | 2.21 | 1.10 |
Blaine’s fineness (m2/g) | 0.33 | 0.36 | 1.40 | 200 |
Average particle diameter (μm) | 40 | 30 | 11 | 0.012 |
Color (visually) | Light gray | Dark gray | Black | White |
Proportion of Binder Components (%) | |||||
---|---|---|---|---|---|
Mix | Type of Binders | OPC | FA | SF | nS |
REF | Reference | 100 | – | – | – |
Q | Quaternary | ||||
Q1 | 85 | 0 | 10 | 5 | |
Q2 | 80 | 5 | 10 | 5 | |
Q3 | 70 | 15 | 10 | 5 |
Mix | Analysed Parameters (MPa) | |
---|---|---|
fcm ± δ | fctm ± δ | |
REF | 38.32 ± 1.74 | 2.90 ± 0.24 |
Q1 | 53.89 ± 2.61 | 4.02 ± 0.30 |
Q2 | 56.77 ± 3.36 | 4.26 ± 0.35 |
Q3 | 50.12 ± 4.52 | 3.76 ± 0.42 |
Mix | Morphological Characteristics of Cement Matrix (Based on Observations) |
---|---|
REF |
|
Q1 |
|
Q2 |
|
Q3 |
|
Mix | Annual Reduction of CO2 Emission (ton) |
---|---|
REF | 0 |
Q1 | 615,000,000 |
Q2 | 820,000,000 |
Q3 | 1,230,000,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golewski, G.L. Green Concrete Based on Quaternary Binders with Significant Reduced of CO2 Emissions. Energies 2021, 14, 4558. https://doi.org/10.3390/en14154558
Golewski GL. Green Concrete Based on Quaternary Binders with Significant Reduced of CO2 Emissions. Energies. 2021; 14(15):4558. https://doi.org/10.3390/en14154558
Chicago/Turabian StyleGolewski, Grzegorz Ludwik. 2021. "Green Concrete Based on Quaternary Binders with Significant Reduced of CO2 Emissions" Energies 14, no. 15: 4558. https://doi.org/10.3390/en14154558
APA StyleGolewski, G. L. (2021). Green Concrete Based on Quaternary Binders with Significant Reduced of CO2 Emissions. Energies, 14(15), 4558. https://doi.org/10.3390/en14154558