Experimental Studies of the Effect of Design and Technological Solutions on the Intensification of an Underground Coal Gasification Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determining the Sufficient Tightness of a Gas Generator
- (1)
- Permeability of the coal-overlaying thickness taking into account natural and artificial fractures of the coal-overlaying thickness without injection stowing of the deformed rocks is determined according to the formula (1):is coefficient of permeability taking into account natural and artificial fractures of the rock layers of the roof before stowing operations; is thickness of rock layers of the roof, m; is pressure within the roof rocks, MPa; is thickness of reaction channel, m; and is pressure within the reaction channel of a gas generator, MPa.
- (2)
- Permeability of the coal-overlaying thickness taking into account natural and artificial fractures of the coal-overlaying thickness after injection stowing of the deformed rocks is determined according to the formula (2):
2.2. Determining the Effect of Heat Exchange
2.3. Experimental Studies
- –
- Gas generator design with stowing of the deformed thickness of the roof rocks and the gasified space;
- –
- Gas generator design without stowing.
- –
- Without a flexible pipeline with the blow direction onto the reaction channel face;
- –
- With flexible pipelines with the blow direction through perforated nozzles onto the reaction channel face;
- –
- With flexible pipelines and activator in the reaction channel, with the blow direction onto the reaction channel face.
2.3.1. Experimental Stand Unit
- –
- An experimental stand;
- –
- A system of supply of separated and mixed blow mixture (blow reagents, see Section 2.3.3);
- –
- A gas outlet system;
- –
- A system of control and measuring equipment (temperature control and control of input and output gas mixtures).
2.3.2. Ultimate and Technical Composition of Coal
2.3.3. Blow Reagents
- Air blow (O2—21%, N2—79%);
- Air–steam blow (O2—21%, N2—79%, H2Osteam);
- Oxygen–steam blow (O2—35%, N2—65%, H2Osteam);
- Oxygen–enriched blow (O2—35%, N2—65%);
- Carbon dioxide and oxygen (O2—21%, CO2—10%, N2—69%).
2.3.4. Material and Heat Balance
- –
- Material balance of the oxidizing zone;
- –
- Material balance of the reducing zone;
- –
- Volumetric parameters of gas mixtures of a gas generator;
- –
- Chemical and physical efficiency of the gasification process;
- –
- Energy balance of the gasification process;
- –
- Total energy of the oxidizing and reducing zones.
2.3.5. Similarity Criteria
- –
- Kinetics of chemical reactions;
- –
- Gas dynamics and mass exchange of the oxidizing and reducing zones;
- –
- Convective and conductive heat exchange.
3. Results and Discussion
- (1)
- Without a flexible pipeline for blow direction onto the reaction channel face (design A);
- (2)
- With flexible pipelines for blow direction through perforated nozzles onto the reaction channel face (design B);
- (3)
- With flexible pipelines and activator in the reaction channel, with blow direction onto the reaction channel face (design C).
- (4)
- Figure 6 represents the results of a series of experiment studies.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kulikov, M.M.; Dulin, A.N.; Dulin, R.A. Prospects for Forming a Cluster for Deep Coal Processing in the Rostov Region. Smart Innov. Syst. Technol. 2019, 90–98. [Google Scholar] [CrossRef]
- Sekerin, V.; Dudin, M.; Gorokhova, A.; Bank, S.; Bank, O. Mineral resources and national economic security: Current features. Min. Miner. Depos. 2019, 13, 72–79. [Google Scholar] [CrossRef]
- Lishtvan, I.I.; Dudarchik, V.M.; Kraiko, V.M. Prospects for the deep processing of solid fossil fuels in Belarus. Solid Fuel Chem. 2017, 51, 267–272. [Google Scholar] [CrossRef]
- Tolmachev, O.; Urunov, A.; Muminova, S.; Dvoichenkova, G.; Davydov, I. Review of unconventional hydrocarbon resources:production technologies and opportunities for development. Min. Miner. Depos. 2020, 14, 113–121. [Google Scholar] [CrossRef]
- Bazaluk, O.; Havrysh, V.; Nitsenko, V.; Baležentis, T.; Streimikiene, D.; Tarkhanova, E.A. Assessment of Green Methanol Production Potential and Related Economic and Environmental Benefits: The Case of China. Energies 2020, 13, 3113. [Google Scholar] [CrossRef]
- Svyrydenko, D.; Mozgin, W. The Soft Power of the State as a Dialectic of Contemporary Dependencies in the International Arena. Ukrainian Policymaker 2019, 5, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Sai, K.; Malanchuk, Z.; Petlovanyi, M.; Saik, P.; Lozynskyi, V. Research of Thermodynamic Conditions for Gas Hydrates Formation from Methane in the Coal Mines. Solid State Phenom. 2019, 291, 155–172. [Google Scholar] [CrossRef]
- Krichevskiy, S. Evolution of technologies, “green” development and grounds of the general theory of technologies. Philos. Cosmol. 2015, 14, 120–139. [Google Scholar]
- Haiko, H.; Saik, P.; Lozynskyi, V. The Philosophy of Mining: Historical Aspect and Future Prospect. Philos. Cosmol. 2019, 22, 76–90. [Google Scholar] [CrossRef]
- Fyk, M.; Biletskyi, V.; Abbood, M.; Al-Sultan, M.; Abbood, M.; Abdullatif, H.; Shapchenko, Y. Modeling of the lifting of a heat transfer agent in a geothermal well of a gas condensate deposit. Min. Miner. Depos. 2020, 14, 66–74. [Google Scholar] [CrossRef]
- Bazaluk, O.; Slabyi, O.; Vekeryk, V.; Velychkovych, A.; Ropyak, L.; Lozynskyi, V. A Technology of Hydrocarbon Fluid Production Intensification by Productive Stratum Drainage Zone Reaming. Energies 2021, 14, 3514. [Google Scholar] [CrossRef]
- Chen, C.; Horio, M.; Kojima, T. Numerical simulation of entrained flow coal gasifiers. Part I: Modeling of coal gasification in an entrained flow gasifier. Chem. Eng. Sci. 2000, 55, 3861–3874. [Google Scholar] [CrossRef]
- Goncharenko, L.; Ryzhakova, A.; Sedova, N.; Efimov, I.; Akulinin, F. Survey of the world practice of implementing energy-efficient technologies in terms of mining enterprises. Min. Miner. Depos. 2019, 13, 63–71. [Google Scholar] [CrossRef]
- Duan, T.; Lu, C.; Xiong, S.; Fu, Z.; Zhang, B. Evaluation method of the energy conversion efficiency of coal gasification and related applications. Int. J. Energy Res. 2015, 40, 168–180. [Google Scholar] [CrossRef]
- Bhutto, A.W.; Bazmi, A.A.; Zahedi, G. Underground coal gasification: From fundamentals to applications. Prog. Energy Combust. Sci. 2013, 39, 189–214. [Google Scholar] [CrossRef]
- Akbarzadeh Kasani, H.; Chalaturnyk, R.J. Coupled reservoir and geomechanical simulation for a deep underground coal gasification project. J. Nat. Gas Sci. Eng. 2017, 37, 487–501. [Google Scholar] [CrossRef]
- Nakaten, N.; Kempka, T. Techno-Economic Comparison of Onshore and Offshore Underground Coal Gasification End-Product Competitiveness. Energies 2019, 12, 3252. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Liu, S. Life cycle energy consumption and GHG emissions of hydrogen production from underground coal gasification in comparison with surface coal gasification. Int. J. Hydrogen Energy 2021, 46, 9630–9643. [Google Scholar] [CrossRef]
- Shustov, O.; Pavlychenko, A.; Bondarenko, A.; Bielov, O.; Borysovska, O.; Abdiev, A. Substantiation into Parameters of Carbon Fuel Production Technology from Brown Coal. Mater. Sci. Forum 2021. Preprint. [Google Scholar]
- Shafirovich, E.; Varma, A. Underground Coal Gasification: A Brief Review of Current Status. Ind. Eng. Chem. Res. 2009, 48, 7865–7875. [Google Scholar] [CrossRef]
- Friedmann, S.J.; Upadhye, R.; Kong, F.-M. Prospects for underground coal gasification in carbon-constrained world. Energy Procedia 2009, 1, 4551–4557. [Google Scholar] [CrossRef] [Green Version]
- Kempka, T.; Plötz, M.-L.; Schlüter, R.; Hamann, J.; Deowan, S.A.; Azzam, R. Carbon dioxide utilisation for carbamide production by application of the coupled UCG-urea process. Energy Procedia 2011, 4, 2200–2205. [Google Scholar] [CrossRef] [Green Version]
- Buzylo, V.; Pavlychenko, A.; Savelieva, T.; Borysovska, O. Ecological aspects of managing the stressed-deformed state of the mountain massif during the development of multiple coal layers. E3S Web Conf. 2018, 60, 00013. [Google Scholar] [CrossRef] [Green Version]
- Medunić, G.; Mondol, D.; Rađenović, A.; Nazir, S. Review of the latest research on coal, environment, and clean technologies. Rud. Geol. Naft. Zb. 2018, 33, 13–21. [Google Scholar] [CrossRef]
- Novak, K.; Malvić, T.; Simon, K. Increased hydrocarbon recovery and CO2 management, a Croatian example. Environ. Earth Sci. 2012, 68, 1187–1197. [Google Scholar] [CrossRef]
- Popovych, V.; Telak, J.; Telak, O.; Malovanyy, M.; Yakovchuk, R.; Popovych, N. Migration of Hazardous Components of Municipal Landfill Leachates into the Environment. J. Ecol. Eng. 2020, 21, 52–62. [Google Scholar] [CrossRef]
- Menshov, O.; Sukhorada, A.; Homenko, R.; Kruglov, O. Ultradetailed Environmental Magnetic Investigations in Ukraine. Near Surf. Geosci. 2012, cp-306-00099. [Google Scholar] [CrossRef]
- Saik, P.; Petlevanyi, M.; Lozynskyi, V.; Sai, K.; Merzlikin, A. Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenom. 2018, 277, 221–231. [Google Scholar] [CrossRef]
- Bazaluk, O.; Sai, K.; Lozynskyi, V.; Petlovanyi, M.; Saik, P. Research into Dissociation Zones of Gas Hydrate Deposits with a Heterogeneous Structure in the Black Sea. Energies 2021, 14, 1345. [Google Scholar] [CrossRef]
- Sarhosis, V.; Kapusta, K.; Lavis, S. Underground coal gasification (UCG) in Europe: Field trials, laboratory experiments, and EU-funded projects. Undergr. Coal Gasif. Combust. 2018, 129–171. [Google Scholar] [CrossRef]
- Blinderman, M.S.; Klimenko, A.Y. Introduction to underground coal gasification and combustion. Undergr. Coal Gasif. Combust. 2018, 1–8. [Google Scholar] [CrossRef]
- Maev, S.; Blinderman, M.S.; Gruber, G.P. Underground coal gasification (UCG) to products: Designs, efficiencies, and economics. Undergr. Coal Gasif. Combust. 2018, 435–468. [Google Scholar] [CrossRef]
- Lozynskyi, V.; Medianyk, V.; Saik, P.; Rysbekov, K.; Demydov, M. Multivariance solutions for designing new levels of coal mines. Rud. Geol. Naft. Zb. 2020, 35, 23–32. [Google Scholar] [CrossRef]
- Motovilov, I.Y.; Telkov, S.A.; Barmenshinova, M.B.; Nurmanova, A.N. Examination of the preliminary gravity dressing influence on the Shalkiya deposit complex ore. Non Ferr. Met. 2019, 47, 3–8. [Google Scholar] [CrossRef]
- Gorova, A.; Pavlychenko, A.; Borysovs’ka, O. The study of ecological state of waste disposal areas of energy and mining companies. Annu. Sci. Tech. Colletion 2013, 169–172. [Google Scholar] [CrossRef]
- Nurpeisova, M.B.; Kurmanbaev, O.S. Laws of devolopment of geomechanical processes in the rock mass maykain mine. News Natl. Acad. Sci. Repub. Kazakhstan Ser. Geol. Tech. Sci. 2016, 6, 109–115. [Google Scholar]
- Dychkovskyi, R.; Shavarskyi, I.; Saik, P.; Lozynskyi, V.; Falshtynskyi, V.; Cabana, E. Research into stress-strain state of the rock mass condition in the process of the operation of double-unit longwalls. Min. Miner. Depos. 2020, 14, 85–94. [Google Scholar] [CrossRef]
- Babets, D.V.; Sdvyzhkova, O.O.; Larionov, M.H.; Tereshchuk, R.M. Estimation of rock mass stability based on probability approach and rating systems. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2017, 2, 58–64. [Google Scholar]
- Petlovanyi, M.; Lozynskyi, V.; Zubko, S.; Saik, P.; Sai, K. The influence of geology and ore deposit occurrence conditions on dilution indicators of extracted reserves. Rud. Geol. Naft. Zb. 2019, 34, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Zeynullin, A.A.; Abeuov, E.A.; Demin, V.F.; Aliev, S.B.; Kaynazarova, A.S.; Kaynazarov, A.S. Estimation of ways to maintain mining works based on the application of anchor anchoring in the mines of the Karaganda coal basin. Ugol 2021, 2, 4–9. [Google Scholar] [CrossRef]
- Kyrgizbayeva, G.; Nurpeisov, M.; Sarybayev, O. The monitoring of earth surface displacements during the subsoil development. New Dev. Min. Eng. 2015, 161–167. [Google Scholar] [CrossRef]
- Kolokolov, O.V.; Tabachenko, M.M.; Eyshinskiy, O.M.; Kuznetsov, V.G.; Kablanov, A.I.; Mikenberg, O.A. Teoriya I Praktika Termohimichnoii Tehnologiii Vidobutku ta Pererobki Vugillya; NMA: Dnipro, Ukraine, 2000; 281p. [Google Scholar]
- Petlovanyi, M.; Lozynskyi, V.; Saik, P.; Sai, K. Predicting the producing well stability in the place of its curving at the underground coal seams gasification. E3S Web Conf. 2019, 123, 01019. [Google Scholar] [CrossRef] [Green Version]
- Dubiński, J.; Turek, M. Basic Aspects of Productivity of Underground Coal Gasification Process. Arch. Min. Sci. 2015, 60, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.; Chen, Y.; Kong, L.; Sun, F.; Chen, S.; Dong, Z. Underground coal gasification and its strategic significance to the development of natural gas industry in China. Pet. Explor. Dev. 2019, 46, 205–215. [Google Scholar] [CrossRef]
- Imran, M.; Kumar, D.; Kumar, N.; Qayyum, A.; Saeed, A.; Bhatti, M.S. Environmental concerns of underground coal gasification. Renew. Sustain. Energy Rev. 2014, 31, 600–610. [Google Scholar] [CrossRef]
- Mao, F. Underground coal gasification (UCG): A new trend of supply-side economics of fossil fuels. Nat. Gas Ind. B 2016, 3, 312–322. [Google Scholar] [CrossRef]
- Sobczyk, E.J.; Wota, A.; Kopacz, M.; Frączek, J. Clean Coal Technologies–a chance for Poland’s energy security. Decision-making using AHP with Benefits, Opportunities, Costs and Risk Analysis. Gospod. Surowcami Miner. 2017, 33, 27–48. [Google Scholar] [CrossRef] [Green Version]
- Yang, L. Clean coal technology—Study on the pilot project experiment of underground coal gasification. Energy 2003, 28, 1445–1460. [Google Scholar] [CrossRef]
- Prabu, V.; Jayanti, S. Integration of underground coal gasification with a solid oxide fuel cell system for clean coal utilization. Int. J. Hydrogen Energy 2012, 37, 1677–1688. [Google Scholar] [CrossRef]
- Khadse, A.; Qayyumi, M.; Mahajani, S.; Aghalayam, P. Underground coal gasification: A new clean coal utilization technique for India. Energy 2007, 32, 2061–2071. [Google Scholar] [CrossRef]
- Xie, J.; Xin, L.; Hu, X.; Cheng, W.; Liu, W.; Wang, Z. Technical application of safety and cleaner production technology by underground coal gasification in China. J. Clean. Prod. 2020, 250, 119487. [Google Scholar] [CrossRef]
- Dychkovskyi, R.; Vladyko, O.; Maltsev, D.; Cabana, E.C. Some aspects of the compatibility of mineral mining technologies. Rud. Geol. Naft. Zb. 2018, 33, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Gayko, G.; Kasyanov, V. Utilizing Thermal Power Potential of Coal by Underground Burning (Gasification) of Thin Coal Layers. Int. Min. Forum 2007, 97–101. [Google Scholar] [CrossRef]
- Hu, Z.; Peng, Y.; Sun, F.; Chen, S.; Zhou, Y. Thermodynamic equilibrium simulation on the synthesis gas composition in the context of underground coal gasification. Fuel 2021, 293, 120462. [Google Scholar] [CrossRef]
- Małkowski, P.; Niedbalski, Z.; Hydzik-Wiśniewska, J. The Change of Structural and Thermal Properties of Rocks Exposed to High Temperatures in the Vicinity of Designed Geo-Reactor. Arch. Min. Sci. 2013, 58, 465–480. [Google Scholar]
- Wang, J.; Wang, Z.; Xin, L.; Xu, Z.; Gui, J.; Lu, X. Temperature field distribution and parametric study in underground coal gasification stope. Int. J. Therm. Sci. 2017, 111, 66–77. [Google Scholar] [CrossRef]
- Kapusta, K.; Stańczyk, K.; Wiatowski, M.; Chećko, J. Environmental aspects of a field-scale underground coal gasification trial in a shallow coal seam at the Experimental Mine Barbara in Poland. Fuel 2013, 113, 196–208. [Google Scholar] [CrossRef]
- Wiatowski, M.; Kapusta, K. Evolution of tar compounds in raw gas from a pilot-scale underground coal gasification (UCG) trial at Wieczorek mine in Poland. Fuel 2020, 276, 118070. [Google Scholar] [CrossRef]
- Laciak, M.; Kostúr, K.; Durdán, M.; Kačur, J.; Flegner, P. The analysis of the underground coal gasification in experimental equipment. Energy 2016, 114, 332–343. [Google Scholar] [CrossRef] [Green Version]
- Mocek, P.; Pieszczek, M.; Świądrowski, J.; Kapusta, K.; Wiatowski, M.; Stańczyk, K. Pilot-scale underground coal gasification (UCG) experiment in an operating Mine “Wieczorek” in Poland. Energy 2016, 111, 313–321. [Google Scholar] [CrossRef]
- Su, F.Q.; Itakura, K.; Hamanaka, A.; Deguchi, G.; Sato, K.; Kodama, J. Ex Situ UCG Model Experiments with Oxygen Enriched Air in an Artificial Coal Seam. Key Eng. Mater. 2017, 737, 379–384. [Google Scholar] [CrossRef]
- Doucet, D.; Perkins, G.; Ulbrich, A.; du Toit, E. Production of power using underground coal gasification. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 3653–3660. [Google Scholar] [CrossRef]
- Pivnyak, G.; Dychkovskyi, R.; Bobyliov, O.; Cabana, E.C.; Smoliński, A. Mathematical and Geomechanical Model in Physical and Chemical Processes of Underground Coal Gasification. Solid State Phenom. 2018, 277, 1–16. [Google Scholar] [CrossRef]
- Stańczyk, K.; Howaniec, N.; Smoliński, A.; Świądrowski, J.; Kapusta, K.; Wiatowski, M.; Rogut, J. Gasification of lignite and hard coal with air and oxygen enriched air in a pilot scale ex situ reactor for underground gasification. Fuel 2011, 90, 1953–1962. [Google Scholar] [CrossRef]
- Seifi, M.; Chen, Z.; Abedi, J. Numerical simulation of underground coal gasification using the CRIP method. Can. J. Chem. Eng. 2011, 89, 1528–1535. [Google Scholar] [CrossRef]
- Li, H.; Zha, J.; Guo, G.; Zheng, N.; Gong, Y. Improvement of resource recovery rate for underground coal gasification through the gasifier size management. J. Clean. Prod. 2020, 259, 120911. [Google Scholar] [CrossRef]
- Uwaoma, R.C.; Strydom, C.A.; Matjie, R.H.; Bunt, J.R.; van Dyk, J. The influence of the roof and floor geological structures on the ash composition produced from coal at UCG temperatures. Int. J. Coal Prep. Util. 2018, 40, 247–265. [Google Scholar] [CrossRef]
- Falshtynskyi, V.; Saik, P.; Lozynskyi, V.; Dychkovskyi, R.; Petlovanyi, M. Innovative aspects of underground coal gasification technology in mine conditions. Min. Miner. Depos. 2018, 12, 68–75. [Google Scholar] [CrossRef]
- Li, H.; Guo, G.; Zheng, N. Influence of coal types on overlying strata movement and deformation in underground coal gasification without shaft and prediction method of surface subsidence. Process Saf. Environ. Prot. 2018, 120, 302–312. [Google Scholar] [CrossRef]
- An, N.; Zagorščak, R.; Thomas, H.R.; Gao, W. A numerical investigation into the environmental impact of underground coal gasification technology based on a coupled thermal-hydro-chemical model. J. Clean. Prod. 2021, 290, 125181. [Google Scholar] [CrossRef]
- Róg, L. Vitrinite reflectance as a measure of the range of influence of the temperature of a georeactor on rock mass during underground coal gasification. Fuel 2018, 224, 94–100. [Google Scholar] [CrossRef]
- Kostúr, K.; Laciak, M.; Durdan, M. Some Influences of Underground Coal Gasification on the Environment. Sustainability 2018, 10, 1512. [Google Scholar] [CrossRef] [Green Version]
- Dvornikova, E.V. Environmental performance of underground coal gasification. Undergr. Coal Gasif. Combust. 2018, 363–399. [Google Scholar] [CrossRef]
- Shahbazi, M.; Najafi, M.; Marji, M.F. On the mitigating environmental aspects of a vertical well in underground coal gasification method. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 373–398. [Google Scholar] [CrossRef]
- Burchart-Korol, D.; Krawczyk, P.; Czaplicka-Kolarz, K.; Smoliński, A. Eco-efficiency of underground coal gasification (UCG) for electricity production. Fuel 2016, 173, 239–246. [Google Scholar] [CrossRef]
- Wang, G.X.; Wang, Z.T.; Feng, B.; Rudolph, V.; Jiao, J.L. Semi-industrial tests on enhanced underground coal gasification at Zhong-Liang-Shan coal mine. Asia Pac. J. Chem. Eng. 2009, 45, 771–779. [Google Scholar] [CrossRef]
- Saik, P.B.; Dychkovskyi, R.O.; Lozynskyi, V.H.; Malanchuk, Z.R.; Malanchuk, Y.Z. Revisiting the underground gasification of coal reserves from contiguous seams. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2016, 6, 60–66. [Google Scholar]
- Zhu, L.; Wang, F.; Zhang, Z. Thermodynamic evaluation of a conceptual process for coal gasification coupled with chemical looping air separation. Chem. Eng. Process. Process Intensif. 2016, 106, 33–41. [Google Scholar] [CrossRef]
- Koroviaka, Y.; Pinka, J.; Tymchenko, S.; Rastsvietaiev, V.; Astakhov, V.; Dmytruk, O. Elaborating a scheme for mine methane capturing while developing coal gas seams. Rozrobka Rodovyshch 2020, 14, 21–27. [Google Scholar] [CrossRef]
- Yang, L. Coal Properties and System Operating Parameters for Underground Coal Gasification. Energy Sources Part A Recovery Util. Environ. Eff. 2008, 30, 516–528. [Google Scholar] [CrossRef]
- Lazarenko, S.N.; Kochetkov, V.N. The underground coal gasification is the technology which answers to conditions of sustainable development of coal region. Mine Plan. Equip. Sel. 2020, 167–168. [Google Scholar] [CrossRef]
- Falshtynskyi, V.; Lozynskyi, V.; Saik, P.; Dychkovskyi, R.; Tabachenko, M. Substantiating parameters of stratification cavities formation in the roof rocks during underground coal gasification. Min. Miner. Depos. 2016, 10, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Majkherchik, T.; Gajko, G.I.; Malkowski, P. Deformation process around a heading investigation when front of longwall face advancing. Ugol 2002, 11, 27–29. [Google Scholar]
- Falshtynskyi, V.S.; Dychkovskyi, R.O.; Lozynskyi, V.G.; Saik, P.B. Determination of the Technological Parameters of Borehole Underground Coal Gasification for Thin Coal Seams. J. Sustain. Min. 2013, 12, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Prusek, S.; Lubosik, Z.; Rajwa, S.; Walentek, A.; Wrana, A. Geotechnical monitoring of rock mass and support behaviour around the UCG georeactor: Two case studies in Polish coal mining industry. In Proceedings of the International Conference on Ground Control in Mining, Hangzhou, China, 27–29 October 2017; pp. 321–328. [Google Scholar]
- Bondarenko, V.; Dychkovskiy, R.; Falshtynskiy, V. Synthetic Stowing of Rockmass at Borehole Underground Coal Gasification (BUCG). Deep Min. Chall. 2009, 169–177. [Google Scholar] [CrossRef]
- Buzylo, V.; Bondarenko, V.; Dychkovskiy, R.; Falshtynskiy, V. Parameters of Injection Fill above an Underground Gas Generator. Technical, Technological and Economical Aspects of Thin-Seams Coal Mining. Int. Min. Forum 2007, 89–95. [Google Scholar] [CrossRef]
- Falshtynskyi, V.; Dychkovskyi, R.; Saik, P.; Lozynskyi, V. Someaspectsoftechnologicalprocessescontrolofanin-situgasifierduringcoalseamgasification. In Progressive Technologies of Coal, Coalbed Methane, and Ores Mining; CRC Press: London, UK, 2014; pp. 109–112. [Google Scholar] [CrossRef]
- Saik, P.; Lozynskyi, V.; Chemeriachko, Y.; Cabana, E. Basics of the approach formation to substantiate the temperature field distribution during experimental research on the coal gasification processes. E3S Web Conf. 2020, 202, 01037. [Google Scholar] [CrossRef]
- Falshtynskyi, V.; Dychkovskyi, V.; Lozynskyi, V.; Saik, P. New method for justification the technological parameters of coal gasification in the test setting. Geomech. Process. Dur. Undergr. Min. Proc. Sch. Undergr. Min. 2012, 201–208. [Google Scholar] [CrossRef]
- Durdán, M.; Terpák, J.; Kačur, J.; Laciak, M.; Flegner, P. Modeling of material balance from the experimental UCG. Acta Polytech. 2020, 60, 391–399. [Google Scholar] [CrossRef]
- Lozynskyi, V.; Dychkovskyi, R.; Saik, P.; Falshtynskyi, V. Coal Seam Gasification in Faulting Zones (Heat and Mass Balance Study). Solid State Phenom. 2018, 277, 66–79. [Google Scholar] [CrossRef]
- Lozynskyi, V.; Saik, P.; Petlovanyi, M.; Sai, K.; Malanchuk, Z.; Malanchyk, Y. Substantiation into mass and heat balance for underground coal gasification in faulting zones. Inz. Miner. 2018, 19, 289–300. [Google Scholar] [CrossRef]
- Uciechowska-Grakowicz, A.; Strzelecki, T. Application of the thermoporoelasticity model in numerical modelling of underground coal gasification influence on the surrounding medium. Studia Geotech. Et Mech. 2021. in Press. [Google Scholar] [CrossRef]
- Janoszek, T.; Stańczyk, K.; Smoliński, A. Modelling Test of Autothermal Gasification Process Using CFD. Arch. Min. Sci. 2017, 62, 253–268. [Google Scholar] [CrossRef] [Green Version]
- Lozynskyi, V.H. Substantiation into Parameters of Borehole Underground Coal Gasification Technology in the Faulting Zone; National Mining University (Dnipro University of Technology): Dnipro, Ukraine, 2015; pp. 1–156. [Google Scholar]
- Pivnyak, G. Conditions of Suitability of Coal Seams for Underground Coal Gasification. Key Eng. Mater. 2020, 844, 38–48. [Google Scholar] [CrossRef]
- Savostianov, O.V. Matematychna model napryzhenno-deformovanoho stanu porodnoho masyvy pry pidzemnii hazyfikacii tverdoho palyva. Collect. Res. Pap. Natl. Min. Univ. 2008, 30, 44–56. [Google Scholar]
- Falshtynskyi, V.; Dychkovskyi, R.; Illiashov, M. Engineering support of BUCG process in Solenovsk coal deposits. Tech. Geoinf. Syst. Min. 2011, 47–56. [Google Scholar] [CrossRef]
- Hongtao, L.; Feng, C.; Xia, P.; Kai, Y.; Shuqin, L. Method of oxygen-enriched two-stage underground coal gasification. Min. Sci. Technol. 2011, 21, 191–196. [Google Scholar] [CrossRef]
- Yang, L.H.; Zhang, X.; Liu, S. Underground Coal Gasification Using Oxygen and Steam. Energy Sources Part A Recovery Util. Environ. Eff. 2009, 31, 1883–1892. [Google Scholar] [CrossRef]
- Eftekhari, A.A.; Wolf, K.H.; Rogut, J.; Bruining, H. Energy and exergy analysis of alternating injection of oxygen and steam in the low emission underground gasification of deep thin coal. Appl. Energy 2017, 208, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Liang, J.; Chang, J.; Yang, Z.; Yu, L. UCG model test of Huating coal with oxygen-steam as gasification agent. J. Southeast Univ. 2003, 33, 355–358. [Google Scholar]
- Sadasivam, S.; Zagorščak, R.; Thomas, H.R.; Kapusta, K.; Stańczyk, K. Experimental study of methane-oriented gasification of semi-anthracite and bituminous coals using oxygen and steam in the context of underground coal gasification (UCG): Effects of pressure, temperature, gasification reactant supply rates and coal rank. Fuel 2020, 268, 117330. [Google Scholar] [CrossRef]
- Marcourt, M.; Paquay, V.; Piel, A.; Pirard, J.-P. Coal gasification at pressure by mixtures of carbon dioxide and oxygen. Fuel 1983, 62, 823–828. [Google Scholar] [CrossRef]
- Chodankar, C.R.; Feng, B.; Ran, J.; Klimenko, A.Y. Kinetic study of the gasification of chinchilla coal char in carbon dioxide. Annu. Int. Pittsburgh Coal Conf. 2007, 3, 1280–1291. [Google Scholar]
- Jayaraman, K.; Gokalp, I. Effect of char generation method on steam, CO2 and blended mixture gasification of high ash Turkish coals. Fuel 2015, 153, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Chen, F.; Wang, Y.; Liu, G.; Yao, H.; Liu, S. Experimental Study of Reverse Underground Coal Gasification. Energies 2018, 11, 2949. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Liang, J.; Wang, Z.; Zhang, X.; Fan, C.; Liang, D.; Wang, X. Forward and reverse combustion gasification of coal with production of high-quality syngas in a simulated pilot system for in situ gasification. Appl. Energy 2014, 131, 9–19. [Google Scholar] [CrossRef]
- Cui, Y.; Liang, J.; Wang, Z.; Zhang, X.; Fan, C.; Wang, X. Experimental forward and reverse in situ combustion gasification of lignite with production of hydrogen-rich syngas. Int. J. Coal Sci. Technol. 2014, 1, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Elahi, S.M.; Nassir, M.; Chen, Z. Effect of various coal constitutive models on coupled thermo-mechanical modeling of underground coal gasification. J. Pet. Sci. Eng. 2017, 154, 469–478. [Google Scholar] [CrossRef]
- Perkins, G. Underground coal gasification–Part I: Field demonstrations and process performance. Prog. Energy Combust. Sci. 2018, 67, 158–187. [Google Scholar] [CrossRef]
- Kashyap, S.; Vairakannu, P. Movable injection point–based syngas production in the context of underground coal gasification. Int. J. Energy Res. 2020, 44, 3574–3586. [Google Scholar] [CrossRef]
- Yang, L. Study on the Method of Two-Phase Underground Coal Gasification with Unfixed Pumping Points. Energy Sour. 2003, 25, 917–930. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, F.; Zhang, Y.; Lv, W.; Zhang, Z. Development of gasification agent injection tool for underground coal gasification. E3S Web Conf. 2021, 267, 02056. [Google Scholar] [CrossRef]
Proximate Analysis | Ultimate Analysis | Combustion Heat (Qr), MJ/kg | Coal Density (γ), g/cm3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Wr, % | Wa, % | Ac, % | Sd, % | Vdaf, % | Cdaf, % | Hdaf, % | Odaf, % | Nr, % | ||
1.7 | 2.2 | 38.2 | 1.3 | 37.0 | 80.7 | 6.3 | 6.8 | 4.9 | 24.6 | 1.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazaluk, O.; Lozynskyi, V.; Falshtynskyi, V.; Saik, P.; Dychkovskyi, R.; Cabana, E. Experimental Studies of the Effect of Design and Technological Solutions on the Intensification of an Underground Coal Gasification Process. Energies 2021, 14, 4369. https://doi.org/10.3390/en14144369
Bazaluk O, Lozynskyi V, Falshtynskyi V, Saik P, Dychkovskyi R, Cabana E. Experimental Studies of the Effect of Design and Technological Solutions on the Intensification of an Underground Coal Gasification Process. Energies. 2021; 14(14):4369. https://doi.org/10.3390/en14144369
Chicago/Turabian StyleBazaluk, Oleg, Vasyl Lozynskyi, Volodymyr Falshtynskyi, Pavlo Saik, Roman Dychkovskyi, and Edgar Cabana. 2021. "Experimental Studies of the Effect of Design and Technological Solutions on the Intensification of an Underground Coal Gasification Process" Energies 14, no. 14: 4369. https://doi.org/10.3390/en14144369
APA StyleBazaluk, O., Lozynskyi, V., Falshtynskyi, V., Saik, P., Dychkovskyi, R., & Cabana, E. (2021). Experimental Studies of the Effect of Design and Technological Solutions on the Intensification of an Underground Coal Gasification Process. Energies, 14(14), 4369. https://doi.org/10.3390/en14144369