# Comparative Simulations of Conductive Nitrides as Alternative Plasmonic Nanostructures for Solar Cells

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Properties of Spherical Nanoparticles—Assessment of Scattering and Near-Field Enhancement

#### 2.1.1. Doped Baseline Solar Cell—Free Carrier Absorption in Doped Si

#### 2.1.2. Adding Nanoparticle Layers

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Catchpole, K.R.; Polman, A. Plasmonic solar cells. Opt. Express
**2008**, 16, 21793–21800. [Google Scholar] [CrossRef] [PubMed][Green Version] - Catchpole, K.R.; Polman, A. Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett.
**2008**, 93, 191113. [Google Scholar] [CrossRef][Green Version] - Tavkhelidze, A.; Bibilashvili, A.; Jangidze, L.; Gorji, N.E. Fermi-Level Tuning of G-Doped Layers. Nanomaterials
**2021**, 11, 505. [Google Scholar] [CrossRef] [PubMed] - David, C. Multi-type particle layer improved light trapping for photovoltaic applications. Appl. Opt.
**2016**, 55, 7980–7986. [Google Scholar] [CrossRef] [PubMed][Green Version] - Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater.
**2010**, 9, 205–213. [Google Scholar] [CrossRef] [PubMed] - Wang, E.; White, T.P.; Catchpole, K.R. Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells. Opt. Express
**2012**, 20, 13226–13237. [Google Scholar] [CrossRef] - Mokkapati, S.; Beck, F.J.; de Waele, R.; Polman, A.; Catchpole, K.R. Resonant nano-antennas for light trapping in plasmonic solar cells. J. Phys. D Appl. Phys.
**2011**, 44, 185101. [Google Scholar] [CrossRef] - Pillai, S.; Beck, F.J.; Catchpole, K.R.; Ouyang, Z.; Green, M.A. The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions. J. Appl. Phys.
**2011**, 109, 073105. [Google Scholar] [CrossRef] - Basch, A.; Beck, F.J.; Söderström, T.; Varlamov, S.; Catchpole, K.R. Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells. Appl. Phys. Lett.
**2012**, 100, 243903. [Google Scholar] [CrossRef] - Yan, W.; Stokes, N.; Jia, B.; Gu, M. Enhanced light trapping in the silicon substrate with plasmonic Ag nanocones. Opt. Lett.
**2013**, 38, 395–397. [Google Scholar] [CrossRef] - Cortés-Juan, F.; Chaverri Ramos, C.; Connolly, J.P.; David, C.; García de Abajo, F.J.; Hurtado, J.; Mihailetchi, V.D.; Ponce-Alcántara, S.; Sánchez, G. Effect of Ag nanoparticles integrated within antireflection coatings for solar cells. J. Renew. Sustain. Energy
**2013**, 5, 033116. [Google Scholar] [CrossRef] - Nozik, A.J. Multiple exciton generation in semiconductor quantum dots. Chem. Phys. Lett.
**2008**, 457, 3–11. [Google Scholar] [CrossRef] - Barugkin, C.; Allen, T.; Chong, T.K.; White, T.P.; Weber, K.J.; Catchpole, K.R. Light trapping efficiency comparison of Si solar cell textures using spectral photoluminescence. Opt. Express
**2015**, 23, A391–A400. [Google Scholar] [CrossRef][Green Version] - Barugkin, C.; Wan, Y.; Macdonald, D.; Catchpole, K.R. Evaluating plasmonic light trapping with photoluminescence. IEEE J. Photovolt.
**2013**, 3, 1292–1297. [Google Scholar] [CrossRef] - Mertens, H.; Biteen, J.S.; Atwater, H.A.; Polman, A. Polarization-Selective Plasmon-Enhanced Silicon Quantum-Dot Luminescence. Nano Lett.
**2006**, 6, 2622–2625. [Google Scholar] [CrossRef] - Yeshchenko, O.A.; Dmitruk, I.M.; Alexeenko, A.A.; Losytskyy, M.Y.; Kotko, A.V.; Pinchuk, A.O. Size-dependent surface-plasmonenhanced photoluminescence from silver nanoparticles embedded in silica. Phys. Rev. B
**2009**, 79, 235438. [Google Scholar] [CrossRef] - Yuan, Z.; Pucker, G.; Marconi, A.; Sgrignuoli, F.; Anopchenko, A.; Jestin, Y.; Ferrario, L.; Bellutti, P.; Pavesi, L. Silicon nanocrystals as a photoluminescence down shifter for solar cells. Sol. Energy Mater. Sol. Cells
**2011**, 95, 1224–1227. [Google Scholar] [CrossRef][Green Version] - Zhang, J.; Noguez, C. Plasmonic Optical Properties and Applications of Metal Nanostructures. Plasmonics
**2008**, 3, 127–150. [Google Scholar] [CrossRef] - Beck, F.J.; Mokkapati, S.; Catchpole, K.R. Light trapping with plasmonic particles: Beyond the dipole model. Opt. Express
**2011**, 19, 25230–25241. [Google Scholar] [CrossRef] [PubMed] - Albella, P.; García-Cueto, B.; González, F.; Moreno, F.; Wu, P.C.; Kim, T.H.; Brown, A.; Yang, Y.; Everitt, H.O.; Videen, G. Shape Matters: Plasmonic Nanoparticle Shape Enhances Interaction with Dielectric Substrate. Nano Lett.
**2011**, 11, 3531–3537. [Google Scholar] [CrossRef] [PubMed][Green Version] - Metaxa, C.; Kassavetis, S.; Pierson, J.; Gall, D.; Patsalas, P. Infrared Plasmonics with Conductive Ternary Nitrides. ACS Appl. Mater. Interfaces
**2017**, 9, 10825–10834. [Google Scholar] [CrossRef] [PubMed] - Patsalas, P.; Kalfagiannis, N.; Kassavetis, S. Optical Properties and Plasmonic Performance of Titanium Nitride. Materials
**2015**, 8, 3128. [Google Scholar] [CrossRef][Green Version] - Patsalas, P.; Kalfagiannis, N.; Kassavetis, S.; Abadias, G.; Bellas, D.; Lekka, C.; Lidorikis, E. Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics. Mater. Sci. Eng. R Rep.
**2018**, 123, 1–55. [Google Scholar] [CrossRef] - Milanova, M.; Donchev, V.; Kostov, K.L.; Alonso-Álvarez, D.; Terziyska, P.; Avdeev, G.; Valcheva, E.; Kirilov, K.; Georgiev, S. Study of GaAsSb:N bulk layers grown by liquid phase epitaxy for solar cells applications. Mater. Res. Express
**2019**, 6, 075521. [Google Scholar] [CrossRef] - Green, M.; Dunlop, E.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 57). Prog. Photovolt. Res. Appl.
**2020**, 29, 3–15. [Google Scholar] [CrossRef] - Hamed, T.A.; Adamovic, N.; Aeberhard, U.; Alonso-Alvarez, D.; Amin-Akhlaghi, Z.; Der Maur, M.A.; Beattie, N.; Bednar, N.; Berland, K.; Birner, S.; et al. Multiscale in modelling and validation for solar photovoltaics. EPJ Photovolt.
**2018**, 9, 10. [Google Scholar] [CrossRef] - Raza, S.; Bozhevolnyi, S.I.; Wubs, M.; Mortensen, N.A. Nonlocal optical response in metallic nanostructures. J. Phys. Cond. Matter.
**2015**, 27, 183204. [Google Scholar] [CrossRef][Green Version] - Krasavin Alexey, V.; Pavel, G.; Zayats Anatoly, V. Free-electron Optical Nonlinearities in Plasmonic Nanostructures: A Review of the Hydrodynamic Description. Laser Photonics Rev.
**2018**, 12, 1700082. [Google Scholar] [CrossRef][Green Version] - Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys.
**1908**, 330, 377–445. [Google Scholar] [CrossRef] - Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A.M.; Novo, C.; Mulvaney, P.; Liz-Marzán, L.M.; de Abajo, F.J.G. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev.
**2008**, 37, 1792–1805. [Google Scholar] [CrossRef][Green Version] - Alvarez-Puebla, R.; Liz-Marzán, L.M.; García de Abajo, F.J. Light Concentration at the Nanometer Scale. J. Phys. Chem. Lett.
**2010**, 1, 2428–2434. [Google Scholar] [CrossRef] - de Abajo, F.J.G. Colloquium: Light scattering by particle and hole arrays. Rev. Mod. Phys.
**2007**, 79, 1267–1290. [Google Scholar] [CrossRef][Green Version] - de Abajo, F.J.G. Multiple scattering of radiation in clusters of dielectrics. Phys. Rev. B
**1999**, 60, 6086–6102. [Google Scholar] [CrossRef] - David, C.; Connolly, J.P.; Chaverri Ramos, C.; García de Abajo, F.J.; Sánchez Plaza, G. Theory of random nanoparticle layers in photovoltaic devices applied to self-aggregated metal samples. Sol. Energy Mater. Sol. Cells
**2013**, 109, 294–299. [Google Scholar] [CrossRef][Green Version] - David, C.; Christensen, J.; Mortensen, N.A. Spatial dispersion in two-dimensional plasmonic crystals: Large blueshifts promoted by diffraction anomalies. Phys. Rev. B
**2016**, 94, 165410. [Google Scholar] [CrossRef][Green Version] - Dehghani, M.; David, C. Light Scattering from Rough Silver Surfaces: Modeling of Absorption Loss Measurements. Nanomaterials
**2021**, 11, 113. [Google Scholar] [CrossRef] [PubMed] - Jäger, K.; Fischer, M.; van Swaaij, R.A.C.M.M.; Zeman, M. A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells. J. Appl. Phys.
**2012**, 111, 083108. [Google Scholar] [CrossRef] - Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- David, C.; García de Abajo, F.J. Spatial Nonlocality in the Optical Response of Metal Nanoparticles. J. Phys. Chem. C
**2011**, 115, 19470–19475. [Google Scholar] [CrossRef] - David, C.; Mortensen, N.A.; Christensen, J. Perfect imaging, epsilon-near zero phenomena and waveguiding in the scope of nonlocal effects. Sci. Rep.
**2013**, 3, 2526. [Google Scholar] [CrossRef] [PubMed][Green Version] - Jacak, W.A. Propagation of Collective Surface Plasmons in Linear Periodic Ionic Structures: Plasmon Polariton Mechanism of Saltatory Conduction in Axons. J. Phys. Chem. C
**2015**, 119, 10015–10030. [Google Scholar] [CrossRef] - David, C.; Christensen, J. Extraordinary optical transmission through nonlocal holey metal films. Appl. Phys. Lett.
**2017**, 110, 261110. [Google Scholar] [CrossRef][Green Version] - Kluczyk, K.; Jacak, L.; Jacak, W.; David, C. Microscopic Electron Dynamics in Metal Nanoparticles for Photovoltaic Systems. Materials
**2018**, 11, 1077. [Google Scholar] [CrossRef][Green Version] - Kluczyk-Korch, K.; Jacak, L.; Jacak, W.A.; David, C. Mode Splitting Induced by Mesoscopic Electron Dynamics in Strongly Coupled Metal Nanoparticles on Dielectric Substrates. Nanomaterials
**2019**, 9, 1206. [Google Scholar] [CrossRef] [PubMed][Green Version] - Kluczyk, K.; David, C.; Jacak, J.; Jacak, W. On Modeling of Plasmon-Induced Enhancement of the Efficiency of Solar Cells Modified by Metallic Nano-Particles. Nanomaterials
**2019**, 9, 3. [Google Scholar] [CrossRef] [PubMed][Green Version] - Mihailetchi, V.D.; Jourdan, J.; Edler, A.; Kopecek, R.; Harney, R.; Stichtenoth, D.; Lossen, J.; Böscke, T.S.; Krokoszinski, H.-J. Screen printed n-type silicon solar cells for industrial application. In Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 6–9 September 2010; pp. 6–10. [Google Scholar]
- Edler, A. Development of Bifacial n-Type Solar Cells for Industrial Application. PhD Thesis, Libraray of the University of Konstanz, Konstanz, Germany, 2014. [Google Scholar]
- Baker-Finch, S.C.; McIntosh, K.R.; Yan, D.; Fong, K.C.; Kho, T.C. Near-infrared free carrier absorption in heavily doped silicon. J. Appl. Phys.
**2014**, 116. [Google Scholar] [CrossRef][Green Version] - Rodrigo, S.G.; García-Vidal, F.J.; Martín-Moreno, L. Influence of material properties on extraordinary optical transmission through hole arrays. Phys. Rev. B
**2008**, 77, 075401. [Google Scholar] [CrossRef][Green Version] - Van Bui, H.; Kovalgin, A.Y.; Wolters, R.A.M. On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films. Appl. Surf. Sci.
**2013**, 269, 45–49. [Google Scholar] [CrossRef] - Öner, I.H.; Querebillo, C.J.; David, C.; Gernert, U.; Walter, C.; Driess, M.; Leimkühler, S.; Ly, K.H.; Weidinger, I.M. High Electromagnetic Field Enhancement of TiO2 Nanotube Electrodes. Angew. Chem. Int. Ed.
**2018**, 57, 7225–7229. [Google Scholar] [CrossRef] - David, C. Two-fluid, hydrodynamic model for spherical electrolyte systems. Sci. Rep.
**2018**, 8, 7544. [Google Scholar] [CrossRef] - Whittaker, D.M.; Culshaw, I.S. Scattering-matrix treatment of patterned multilayer photonic structures. Phys. Rev. B
**1999**, 60, 2610–2618. [Google Scholar] [CrossRef][Green Version] - Liu, V.; Fan, S. S4: A free electromagnetic solver for layered periodic structures. Comput. Phys. Commun.
**2012**, 183, 2233–2244. [Google Scholar] [CrossRef] - David, C. TiO2 Self-Assembled, Thin-Walled Nanotube Arrays for Photonic Applications. Materials
**2019**, 12, 1332. [Google Scholar] [CrossRef] [PubMed][Green Version] - Aspnes, D.E.; Studna, A.A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B
**1983**, 27, 985–1009. [Google Scholar] [CrossRef] - Liu, X.; Coxon, P.R.; Peters, M.; Hoex, B.; Cole, J.M.; Fray, D.J. Black silicon: Fabrication methods, properties and solar energy applications. Energy Environ. Sci.
**2014**, 7, 3223–3263. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**Illustration of the considered setup and its range. (

**a**) n-PERT BiSoN cell, here with flat passivating layer as simulated. (

**b**) Cylindrical pillars of height d and radius R made of nitrides and other materials for comparison standing on the n-PERT device with particle-particle separation a. The nanopillars are placed within the SiN${}_{\mathrm{x}}$. Range of measured (

**c**) real and (

**d**) imaginary part of the permittivity of gold (orange [49]), TiN (blue [50]) and further nitride materials (grey [23]).

**Figure 2.**Potential enhancement of absorption and local fields of various material classes. For spherical nanoparticles of radius $R=25\phantom{\rule{4pt}{0ex}}$nm of the depicted materials placed in a SiN${}_{\mathrm{x}}$ host matrix the (

**a**) normalized extinction and (

**b**) maximum field enhancement factor (EF) and its the spectral position are given. The vertical lines separate the different material classes. The horizontal line lies at EF = 30.

**Figure 3.**Si doping profiles as input for device modeling. (

**a**) Electron doping as a function of the depth of the cell obtained from experimental measurements. (

**b**) Calculated free carrier absorption across the cell. The inset shows the adiabatic connection in the n-doped center of width 150 $\mathsf{\mu}$m. (

**c**) Comparing the achieved absorption using an intrinsic, an n-doped Si layer, an effective three-layer approach using average doping levels in front, back, and central region and an adiabatic approach using the full doping profile with effectively hundreds of layers in the scattering matrix scheme.

**Figure 4.**Combined effects of a nanoparticle layer and free carrier absorption with and without parasitic absorption. (

**a**) Absorption spectra for the baseline cell, with a Si nanopillar array and partial absorption only within the photo-active region. (

**b**) The wavelength-independent short circuit current ${J}_{\mathrm{sc}}$ as a function of nanodisk radius showing results for both the total device absorption (green) and excluding absorption in the nanoparticles (blue). The untextured baseline cell is given as a reference. (

**c**) Contour of the ${J}_{\mathrm{sc}}$ for a range of lattice parameters and particle sizes excluding parasitic absorption.

**Figure 5.**Relative photocurrent gain for an n-doped Si solar cell with particle layers of different materials. (

**a**) For WN as a representative of the class of nitrides, the relative photocurrent gain $\Delta \eta $ is given for a range of geometrical parameters. The data pairs show the lattice parameter a together with the radius r of the WN disks at heights $h=25\phantom{\rule{4pt}{0ex}}$ and $h=50\phantom{\rule{4pt}{0ex}}$nm. (

**b**) Comparing the different material classes for three geometrical setups with varying $r\phantom{\rule{-1.111pt}{0ex}}/\phantom{\rule{-0.55542pt}{0ex}}a$-ratio showing $r\phantom{\rule{-1.111pt}{0ex}}/\phantom{\rule{-0.55542pt}{0ex}}a=0.125\phantom{\rule{4pt}{0ex}}$, $r\phantom{\rule{-1.111pt}{0ex}}/\phantom{\rule{-0.55542pt}{0ex}}a=0.25\phantom{\rule{4pt}{0ex}}$, and $r\phantom{\rule{-1.111pt}{0ex}}/\phantom{\rule{-0.55542pt}{0ex}}a=0.5\phantom{\rule{4pt}{0ex}}$ side-by-side for each material.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

David, C.; Koduvelikulathu, L.J.; Kopecek, R. Comparative Simulations of Conductive Nitrides as Alternative Plasmonic Nanostructures for Solar Cells. *Energies* **2021**, *14*, 4236.
https://doi.org/10.3390/en14144236

**AMA Style**

David C, Koduvelikulathu LJ, Kopecek R. Comparative Simulations of Conductive Nitrides as Alternative Plasmonic Nanostructures for Solar Cells. *Energies*. 2021; 14(14):4236.
https://doi.org/10.3390/en14144236

**Chicago/Turabian Style**

David, Christin, Lejo Joseph Koduvelikulathu, and Radovan Kopecek. 2021. "Comparative Simulations of Conductive Nitrides as Alternative Plasmonic Nanostructures for Solar Cells" *Energies* 14, no. 14: 4236.
https://doi.org/10.3390/en14144236