Geothermal Boreholes in Poland—Overview of the Current State of Knowledge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used in Geothermal Wells
2.2. List of Geothermal Wells with Theirparameters in Poland
3. Borehole Heat Exchangers
3.1. Materials Used in Geothermal BHEs
- −
- Single U-pipe,
- −
- Double U-pipe,
- −
- Multi U-pipe,
- −
- Coaxial exchanger.
- −
- Chlorinated polyvinyl chloride,
- −
- Polybutylene,
- −
- Polyethylene,
- −
- Polypropylene.
3.2. Borehole Heat Exchangers at AGH UST in Krakow
4. Conclusions
- In Polish geothermal wells, casing pipes are usually made of steel.
- The first geothermal boreholes in Poland were vertical and made of steel pipes. Currently, directional boreholes and fiberglass pipes are present, which reflects the development of techniques and technology.
- Borehole heat exchangers (BHEs) are increasingly used. The advantages of collecting Earth’s heat with borehole heat exchangers include no risk connected with prospecting drilling, very high durability (lifetime) and minimal impact on the environment.
- There are two installations of borehole heat exchangers on the site of the AGH UST in Krakow. The first consists of 5, while the second of 14 borehole heat exchangers with an innovative system. It is the largest installation of BHEs with different designs in the world.
- Comparative indicators for drilling efficiency for geothermal boreholes in Poland have been proposed. These indicators can be determined in any country where exploitation boreholes for geothermal heat are made. This applies both to geothermal boreholes (i.e., those related to geothermal water) as well as borehole heat exchangers (i.e., openings which obtain the Earth’s heat without hydraulic contact with the rock mass).
- Two indicators for the effectiveness of drilling were proposed for geothermal boreholes. The first is the “unitary” cost of obtaining geothermal water’s one unit of efficiency , the second is the indicator of theoretical power per one meter of existing and created boreholes . For geothermal boreholes in Poland, = 0.04879 m3/h/m and = 3523 W/m. For borehole heat exchangers, it is impossible to determine the values of these indicators for the entire country due to the reasons described in the article. Local (individual) values can be determined based on the rock’s heat conductivity. For BHEs located in AGH UST, equals 38.64 W/m. The difference is also reflected in the cost. The unitary cost of drilling the BHE is many times less than the unitary cost of drilling a geothermal borehole.
- Boreholes drilled in the past (including those already decommissioned) and those which will be drilled in the future can be adapted for geothermal purposes. If there is no aquifer present, they can be used for deep borehole heat exchangers. For this purpose, they can currently be designed taking into consideration future geothermal applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
borehole depth, m, | |
borehole injection rate, m3/h, | |
borehole production rate, m3/h, | |
depth/efficiency ratio, m3/h/m, | |
depth/theoretical power ratio, W/m, | |
effective thermal conductivity, W/(mK), | |
geothermal water temperature at the wellhead, °C, | |
density of the material, kg/m3, | |
specific heat of the material, kJ/(kgK), | |
thermal conductivity of the material, W/(mK), | |
thermal expansion coefficientof the material, 1/K, | |
outer diameter of inner pipes, mm, | |
potential theoretical heat flow, MW, | |
unitary heating power, W, | |
pipe wall thickness, mm, | |
Young’s modulus, GPa. |
References
- Sapińska-Śliwa, A.; Wiglusz, T.; Kruszewski, M.; Sliwa, T.; Kowalski, T. Wiercenia Geotermalne: Doświadczenia Techniczne i Technologiczne (Geothermal Drilling: Techniques and Side Aspects); Laboratory of Geoenergetics Book Series; Drilling, Oil and Gas Foundation: Krakow, Poland, 2017; Volume 3. (In Polish) [Google Scholar]
- Zhou, Z.; Jin, Y.; Zeng, Y.; Youn, D. Experimental Study of Hydraulic Fracturing in Enhanced Geothermal System. In Proceedings of the ARMA-2018-148, American Rock Mechanics Association, 52nd US Rock Mechanics/Geomechanics Symposium, Seattle, WA, USA, 17–20 June 2018. [Google Scholar]
- Olasolo, P.; Juarez, M.C.; Morales, M.P.; D’Amico, S.; Liarte, I.A. Enhanced geothermal systems (EGS): A review. Renew. Sustain. Energy Rev. 2016, 56, 133–144. [Google Scholar] [CrossRef]
- Lu, S.M. A global review of enhanced geothermal system (EGS). Renew. Sustain. Energy Rev. 2018, 81, 2902–2921. [Google Scholar] [CrossRef]
- Ng, K.W.; Poudel, R.; Kyle, W.; Tan, G.; Podgorney, R. A Laboratory Experimental Study of Enhanced Geothermal Systems. In Proceedings of the ARMA-2017-0415, American Rock Mechanics Association, 51st US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 25–28 June 2017. [Google Scholar]
- Yoo, H.; Park, S.; Xie, L.; Min, K.B.; Rutqvist, J.; Rinaldi, A.P. Numerical Modeling of Coupled Hydromechanical Behavior of Fractured Geothermal Reservoir at Pohang Enhanced Geothermal System (EGS) Site. In Proceedings of the ISRM-YSS-2017-089, International Society for Rock Mechanics and Rock Engineering, 4th ISRM Young Scholars Symposium on Rock Mechanics, Jeju, Korea, 10–13 May 2017. [Google Scholar]
- Tang, M.; Li, H.; Tang, C. Study on Deep Underground Geometrical Model for Enhanced Geothermal System Based on Excavation. In Proceedings of the ISRM-ARMS10-2018-034, International Society for Rock Mechanics and Rock Engineering, ISRM International Symposium—10th Asian Rock Mechanics Symposium, Singapore, 29 October–3 November 2018. [Google Scholar]
- Han, S.; Cheng, Y.; Gao, Q.; Yan, C.; Wie, J.; Zhang, J. Simulation Study on Heat Extraction in Enhanced Geothermal Reservoirs with Random Fracture Distribution. In Proceedings of the ARMA-2019-1857, American Rock Mechanics Association, 53rd US Rock Mechanics/Geomechanics Symposium, New York, NY, USA, 23–26 June 2019. [Google Scholar]
- Florides, G.; Christodoulides, P.; Theofanous, E.; Lazari, L.; Messeritis, V. Modeling of Geothermal Heat Exchangers. In Proceedings of the ISOPE-I-13-168, International Society of Offshore and Polar Engineers, The 23rd International Offshore and Polar Engineering Conference, Anchorage, AK, USA, 30 June–5 July 2013. [Google Scholar]
- Sliwa, T.; Gonet, A.; Złotkowski, A.; Sapińska-Śliwa, A.; Bieda, A.; Kowalski, T. Geotermia na Wydziale Wiertnictwa, Nafty i Gazu Akademii Górniczo-Hutniczej w Krakowie. Laboratorium Geoenergetyki: 10 lat działalności (Laboratory of Geoenergetics: 10 years of activity: Geothermics at Drilling, Oil and Gas Faculty of AGH University of Science and Technology in Krakow); Laboratory of Geoenergetics Book Series; Drilling, Oil and Gas Foundation: Krakow, Poland, 2017; Volume 4. (In Polish) [Google Scholar]
- Aresti, L.; Christodoulides, P.; Florides, G. A review of the design aspect of ground heat exchangrs. Renew. Sustain. Energy Rev. 2018, 92, 757–773. [Google Scholar] [CrossRef]
- Soni, S.K.; Pandey, M.; Bartaria, V.N. Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review. Renew. Sustain. Energy Rev. 2016, 60, 724–738. [Google Scholar] [CrossRef]
- Bayer, P.; Attard, G.; Blum, P.; Menberg, K. The geothermal potential of cities. Renew. Sustain. Energy Rev. 2019, 106, 17–30. [Google Scholar] [CrossRef]
- Sliwa, T.; Gonet, A. Theoretical model of borehole heat exchanger. J. Energy Resour. Technol. 2005, 127, 142–148. [Google Scholar] [CrossRef]
- Jaszczur, M.; Polepszyc, I.; Sapińska-Śliwa, A. Numerical analysis of the boundary conditions model impact on the estimation of heat resources in the ground. Pol. J. Environ. Stud. 2015, 24, 60–66. [Google Scholar]
- Cui, Y.; Zhu, J.; Twaha, S.; Riffat, S. A comprehensive review on 2D and 3D models of vertical ground heat exchangers. Renew. Sustain. Energy Rev. 2018, 94, 84–114. [Google Scholar] [CrossRef]
- Spitler, J.D.; Gehlin, S.E.A. Thermal response testing for ground source heat pump systems—An historical review. Renew. Sustain. Energy Rev. 2015, 50, 1125–1137. [Google Scholar] [CrossRef]
- Zarrella, A.; Emmi, G.; Graci, S.; De Carli, M.; Cultrea, M.; Dalla Santa, G.; Galgaro, A.; Bertermann, D.; Muller, J.; Pckele, L.; et al. Thermal Response Testing Results of Different Types of Borehole Heat Exchangers: An Analysis and Comparison of Interpretation Methods. Energies 2017, 10, 801. [Google Scholar] [CrossRef] [Green Version]
- Sapińska-Śliwa, A.; Rosen, M.A.; Gonet, A.; Kowalczyk, J.; Sliwa, T. A new method based on thermal response tests for determining effective thermal conductivity and borehole resistivity for borehole heat exchangers. Energies 2019, 12, 1072. [Google Scholar] [CrossRef] [Green Version]
- Wilke, S.; Menberg, K.; Steger, H.; Blum, P. Advanced thermal response tests: A review. Renew. Sustain. Energy Rev. 2020, 119, 109575. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, T.; Li, B.; Jiang, Y. Comparison of Four Methods for Borehole Heat Exchanger Sizing Subject to Thermal Response Test Parameter Estimation. Energies 2019, 12, 4067. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Hou, J.; Zhao, H.; Liu, X.; Xia, Z. Numerical simulation of simultaneous exploitation of geothermal energy and natural gas hydrates by water injection into a geothermal heat exchange well. Renew. Sustain. Energy Rev. 2019, 109, 467–481. [Google Scholar] [CrossRef]
- Dai, C.; Li, J.; Shi, Y.; Zeng, L.; Lei, H. An experiment on heat extraction from a deep geothermal well using a downhole coaxial open loop design. Appl. Energy 2019, 252, 113447. [Google Scholar] [CrossRef]
- Song, X.; Shi, Y.; Li, G.; Yang, R.; Wang, G.; Zheng, R.; Li, J.; Lyu, Z. Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells. Appl. Energy 2018, 218, 325–337. [Google Scholar] [CrossRef]
- Nian, Y.; Cheng, W. Insights into geothermal utilization of abandoned oil and gas wells. Renew. Sustain. Energy Rev. 2018, 87, 44–60. [Google Scholar] [CrossRef]
- Menéndez, J.; Ordóñez, A.; Álvarez, R.; Loredo, J. Energy from closed mines: Underground energy storage and geothermal applications. Renew. Sustain. Energy Rev. 2019, 108, 498–512. [Google Scholar] [CrossRef]
- Hall, A.; Scott, J.A.; Shang, H. Geothermal energy recovery from underground mines. Renew. Sustain. Energy Rev. 2011, 15, 916–924. [Google Scholar] [CrossRef]
- Esteves, A.F.; Santos, F.M.; Pires, J.C.M. Carbon dioxide as geothermal working fluid: An overview. Renew. Sustain. Energy Rev. 2019, 114, 1–8. [Google Scholar] [CrossRef]
- Shi, Y.; Song, X.; Wang, G.; McLennan, J.; Forbes, B.; Li, X.; Li, J. Study on wellbore fluid flow and heat transfer of a multilateral-well CO2 enhanced geothermal system. Appl. Energy 2019, 249, 14–27. [Google Scholar] [CrossRef]
- Cheng, W.L.; Li, T.T.; Nian, Y.L.; Xie, K. Evaluation of working fluids for geothermal power generation from abandoned oil wells. Appl. Energy 2014, 118, 238–245. [Google Scholar] [CrossRef]
- Van Erdeweghe, S.; Van Bael, J.; Laenen, B.; D’haeseleer, W. Design and off-design optimization procedure for low-temperature geothermal organic Rankine cycles. Appl. Energy 2019, 242, 716–731. [Google Scholar] [CrossRef]
- Sowiżdżał, A. Geothermal energy resources in Poland—Overview of the current state of knowledge. Renew. Sustain. Energy Rev. 2018, 82, 4020–4027. [Google Scholar] [CrossRef]
- Huculak, M.; Jarczewski, W.; Dej, M. Economic aspects of the use of deep geothermal heat in district heating in Poland. Renew. Sustain. Energy Rev. 2015, 49, 29–40. [Google Scholar] [CrossRef]
- Faizal, M.; Bouazza, A.; Singh, R.M. Heat transfer enhancement of geothermal energy piles. Renew. Sustain. Energy Rev. 2016, 57, 16–33. [Google Scholar] [CrossRef] [Green Version]
- Gonet, A.; Sapińska-Śliwa, A.; Kowalski, T.; Sliwa, T.; Bieda, A. Drilling of geothermal boreholes and casing design in Poland. In Proceedings of the European Geothermal Congress 2016, Strasbourg, France, 19–24 September 2016. [Google Scholar]
- Biernat, H.; Kulik, S.; Noga, B. Problemy związane z eksploatacją ciepłowni geotermalnych wykorzystujących wody termalne z kolektorów porowych (Problems associated with exploitation geothermal plants to use thermal water with rock pores). Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw. 2010, 1–2, 17–28. (In Polish) [Google Scholar]
- Biernat, H.; Noga, B.; Kosma, Z. Przegląd konstrukcji archiwalnych i nowych otworów wiertniczych na Niżu Polskim w celu pozyskania energii geotermalnej (Review of archival and new wells constructions located in polish lowlands in order to raise a geothermal Energy). Modelowanie Inż. 2012, 44, 21–28. (In Polish) [Google Scholar]
- Sapińska-Śliwa, A.; Biernat, H.; Sliwa, T.; Noga, B. Konstrukcje otworów geotermalnych w Polsce (Geothermal wells construction in Poland). In Proceedings of the Prezentacja IV Ogólnopolski Kongres Geotermalny (Proceedings IV Polish Geothermal Congress), Zakopane, Poland, 30 September–2 October 2013. (In Polish). [Google Scholar]
- Kępińska, B.; Bujakowski, W.; Bielec, B.; Tomaszewska, B.; Banaś, J.; Solarski, W.; Mazurkiewicz, B.; Pawlikowski, M.; Pająk, L.; Miecznik, M.; et al. Wytyczne Projektowe Poprawy Chłonności Skał Zbiornikowych w Związku z Zatłaczaniem Wód Termalnych w Polskich Zakładach Geotermalnych (Design Guidelines for Improving the Injectivity of Reservoir Rocks in Connection with Geothermal Water Injection in Polish Geothermal Plants); Wydawnictwo EJB: Krakow, Poland, 2011. (In Polish) [Google Scholar]
- Koons, B.E.; Free, D.L.; Frederick, A.F. New design guidelines for geothermal cement slurries. Geotherm. Resour. Counc. Trans. 1993, 17, 43–51. [Google Scholar]
- Gaurina-Medimurec, N.; Matanović, D.; Krklec, G. Cement slurries for geothermal wells cementing. Rud. Geol. Naft. Zb. 1994, 6, 127–134. [Google Scholar]
- Barlet-Gouedard, V.; Vidick, B. A non-conventional way of developing cement slurry for geothermal wells. Geotherm. Resour. Counc. Trans. 2001, 25, 85–91. [Google Scholar]
- Bett, E.K. Geothermall well cementing, materials and placement techniques. Geotherm. Train. Programme 2010, 10, 99–130. [Google Scholar]
- Czy Mamy Potencjał Energii Geotermalnej w Polsce? (Do We Have A Potential of Geothermal Energy in Poland?)—Materiały z Seminarium Eksperckiego. Available online: http://www.mos.gov.pl/artykul/4465_aktualnosci/23476_czy_mamy_potencjal_energii_geotermalnej_w_polsce_materialy_z_seminarium_eksperckiego.html (accessed on 10 January 2018).
- Biernat, H. Wykorzystanie wód geotermalnych w ciepłowni w Pyrzycach (Geothermal waters utilization in the Pyrzyce power plant). Tech. Poszuk. Geol. Geosynop. Geoterm. 1993, 5–6, 99–103. (In Polish) [Google Scholar]
- Bujakowski, W.; Bielec, B.; Miecznik, M.; Pająk, L. Reconstruction of geothermal boreholes in Poland. Geotherm. Energy 2020, 8, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Bujakowski, F. Modelowanie równowagi termodynamicznych wód z horyzontu dolno jurajskiego ujętych w odwiercie geotermalnym Gostynin GT-1 (Thermodynamic equilibrium modelling of groundwater from Lower Jurassic aquifier explored in Gostynin GT-1 geothermal borehole). Prz. Nauk. Inż. Kształt. Sr. 2010, 3, 63–74. (In Polish) [Google Scholar]
- Bujakowski, W.; Bielec, B.; Graczyk, S.; Hołojuch, G.; Kępińska, B.; Pająk, L. Projekt prac geologicznych w celu aktualizacji zasobów eksploatacyjnych wód termalnych dla otworu Poręba Wielka IG-1 (Geological Project to Update the Exploitation Resources of Geothermal Waters for the Poręba Wielka IG-1 Well); IGSMiE PAN: Krakow, Poland, 2010. (In Polish) [Google Scholar]
- Chowaniec, J. Dotychczasowy stan rozwoju geotermii w Polsce i naturalne warunki jej rozwoju (The current state of geothermal development in Poland and natural conditions for its development). In Proceedings of the XLIII Forum, Energia–Efekt–Środowisko” (XLIII Forum “Energy–Effect–Environment”), Warsaw, Poland, 24 August 2012. (In Polish). [Google Scholar]
- Chowaniec, J. Potencjał geotermiczny Polski w świetle uwarunkowań geologicznych (Poland’s geothermal potential in the light of geological conditions). In Proceedings of the Materiały z Seminarium Eksperckiego “Czy mamy potencjał energii geotermalnej w Polsce?”, (Materials from the Expert Seminar “Do we have the potential of geothermal energy in Poland?), Warsaw, Poland, 1–3 October 2014. (In Polish). [Google Scholar]
- Prace Państwowego Instytutu Geologicznego—Państwowego Instytutu Badawczego w zakresie rozpoznawania i dokumentowania wód termalnych (geotermalnych) w Polsce (51st Works of the Polish Geological Institute—National Research Institute in the Field of Recognition and Documentation of Thermal (Geothermal) Waters in Poland). Available online: https://www.pgi.gov.pl/dokumenty-przegladarka/aktualnosci-2016/kongres-geotermalny/4109-kongres-geotermalny-chowaniec-j-prace-pig-pib-w-zakresie-rozpoznawania-i-dokumentowania-wod-termalnych-geotermalnych-w-polsce/file.html (accessed on 10 January 2018).
- Chowaniec, J. Prace Państwowego Instytutu Geologicznego—Państwowego Instytutu Badawczego w zakresie rozpoznawania i dokumentowania wód termalnych (geotermalnych) w Polsce (The Works of the Polish Geological Institute in Recognizing and Documenting Thermal (Geothermal) Waters in Poland). Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw. 2016, 1, 197–203. (In Polish) [Google Scholar]
- Jaromin, A.; Kępińska, B.; Nagel, J.; Sokołowski, J.; Wieczorek, J. Dokumentacja geosynoptyczna otworu geotermalnego Biały Dunajec PAN-1 (Geosynoptical documentation of the Biały Dunajec PAN-1 geothermal borehole). In Geosynoptyka i Geotermia; Tom 2; IGSMiE PAN: Kraków, Poland, 1992. (In Polish) [Google Scholar]
- Jaromin, A.; Kępińska, B.; Nagel, J.; Sokołowski, J.; Wieczorek, J. Dokumentacja geosynoptyczna otworu geotermalnego Poronin PAN-1 (Geosynoptical documentation of the Poronin PAN-1 geothermal borehole). In Geosynoptyka i Geotermia; Tom 3; IGSMiE PAN: Kraków, Poland, 1992. (In Polish) [Google Scholar]
- Jasnos, K.; Kołba, P.; Biernat, H.; Noga, B. Wyniki badań hydrogeologicznych prowadzących do rozpoznania i udostępniania zasobów wód termalnych na terenie gminy Kleszczów (The results of the hydrogeological research leading to know and develop the resources of thermal water in the Kleszczów district). Modelowanie Inż. 2012, 45, 64–69. (In Polish) [Google Scholar]
- Kaczmarczyk, M.; Kaczmarczyk, M. Analysis of Possibilities for Electricity Production from Geothermal Waters in the Province of Małopolska, Poland. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015. [Google Scholar]
- Kaliński, R. Wykorzystanie wody i energii geotermalnej w Uniejowie (The use of water and geothermal energy in Uniejów). In Proceedings of the Materiały z seminarium eksperckiego “Stan aktualny i perspektywy dalszego rozwoju, Czy mamy potencjał energii geotermalnej w Polsce?” (Materials from the Expert Seminar “Current State and Prospects for Further Development, Do We Have the Potential of Geothermal Energy in Poland?”), Warsaw, Poland, 1–3 October 2014. (In Polish). [Google Scholar]
- Kępińska, B. Geothermal resources and utilization in Poland and Europe. Reports 2003. Geotherm. Train. Programme 2004, 2, 1–92. [Google Scholar]
- Kępińska, B.; Ciągło, J. Możliwości zagospodarowania wód geotermalnych Podhala do celów balneoterapeutycznych i rekreacyjnych (Possibilities of use of the Podhale geothermal waters for balneotherapeutical and recreational purposes). Geologia 2008, 34, 541–559. (In Polish) [Google Scholar]
- Kleszcz, A.; Tomaszewska, B. Prognozowanie Scalingu na przykładzie wód ujmowanych otworem Bańska PGP-1 (Prediction of scaling phenomenon based on Bańska PGP-1 geothermal well). Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw. 2013, 1, 115–122. (In Polish) [Google Scholar]
- Korzec, K.; Kmiecik, E.; Mika, A.; Tomaszewska, B.; Wątor, K. Metodyka opróbowania ujęć wód termalnych—Aspekty techniczne (Metodology of thermal water sampling—Technical aspects). Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw. 2016, 1, 75–87. (In Polish) [Google Scholar]
- Latour, T.; Drobnik, M. Możliwości wykorzystania wód termalnych występujących na terenie Wielkopolski do celów leczniczych i rekreacyjnych (Thermal waters in the Wielkopolska region and possibilities of their use for therapeutics and recreation). Prz. Geol. 2010, 58, 609–612. (In Polish) [Google Scholar]
- Noga, B.; Biernat, H.; Kapuściński, J.; Martyka, P. Analiza parametrów otworów geotermalnych wykonanych na Niżu Polskim pod kątem możliwości budowy siłowni binarnych wykorzystujących ciepło wnętrza Ziemi (Analysis of parameters of geothermal well located on Polish Lowlands for the possibility of building the binary power plants which are using the heat from inside the earth). Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw. 2013, 2, 127–139. (In Polish) [Google Scholar]
- Noga, B.; Biernat, H.; Kapuściński, J.; Martyka, P.; Nowak, K.; Pijewski, G. Perspektywy zwiększenia pozyskiwania ciepła geotermalnego w świetle nowych inwestycji zrealizowanych na terenie Niżu Polskiego (Possibility of obtaining more geothermal heat in the view of the new investments completed on Polish Lowland). Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw. 2013, 2, 75–84. (In Polish) [Google Scholar]
- Pratkowski, W.; Biernat, H.; Noga, B. Wyniki badań zmierzających do rozpoznania i udokumentowania wód termalnych w rejonie miejscowości Celejów (Research Results aimed at identifying and documenting thermal waters in the region of Celejów). Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw. 2016, 2, 33–43. (In Polish) [Google Scholar]
- Sapińska-Śliwa, A. Technologiczne i Ekonomiczne Zagadnienia Zagospodarowania Wody Termalnej na Przykładzie Uniejowa (Technological and Economic Issues Relating to Thermal Water Utilisation with the Use of an Example of Uniejów); Wydawnictwa AGH: Kraków, Poland, 2010. (In Polish) [Google Scholar]
- Sokołowski, J. Dokumentacja geosynoptyczna otworu geotermalnego Bańska IG-1 (Geosynoptical documentation of the Banska IG-1 geothermal borehole). In Geosynoptyka i Geotermia; Tom 1; CPPGSMiE PAN: Kraków, Poland, 1992. (In Polish) [Google Scholar]
- Ślimak, C.; Okularczyk, B. Energia geotermalna w praktyce, 20 lat doświadczeń PEC Geotermia Podhalańska (Geothermal energy in practice, 20 years of PEC Geotermia Podhalańska experience). In Proceedings of the Materiały z Seminarium Eksperckiego “Czy mamy potencjał energii geotermalnej w Polsce?” (Materials from the Expert Seminar “Do We Have the Potential of Geothermal Energy in Poland?”), Warsaw, Poland, 1–3 October 2014. (In Polish). [Google Scholar]
- Tomaszewska, B. Uzdatnianie wód termalnych ujętych otworem Bańska IG-1 do celów pitnych jako jeden z kierunków ich kompleksowego wykorzystania (Treatment of geothermal water from Banska IG-1 well to produce drinking water as one of directions of its wide use). Prz. Geol. 2009, 57, 21–28. (In Polish) [Google Scholar]
- Tomczyk, B. Analiza możliwości technicznych wykorzystania energii wód geotermalnych do produkcji energii elektrycznej dla otworu Bańska PGP-3 (Analysis of the technical possibilities in using geothermal energy FOR electricity generation for the Banska PGP-3 borehole). Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw. 2016, 2, 117–134. (In Polish) [Google Scholar]
- Uliasz-Misiak, B.; Dubiel, S. Problemy rekonstrukcji odwiertów geotermalnych (Problems of geothermal wells workover operations). Prz. Gór. 2015, 7, 55–61. (In Polish) [Google Scholar]
- Wardzała, M.; Kilar, J. Doświadczenia Uzyskane Przez PNIG Jasło w Trakcie Wykonywania Otworów Geotermalnych w Latach 1990–2008 (Experiences Obtained by PNIG Jasło while Drilling Geothermal Wells in 1990–2008), in. Praca Zbiorowa, “Konferencja Naukowo-Techniczna—Wiercenia Geotermalne Nowe Technologie Wiercenia i Udostępniania Wód Geotermalnych Oraz Perspektywy Wykorzystania Energii Geotermalnej w Świetle Polityki Energetycznej Kraju” (Collective Work “Scientific and Technical Conference—Geothermal Drilling New Technologies for Drilling and Sharing Geothermal Waters and Prospects for Using Geothermal Energy in the Light of the Country’s Energy Policy”); Stowarzyszenie Naukowo-Techniczne Inżynierów i Techników Przemysłu Naftowego i Gazowniczego: Krasiczyn, Polska, 2009; pp. 85–121. (In Polish) [Google Scholar]
- Wartak, W. Geothermal heating in Podhale—project implemented with the financial support of the Ministry of Foreign Affairs of the Republic of Poland under the Polish development cooperation program. In Proceedings of the International Seminar Titled: Improvement of Energy Management in Typical Public Buildings of the City and Oblast Ivano-Frankivsk, Zakopane, Poland, 9–12 August 2013. (In Ukrainian). [Google Scholar]
- Liber-Makowska, E.; Łukaczyński, I. Charakterystyka nowo rozpoznanego złoża wód termalnych w Karpnikach na tle warunków geotermicznych Kotliny Jeleniogórskiej (Characteristics of newly recognized deposit of thermal waters in Karpniki on the background of the geothermical conditions of Jelenia Góra valley). Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw. 2016, 2, 5–16. (In Polish) [Google Scholar]
- Firma G-Drilling. Geothermal Wells. Available online: http://www.g-drilling.pl/realizacje/otwory-geotermalne/ (accessed on 10 March 2020). (In Polish).
- Wybrane Otwory Wiertnicze (Selected Wells). Available online: http://otworywiertnicze.pgi.gov.pl/ (accessed on 15 December 2019). (In Polish)
- Chowaniec, J.; Poprawa, D.; Witek, K. Występowanie wód termalnych w polskiej części Karpat (Occurrence of thermal waters in the Polish part of the Carpathians). Prz. Geol. 2001, 49, 734–742. (In Polish) [Google Scholar]
- Dobrzyński, D.; Gruszczyński, T.; Birski, Ł. German jako wskaźnik warunków hydrogeochemicznych w jeleniogórskim systemie geotermalnym (Germanium as an indicator of hydrogeochemical conditions in the Jelenia Góra Geothermal System). Prz. Geol. 2017, 65, 946–950. (In Polish) [Google Scholar]
- Fistek, J. Wykorzystanie wód termalnych w uzdrowiskach sudeckich Polski (Thermal water use in health resorts of the Sudety Mountains in Poland). Tech. Poszuk. Geol. 2008, 47, 3–16. (In Polish) [Google Scholar]
- Szafrański, M. Geotermia—Szansa czy kłopot (Geothermal energy—Chance or trouble). Prz. Koniń. Dod. Prz. Koniń. 2019, 26, 2–3. (In Polish) [Google Scholar]
- Kazimierza Wielka—Budowa Pierwszego w Polsce Otwartego Termalnego Basenu Siarczkowego! (Kazimierza Wielka—Construction of the First Open Thermal Sulphide Pool in Poland!). Available online: www.globenergia.pl/magazyn/kazimierza-wielka-budowa-pierwszego-w-polsce-otwartego-termalnego-basenu-siarczkowego/ (accessed on 15 December 2019). (In Polish).
- Firma Pro-Invest Solution. Available online: https://proinsol.pl/portfolio-item/sieradz/ (accessed on 15 December 2019).
- Ponad 13 Mln zł na Geotermię w Tomaszowie! (Over PLN 13 Million for Geothermal Energy in Tomaszów!). Available online: http://www.tomaszow-maz.pl/aktualnosci/-ponad-13-mln-zl-na-geotermie-w-tomaszowie/ (accessed on 27 January 2020). (In Polish).
- Geotermia—Szansa czy Kłopot? (Geothermal energy—Opportunity or Trouble?). Available online: https://www.mpec.konin.pl/index.php/aktualnosci-jedna/geotermiaszansaczyklopot.html (accessed on 5 March 2020). (In Polish).
- Gmina Jaworze (Jaworze Commune). Available online: https://www.slaskie.pl/download/content/66109 (accessed on 27 January 2020). (In Polish).
- Otwory Wiertnicze (Drilling Boreholes). Available online: https://mineralne.pgi.gov.pl/component/kgm/?oc=1&template=pgiblank&lang=pl (accessed on 21 January 2020). (In Polish)
- Kępińska, B. Geothermal Energy Country Update Report from Poland, 2015–2019. In Proceedings of the World Geothermal Congress 2020, Reykjavik, Iceland, 26 April–2 May 2020; Available online: https://pangea.stanford.edu/ERE/db/IGAstandard/record_detail.php?id=29373 (accessed on 23 April 2021).
- Hajto, M. United Nations Framework Classification of Geothermal Resources (UNFC-2009) against the Polish classification and methodology of geothermal resources assessment. Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw. 2016, 1, 129–142. Available online: https://min-pan.krakow.pl//wydawnictwo/wp-content/uploads/sites/4/2017/12/11-Hajto.pdf (accessed on 27 January 2020). (In Polish).
- Gonet, A.; Sliwa, T.; Stryczek, S.; Sapińska-Śliwa, A.; Jaszczur, M.; Pająk, L.; Złotkowski, A. Metodyka Identyfikacji Potencjału Cieplnego Górotworu Wraz z Technologią Wykonywania i Eksploatacji Otworowych Wymienników Ciepła (Methodology for the Identification of Potential Heat of the Rock Mass Along with Technology Implementation and Operation of the Borehole Heat Exchangers); Wydawnictwa AGH: Kraków, Poland, 2011. (In Polish) [Google Scholar]
- Sliwa, T.; Gonet, A.; Sapińska-Śliwa, A.; Złotkowski, A. Laboratorium Geoenergetyki—10 lat działalności na Akademii Górniczo-Hutniczej w Krakowie (Geoenergetics Laboratory—10 years of activity at the AGH University of Science and Technology in Krakow). Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw. 2018, 1, 141–163. (In Polish) [Google Scholar]
- Sliwa, T.; Sapinska-Sliwa, A.; Wiśniowski, R.; Piechówka, Z.; Krzemień, M.; Pycha, D.; Jaszczur, M. Influence of flow rate and heating power in effective thermal conductivity applied in borehole heat exchangers. J. Phys. Conf. Ser. 2016, 745, 1–8. [Google Scholar] [CrossRef]
- Lee, C.; Moonseo, P.; Min, S.; Kang, S.H.; Sohn, B.; Choi, H. Comparison of effective thermal conductivity in closed-loop vertical ground heat exchangers. Appl. Therm. Eng. 2011, 31, 3669–3676. [Google Scholar] [CrossRef]
- Sliwa, T.; Sowa, M.; Stryczek, S.; Gonet, A.; Złotkowski, A.; Sapińska-Śliwa, A.; Knez, D. Badania stwardniałych zaczynów cementowych z dodatkiem grafitu (The study of hardened cement slurries with addition of graphite). Wiert. Naft. Gaz 2011, 28, 571–583. (In Polish) [Google Scholar]
- Delaleux, F.; Py, X.; Olives, R.; Dominguez, R. Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity. Appl. Therm. Eng. 2012, 33–34, 92–99. [Google Scholar] [CrossRef]
- Sliwa, T.; Kowalski, T.; Stryczek, S.; Wiśniowski, D.; Bieda, A.; Piwowarczyk, S.; Beszłej, J.; Naklicki, M.; Sapińska-Śliwa, A. The impact of graphite on the thermal conductivity of solidified grout. AGH Drill. Oil Gas 2017, 34, 811–820. [Google Scholar] [CrossRef]
- Sapińska-Śliwa, A.; Sliwa, T.; Wiśniowski, R. Grafit i diatomit jako dodatki do zaczynów uszczelniających otwory w geotermii (Graphite and diatomite as additives for grouts for boreholes in geothermics). Przem. Chem. 2017, 96, 1723–1725. (In Polish) [Google Scholar] [CrossRef]
- Sliwa, T.; Stryczek, S.; Wysogląd, T.; Skakuj, A.; Wiśniowski, R.; Sapińska-Śliwa, A.; Bieda, A.; Kowalski, T. Wpływ grafitu i diatomitu na parametry wytrzymałościowe stwardniałych zaczynów cementowych (Impact of graphite and diatomite on the strength parameters of hardened cement slurries). Przem. Chem. 2017, 96, 960–963. (In Polish) [Google Scholar] [CrossRef]
- Shirazi, S.A.; Bernier, M. A small-scale experimental apparatus to study heat transfer in the vicinity of geothermal boreholes. HVAC&R Res. 2014, 20, 819–827. [Google Scholar]
- Lamarche, L.; Beauchamp, B. New solutions for the short-time analysis of geothermal vertical boreholes. Int. J. Heat Mass Transf. 2007, 50, 1408–1419. [Google Scholar] [CrossRef]
- Lamarche, L. Short-time analysis of vertical boreholes, new analytic solutions and choice of equivalent radius. Int. J. Heat Mass Transf. 2015, 91, 800–807. [Google Scholar] [CrossRef]
- Nian, Y.L.; Cheng, W.L. Analytical g-function for vertical geothermal boreholes with effect of borehole heat capacity. Appl. Therm. Eng. 2018, 140, 733–744. [Google Scholar] [CrossRef]
- Sliwa, T.; Sapińska-Śliwa, A.; Knez, D.; Bieda, A.; Kowalski, T.; Złotkowski, A. Borehole Heat Exchangers: Production and Storage of Heat in the Rock Mass; Laboratory of Geoenergetics Book Series; Drilling, Oil and Gas Foundation: Krakow, Poland, 2016; Volume 2. [Google Scholar]
- Sliwa, T.; Kruszewski, M.; Zare, A.; Assadi, M.; Sapińska-Śliwa, A. Potential application of vacuum insulated tubing for deep borehole heat exchangers. Geothermics 2018, 75, 58–67. [Google Scholar] [CrossRef]
- Sliwa, T.; Sojczyńska, A.; Rosen, M.A.; Kowalski, T. Evaluation of temperature profiling quality in determining energy efficiencies of borehole heat exchangers. Geothermics 2019, 78, 129–137. [Google Scholar] [CrossRef]
- Somerton, W.H. Thermal Properties and Temperature–Related Behavior of Rock/Fluid Systems, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Hermanns, M.; Ibanez, S. Thermal Response of Slender Geothermal Boreholes to Subannual Harmonic Excitations. SIAM J. Appl. Math. 2019, 79, 230–256. [Google Scholar] [CrossRef]
- Barthel, P. Einsatz von Geoinformationssystemen (GIS) zur geologischen Standortbewertung, zur Analyse des regionalen Potentials und als Planungshilfsmittel für die thermische Nutzung des flachen Untergrundes bis 200 m Tiefe als Wärmequelle und Wärmespeicher in Unterfranken/Bayern. Ph.D. Thesis, Bayerischen Julius-Maximilians-Universität Würzburg, Würzburg, Germany, 2000. (In German). [Google Scholar]
- Bieda, A.; Kowalski, T.; Sliwa, T.; Skowroński, D.; Kowalska-Kubsik, I.; Rado, R. Udarowo-obrotowa metoda wiercenia otworowych wymienników ciepła jako alternatywa wiertnicza przyjazna środowisku (Rotary-percussion drilling for borehole heat exchangers as an environmentally friendly drilling alternative). Przem. Chem. 2018, 97, 864–986. (In Polish) [Google Scholar] [CrossRef]
- Sliwa, T.; Rosen, M.A. Efficiency analysis of borehole heat exchangers as grout varies via thermal response test simulations. Geothermics 2017, 69, 132–138. [Google Scholar] [CrossRef]
- Sapińska-Śliwa, A. Efektywność Pozyskiwania Ciepła z Górotworu w Aspekcie Sposobu Udostępniania Otworami Wiertniczymi (Effectiveness of Heat Recovery from Rock Mass in the Context of the Production Method by Means of Boreholes); Rozprawy Monografie Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie nr 364; Wydawnictwa AGH: Krakow, Poland, 2019. (In Polish) [Google Scholar]
- Sapińska-Śliwa, A.; Rosen, M.A.; Gonet, A.; Sliwa, T. Deep borehole heat exchangers—A conceptual and comparative review. Int. J. Air-Cond. Refrig. 2016, 24, 1–15. [Google Scholar] [CrossRef]
- Sliwa, T.; Kotyza, J. Dobór optymalnego otworowego wymiennika ciepła w otworze Jachówka 2K do głębokości 2870 m (Selection of optimal construction of borehole heat exchangers based on Jachówka 2K well to a depth 2870 m). In Metodyka i technologia uzyskiwania użytecznej energii geotermicznej z pojedynczego otworu wiertniczego (Methodology and Technology of Obtaining Useful Geothermal Energy from a Single Borehole); Sokołowski, J., Ed.; Polgeotermia-PGA-IPPGSMiE PAN: Kraków, Poland, 2000. (In Polish) [Google Scholar]
- Schneider, D.; Strotköffer, T.; Broβmann, E. Die 2800 m von Prenzlau oder die tiefste Erdwärmesonde der Welt. Geotherm. Energ. 1996, 16, 10–12. (In German) [Google Scholar]
- Zagórski, J. Krótkie wieści z kraju i ze świata. Ilość wierceń na świecie rośnie (Short news from the country and the world. The number of drillings in the world is increasing). Wiad. Naft. Gazow. 2018, 10, 240. (In Polish) [Google Scholar]
Borehole Name | Year of Implementation | Depth H, m | Production (Injection) Rate | Aquifer | Geothermal Water Temperature at the Wellhead Twh, °C | Potential Theoretical Heat Flow—Heating Power (by Cooling to 0 °C) P, MW (Average Density, Average Spec. Heat Capacity—for Distilled Water in Twh/2) | Borehole Type | Borehole Purpose | Spatial Orientation | Construction Material: Technical Column/Pumping Column | Borehole Bottom | Comments |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bańska IG-1 | 1979/81 [39,58,67] | 5261 [39,51,52,58,59,67] 5263 [58] | 120 [39,49,50,58,59,60,68] | Namulite limestone (middle Eocene) and limestone and dolomite (middle Triasic) [59] | At the beginning 60, after the intensification 82 [51,52] 82 [39,49,50,56,58,59,68,69] 86 [59] | 11.33 (991.9; 4179) | Archival ***** | Production [39,68] | Vertical | Steel/- | Perforated in borehole | Depth 5261 m in [58] at site 73, depth 5263 m w in [58] at site 71; Temperature on the outflow 82 °C in [59] in Table 4, and 86 °C in [59] in Table 1 Depth of the water level 2565–3345 m [39] |
Bańska PGP-1 | 1997 [39,72] | 3242 [39,59] | 550 [39,49,50,59,60,68] | Marly limestones (middle Eocene) and limestones and dolomites (middle Triassic) [59] | 85 [56] 86 [49,50,59,68] 87 [39,58] | 53.78 (991.1; 4179) | New *** | Production ** [39,68] | Vertical | Steel/- | Perforated on surface, 3032–3242 m uncased [72] | Depth of the water level 2709–3242 m [39]; Perforated on surface 2772–3032 m uncased [39] |
Bańska PGP-3k | 2012/2013 | 3500 MD [73] 3519 MD [70] 3380.7 TVD [73] 3400 TVD [70] | 290 [68,70] | Middle Triassic | 82.4 to 85.8 [61] 85 [56,68,70] | 28.36 (991.1; 4179) | New *** [38] | Production ** [68] | Directional [38] | Steel/- | Filtred [38] Perforated [71] | - |
BiałkaTatrzańska GT-1 | 2007 [75] | 2500 [75] | 32 [50] 38 [49] | - | 72 [75] 73 [49,50,56] | 2.66 (993.7; 4178) | New **** | Production | Vertical | - | - | - |
BiałyDunajec PAN-1 | 1989 [39,53] | 2394 [39,53,59] | 270 [59] (200) [39,49,50,58,60,68] | Conglomerates (middle Eocene) and limestones and dolomites (middle Triassic) [59] | 82 [49,50,56] 86 [59] | 25.49 (991.9; 4179) | New **** | Injection ** [39,68] | Vertical | Steel/- | Perforated, 2117–2132 uncased [39] | Depth of water level 2113–2394 m [39]; closed 11.09.2003; reconstruction in 2011 [39]; partly repaired in 2011; in 2014, the well was directionally deepened and restored to operation [46] |
BiałyDunajec PGP-2 | 1996/97 [39,72] | 2450 [39,59] | 175 [59] (400) [39,49,50,58,60] (500) [68] | Limestones and dolomites (middle Triassic) [59] | 85 [56] 86 [49,50,59] | 17.11 (991.1; 4179) | New **** | Injection ** [39,68] | Vertical | Steel/- | Perforated on surface [39] | Depth of water level 2048–2450 m [39] |
BukowinaTatrzańska PIG/PNiG-1 | 1992 [59] | 3780 [51,59] | 40 [49] 48 [50] 70 [59] | Marly limestones (lower Jurassic, upper Cretaceous) [59] | 64.5 [49] 67 [50,56,59] | 3.09 (994.4; 4178) | New **** | Production | Vertical | - | - | - |
Celejów GT-1 | 2014 [75] 2013–2015 [65] | 3500 [75] 3504 [65] | - | - | - | New **** | - | - | - | - | - | |
Celejów GT-2 | 2014 [75] 2013–2015 [65] | 1234 [75] | - | - | - | New **** | - | - | - | - | - | |
Chochołów PIG-1 | 1989/90 [76] | 3572 [51,59,76] | 120 [49,50] 190 [59] | Dolomites and limestones (middle Eocene)—(depth 3218–3572 m) [59] | 82 [49,50,56,59] | 11.33 (991.9; 4179) | New **** | Production ** | Vertical | - | - | - |
CiepliceZdrój C-1 | 1997 [79] | 2002 [78] | 50 [79] | 87.5 [79] | 5.03 (990.6; 4179) | |||||||
CiepliceZdrój C-2 | 750 [78,79] | 28 [79] | 63 [79] | 2.04 (995.09; 4178) | ||||||||
CzarnyPotok GT-1 | 2011 [75] | 2853 [75] | - | - | - | New **** | - | - | - | - | - | |
DusznikiZdrój GT-1 | 2002 [79] | 1695 [86] | 30 ** [79] | 35 [79] | 1.4183) | |||||||
Furmanowa PIG-1 | 1989/90 [76] | 2324 [51,59,76] | 60 [59] 90 [49,50,59] | Conglomerates (middle Eocene) and sandstones (Jurassic) and limestones (Jurassic and Cretaceous)—(depth 2003–2324 m) [59] | 60.5 [49,50,56,59] | 6.29 (995.7; 4178) | New **** [76] | Inactive (unemployed) ** | - | - | - | Flow rate 60 m3/h in [59] in Table 4, and 90 m3/h in [59] in Table 1 |
Gostynin GT-1 | 2007 [47] 2008 [75] 2007/08 [37,38,64] | 2734 [63,64,75] | 120 [63,64] | Lower Jurassic [37,38,47,64] | 82 [63,64,75] | 11.33 (991.9; 4179) | New **** | Production [37,38] | Vertical | Steel/steel [37,38] | Widened, bare foot [37,38] | - |
Jachranka GT-1 | 2019 [75] | 1780 [75] | 180 [75] | Lower Jurasic [75] | 44 [75] | 9.18 (997.9; 4181) | ||||||
Jaworze IG-1 | 1981 | 1525 [77,85] | 0.9 [77,85] | 23 [77,85] | 0.02 (999.58; 4189) | |||||||
Jaworze IG-2 | 1981 | 1650 [77,85] | 4 [77,85] | 32 [77,85] | 0.15 (999.03; 4185) | |||||||
Karpniki KT-1 | 1997 [74] | 44 [74] | 54 [74] | 2.75 (996.59; 4179) | Bare foot [78] | |||||||
KazimierzaWielka GT-1 | 2015 [81] | 750 | 200–300 | - | - | - | - | Vertical | - | - | - | |
Kleszczów GT-1 | 2009 [37,38,55,64,75] | 1620 [55,63,64,75] | 200 [63,75] 150 resulting from the pumping [64] 202.6 on the temperature 52.2 resulting from the pumping [55] | Lower Jurassic [37,38,47,64] | 52 [63,64] 52.2 [55,75] | 12.03 (996.9; 4179) | New **** | Production [37,38] | Vertical | Steel/steel [37,38] | Non-widened, bare foot [38] | 52.2 with Flow rate 202.6 during measuring pumping [55] |
Kleszczów GT-2 | 2010/11 [37,38] | 1725 [55] | 240.6 [55] | Lower Jurassic [37,38] | 45.9 [55] | 12.79 (997.6; 4180) | New **** | Injection [37,38] | Vertical | Fiberglass/- [37] | Widened, filtered [37,38] | Flow rate 240.6 m3/h. The temperature recorded at the outlet from the borehole (45.9 °C) is lower than borehole Kleszczów GT-1 (52.2 °C) although greater depth (Kleszczów GT-1—1620 m, Kleszczów GT-2—1725 m). |
Koło GT-1 | 2018 [75] | 3905 [75] | 260 [75] | 86 [75] | 25.72 (991.1; 4179) | |||||||
Konin GT-1 | 2014 [75] | 2660 [75] | 130–150 [80,84] | - | 95 [75] 97.5 [80,84] | 14.17 (988.5; 4180) | New **** | - | - | - | - | - |
LidzbarkWarmiński GT-1 | 2011 [37,38,64,75] | 1030 [75] 1200 [64] | 120 [64] | Lower Jurassic [37,38,63,64] | 24 [64] | 3.35 (999.6; 4189) | New **** [75] | Production [37,38] | Vertical | Steel/steel [37,38] | Widened, filtered [37,38] | - |
Mszczonów IG-1 | 1976 [38,44] 1977 [51,52] | 1700 [63] 1793 [46] 4119 [51,52] | 55 [63] 60 after reconstruction [44] 60 [63] | Lower Cretaceous [44,51,52,63] Lower Jurassic [38] | 40 [51,52,63] 42 after reconstuction [44] 42 with reservoir 55 m3·h−1 [63] | 2.92 (998.3; 4181) | Not for geothermal purposes [44] Archival [37] | Production [37,38] | Vertical [37,38] | Steel/steel [37,38] | Perforated pipes [37,38] | Flow rate 60 m3/h in [63] in Table 2, and 55 m3/h in [63] on the site 135. Temperature 40 °C [63] in Table 2 and 42 °C in [63] on site 135. |
Odra 5-I\Lech w Grabinie | 545 [86] | 31 [86] | ||||||||||
Piaseczno GT-1 | 2011/12 [37,38,64] | 1892 [64] | 120 [63,64] | Lower Jurassic [37,38,63,64] | 45 [63,64] | 6.26 (997.9; 4180) | New **** | Production [37,38] | Vertical [38] | Steel/steel [37,38] | Widened, filtered [37,38] | - |
PorębaWielka IG-1 | 1973/75 [48] | 2002.4 [48] | 12.1 [48,51,52] | Upper Cretaceous [48] | 42 [48,51,52] | 0.59 (998.3; 4181) | Archival | Production | Vertical | Steel/- | Filtered [48] | Reservoir 12.1 m3/his the initial documented resource [51,52], also referred to as the outflow of a year 1976 [48] |
Poddębice GT-2 | 2009/10 [37,38,64] 2010 [75] | 2100 [63] 2101 [64,75] | 115 [63,64] | Lower Cretaceous [37,38,64] | 72 [63,64] | 9.55 (993.7; 4178) | New **** | Production [37,38] | Vertical [38] | Steel/steel [38] | Widened, filtered [38] | - |
Poronin PAN-1 | 1988/89 [54] | 3003 [54,59] | 70 [49,50] 90 [59] | Limestones and dolomites (middle Triassic)—(depth 1768–1855 m) [59] | 63 [49,50,59] | 5.09 (995.1; 4178) | New [59] | Inactive | Vertical | Steel/- | - | - |
Pyrzyce GT-1 | 1992 [38] | 1632 [45] | 170 [39,63] | Lower Jurassic [38] | 61–63 [39] | 11.98 (995.4; 4178) | New [37] | Production [37,38] | Vertical [37,38] | Steel/steel [37,38] | Widened, filtered [37,38] | Total flow rate from Pyrzyce GT-1 and GT-3 340 m3/h [39,63] At the turn of 2008/09 the geothermal heating plant in Pyrzyce GT-2 and GT-4 have installed HDPE—High Density Poly Ethylene lining [37,63] |
Pyrzyce GT-2 | 1992/93 [38] | 1523 [45] 152.1 [72] | - | Lower Jurassic [38] | - | New [37] | Injection [37,38] | Vertical [37,38] | Steel/- [37,38] | Widened, filtered [37,38] | ||
Pyrzyce GT-3 | 1992/93 [38] | 1632 [45] | 170 [39,63] | Lower Jurassic [38] | 61–63 [39] | 11.98 (995.4; 4178) | New [37] | Production [37,38] | Vertical [37,38] | Steel/steel [37,38] | Widened, filtered [37,38] | |
Pyrzyce GT-4 | 1992/93 [38] | 1523 [45] 1523.1 [72] 1630 [75] | - | Lower Jurassic [38] | - | New [37] | Injection [37,38] | Vertical [37,38] | Steel/- [37] Steel/steel [38] | Widened, filtered [37,38] | ||
Pyrzyce GT-1 bis | 2017 [75] | 1645 [80] | 200 [75] | - | 65 [75] | 15.01 (994.8; 4178) | New *** | - | Directional [75] | - | - | - |
Rabka IG-1 | 1215 [77] | 4,5 [77] | 28 [77] | 0.15 (999.33; 4187) | ||||||||
Sieradz GT-1 | 2018 | 1505 [75,82] | 249 250 [75] | Lower Jurassic | 51.8 50 [75] | 14.98 (996.8; 4179) | New | Research and Production | Vertical | - | - | - |
SiwaWoda IG-1 | 1972/73 [76] | 856 [51,59] | 4 [49,50,59] | conglomerates (middle Eocene) and sandstones (Jurassic) and limestones (Jurassic and Cretaceous)—(depth 2003–2324 m) [59] | 20 [49,50,59] | 0.09 (999.8; 4192) | Archival ****** | Inactive (unemployed) ** [49] | - | - | - | - |
Skierniewice GT-1 | 1990/91 [39] | 3001 [39] | 70 [39] (13) [39] | Sandstones, siltstones, claystones (Lower Jurassic) depth 2875–2941 m [39] Lower Jurassic [72] | 69.2 [39] | 5.59 (994.1; 4178) | New **** [39] | Inactive | Vertical | - | Filtered [39] | The exploitation reservoirs are 70 m3/according to hydrogeological surveys from 1990/91, and from 1997 the final borehole flow rate 13 m3/h [39] Temperature of geothermal water was 69.2 °C in 1990/91 [39] |
Skierniewice GT-2 | 1996/97 [39] | 2900 [39] | 86.6 [39] | Lower Jurassic depth 2771–2886 m [39] Lower Jurassic [72] | 57.5 [39] | 5.76 (996.0; 4179) | New **** [39] | Inactive | Vertical | - | Widened, filtered [39] | Flow rate: 86.6 m3/h with temperature 57.5 °C [39] |
Sochaczew GT-1 | 2018 | 1540 [75] | Min. 180 | 44 [75] | - | 9.18 (997.9; 4181) | New | - | - | - | - | - |
Staniszów ST-1 | 1501 [74] | 20.5 [74] | 37.3 [74] | 0.89 (998.49; 4182) | Filtered [78] | Temperature and flow rate in 2014 | ||||||
StargardSzczeciński GT-1 | 2001 [38,72] | Planned depth 2670 [72] 2672 [58] 2750 [75] | 200 [63] | Lower Jurassic [38,63] | 87 [63] | 20.01 (990.6; 4179) | New [37] | Production [37,38] | Vertical [37,38] | Steel/steel [37,38] | Widened, filtered [37,38] | in 2008 the role of geothermal boreholes was changed [37] |
Stargard Szczeciński GT-2k | 2003 [38,72] 2005 [46] | Planned depth 3300 [72] Final depth 3080 [72,75] 2450 TVD [58] 2960 MD [58] | - | Lower Jurassic [38] | - | New [37] | Injection [37,38] | Directional [37,38,72] | Steel/steel [37,38] | Widened, bare foot [37,38] | In 2008 the role of geothermal boreholes was changed [37] Depth of the start directional 450 m, azimuth 17°, maximum angle 39° [72] | |
Stargard GT-3 | 2016 [75] | 2665 [75] | - | - | - | - | Injection [75] | - | - | - | - | |
Swarzędz IGH-1 | 1982 [62] | 1306 [62] | 33.84 to 73.36 [62] | Lower Jurassic [62] | 36.6 to 42.2 [62] | 1.44 (998.7; 4183) | - | - | - | - | Filtered876,6 to 1306 m, with perforation in 138,06 m [62] | The temperature of sodium-chloride water was 39.6–42.2 °C and depended on flow rate 33.84 do 73.36 m3/h [62] |
Szymoszkowa GT-1 | 2006 [75,76] | 1737 [75,76] | 70 [50] 80 [49] | - | 27 [49,50] | 2.20 (999.3; 4187) | New **** [75] | Production | Vertical | - | - | - |
TarnowoPodgórne GT-1 | 2010 [37,38] 2011 [64,75] | 1200 [63,64,75] | 220 [63,64] | Lower Jurassic [37,38,64] | 44 [63,64] | 11.23 (998.9; 4181) | New **** [75] | Production [37,38] | Vertical [38] | Steel/steel [37,38] | Widened, filtered [37,38] | - |
Tomaszów Mazowiecki GT-1 | 2090 m (+/− 20%) [83] | New **** [83] | ||||||||||
Toruń GT-1 [38] Toruń TG-1 [37,63,64,72] | 2008 [72] 2008/09 [37,38,64] | Planned depth 2970 [72] Final depth 2925 [64,72] | 350 [63,64] | Lower Jurassic [37,38,64] Lower Jurassic and middle Triassic [63] | 64 [63,64] | 25.87 (995.1; 4178) | New [38] | Production [37,38] | Vertical [38] | Steel/fiberglass [37,38] | Widened, filtered [37,38] | Flow rate 350 m3/h [63] |
Toruń GT-2 [38] Toruń TG-2 [37,63,64,72] | 2009 [37,38] | 2353 [38] | - | Lower Jurassic [37,38] | - | New [38] | Injection [37,38] | Vertical [38] | Fiberglassl/- [37,38] | Widened, filtered [37,38] | - | |
Trzęsacz GT-1 | 2012 [37,38,64] | 1200 [64] 1224.5 [75] | 180 [64] | Lower Jurassic [37,38,63,64,75] | 27 [64] | 5.65 (999.3; 4187) | New **** | Production [37,38] | Vertical [38] | Steel/steel [37,38] | Widened, filtered [37,38] | - |
Uniejów IGH-1 | 1978 [38,39,66] | 2245 [39] 2254 [66,72] | 55 [66] 65 [66] 65.4 [66] (54.9) [66] | Lower Cretaceous [39,57,66] | 68 [66] | 4.32 (994.4; 4178) | Archival ****** | Injection [37,38,39,66] | Vertical [37,38] | Steel/- [37,38] | Perforated pipes [37,38,39] | Flow rates: [66]: −65,4 m3/h test production in 1991, 65 m3/h in 1978, 55 m3/h in 1981. |
Uniejów PIG/AGH-1 | 1990/91 [38,57,66] | 2065 [39,66,72] | 90.14 [66] (80.5) [66] | Lower Cretaceous [38,39,57,66] | - | Archival [38] New [37] | Injection [37,38,39,66] | Vertical [37,38] | Steel/- [37,38] | Perforated pipes [37,38,39] | Flow rate 90.14 m3/h [66] | |
Uniejów PIG/AGH-2 | 1990/91 [38,66] | 2031 [66,72] 2042 [39] | 120 [66] | Lower Cretaceous [38,39,57,66] | 69.2 [66] 68 [63] | 9.58 (994.1; 4178) | Archival [38] New [37] | Production [38,39,66] | Vertical [37,38] | Steel/steel [37,38] | Perforated pipes [37,38,39] | Flow rate 120 m3/h and temperature 69.2 °C in 2005 [66] |
Ustroń IG-3 | 1837.5 [77] | 6 [77] | 21 [77] 32—brine [52] | 0.15 (999.77; 4191) | ||||||||
Wręcza GT-1 | 2018 [75] | 1688 [75] | 150 [75] | Kredadolna [75] | ~40 [75] | 6.96 (998.3; 4182) | ||||||
Zakopane IG-1 | 1961/63 [76] 1963 [58] | 3072.2 [51,52] 3073 [58] 3073.2 [59,76] | 50 [49,50,59] | Marl and limestones (lower Jurassic) [59] | 36 [58] 37 [49,50,59] | 2.09 (998.7; 4183) | Archival | - | Vertical | - | - | - |
Zakopane 2 | 1973 [58] 1975 [76] | 1113 [59,76] | 80 [49,50,58,59] 90 [59] | Namulite limestones (middle Eocene) and limestones and dolomites (middle Triassic) [59] | 26 [49,50,59] 26.6 [58] | 2.42 (999.5; 4188) | Archival | - | - | - | - | Flow rate 90 m3/h [59] and 80 m3/h [59] in Table 1. |
Zazadnia IG-1 | 1985/86 [76] | 680 [51,59] | 25 [49,50] 25.1 [59] | Namulite limestones (middle Eocene) and limestones and dolomites (middle Triassic) [59] | 22 [49,50,59] | 0.64 (999.8; 4191) | Archival | - | - | - | - | - |
Total | 12,8236.1 | 6257,18 | 735.4 |
Material | Density, ρp, kg/m3 | Thermal Expansion Coefficient, Δl, 1/K | Thermal Conductivity, λp, W/(mK) | Specific Heat, cp, kJ/(kgK) | Young’s Modulus, E, GPa |
---|---|---|---|---|---|
chlorinated polyvinyl chloride | 960 | 8 × 10−5 | 0.41 | 1.84 | 2.5 |
polybutylene | 939 | - | 0.22 | - | 0.34 |
polyethylene | 940–970 | 10−5 | 0.42 | 1.15 | 0.2 |
polypropylene | 909 | 1.5∙× 10−5 | 0.22 | 1.7 | 1.5–2.0 |
Name of Borehole Heat Exchanger | Constructions of Borehole Heat Exchanger | Type of Grout | Outer Diameter of Inner Pipes, Dz (dz), mm | Wall thickness of Pipes, b, mm | Type of Pipes Material |
---|---|---|---|---|---|
LG-1a | coaxial | cement slurry | Casing (outside) pipe Dz = 90 mm and b = 5.4 mm; inner pipe dz = 40 mm and b = 2.4 mm | PE, internally smooth pipe (laminar collector) | |
LG-2a | single U-pipe | cement slurry | 40 | 2.4 | PE, internally smooth pipe (laminar collector) |
LG-3a | single U-pipe | cement slurry with increased value of thermal conductivity (ThermoCem) | 40 | 2.4 | PE, internally smooth pipe (laminar collector) |
LG-4a | single U-pipe | gravel, size 8–16 mm and two clay plugs (Compactonit) | 40 | 2.4 | PE, internally smooth pipe (laminar collector) |
LG-5a | double U-pipe | cement slurry | 32 | 2.4 | PE, internally smooth pipe (laminar collector) |
LG-1b | double U-pipe | cement slurry with increased value of thermal conductivity (TermorotaS) | 32 | 3.0 | PE, internally smooth pipe (laminar collector) |
LG-2b | single U-pipe | cement slurry with increased value of thermal conductivity (TermorotaS) | 32 | 3.0 | PE, internally rough pipe (turbocollector) |
LG-3b | double U-pipe | cement slurry with increased value of thermal conductivity (TermorotaS) | 40 | 3.0 | PE, internally rough pipe (turbocollector) |
LG-4b | double U-pipe | cement slurry with increased value of thermal conductivity (TermorotaS) | 40 | 3.0 | PE, internally rough pipe (turbocollector) |
LG-5b | single U-pipe | cement slurry with increased value of thermal conductivity (TermorotaS) | 40 | 3.0 | PE, internally smooth pipe (laminar collector) |
LG-6b | single U-pipe | cement slurry with increased value of thermal conductivity (TermorotaS) | 40 | 3.0 | PE, internally rough pipe (turbocollector) |
LG-7b | single U-pipe | cement slurry with increased value of thermal conductivity (TermorotaS) | 45 | 3.0 | PE, internally rough pipe (turbocollector) |
LG-8b | single U-pipe | cement slurry with increased value of thermal conductivity (TermorotaS) | 32 | 3.0 | PE, internally rough pipe (turbocollector) |
LG-9b | single U-pipe | cement slurry with increased value of thermal conductivity (TermorotaS) in interval 0–20 m | 32 | 2.9 | PE, internally rough pipe (turbocollector) |
LG-10b | innovative system (Figure 3) | cement slurry with increased value of thermal conductivity (TermorotaS) | 40 | 3.0 | PE, internally rough pipe (turbocollector) |
LG-11b | innovative system (Figure 3) | typical mortar | 40 | 3.0 | PE, internally rough pipe (turbocollector) |
LG-12b | single U-pipe | cement slurry | 32 | 2.9 | PE, internally rough pipe (turbocollector) |
LG-13b | double U-pipe | cement slurry with increased value of thermal conductivity (TermorotaS) | First U-pipe -dz = 32 mm, turbocollector, b = 3.0 mm dz = 32 mm, turbocollector, b = 3.0 mm Second U-pipe: dz = 40 mm, laminar collector, b = 3.0 mm dz = 40 mm, laminar collector, b = 3.0 mm | ||
LG-14b | single U-pipe | cement slurry with increased value of thermal conductivity (TermorotaS) with graphite | 32 | 2.9 | PE, internally rough pipe (turbocollector) |
Geothermal District Heating | Geothermal Heat in Agriculture and Industry | Geothermal Heat for Buildings | Geothermal Heat in Balneology and Other | ||||
---|---|---|---|---|---|---|---|
Capacity, MW | Production, GWh/y | Capacity, MW | Production, GWh/y | Capacity, MW | Production, GWh/y | Capacity, MW | Production, GWh/y |
74.6 | 250.4 | 4 | 6 | >10 | >25 | >12 | >35 |
Description | Number | Capacity, MW | Production, GWh/y |
---|---|---|---|
In operation end of 2017 | 56,000 | 650 | 861 |
Projected total by 2020 | 74,000 | 860 | 1140 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sliwa, T.; Sapińska-Śliwa, A.; Gonet, A.; Kowalski, T.; Sojczyńska, A. Geothermal Boreholes in Poland—Overview of the Current State of Knowledge. Energies 2021, 14, 3251. https://doi.org/10.3390/en14113251
Sliwa T, Sapińska-Śliwa A, Gonet A, Kowalski T, Sojczyńska A. Geothermal Boreholes in Poland—Overview of the Current State of Knowledge. Energies. 2021; 14(11):3251. https://doi.org/10.3390/en14113251
Chicago/Turabian StyleSliwa, Tomasz, Aneta Sapińska-Śliwa, Andrzej Gonet, Tomasz Kowalski, and Anna Sojczyńska. 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge" Energies 14, no. 11: 3251. https://doi.org/10.3390/en14113251
APA StyleSliwa, T., Sapińska-Śliwa, A., Gonet, A., Kowalski, T., & Sojczyńska, A. (2021). Geothermal Boreholes in Poland—Overview of the Current State of Knowledge. Energies, 14(11), 3251. https://doi.org/10.3390/en14113251