Reduction of Fractionation of Lightweight Slurry to Geothermal Boreholes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Imput Material
2.2. Course of Research
2.2.1. Slurry Preparation
2.2.2. Experimental Procedures
- ✓
- PN-EN ISO 10426-2. Oil and Gas Industry. Cements and materials for cementing boreholes. Lot 2: Tests for drilling cements [40].
- ✓
- PN-EN ISO 10426-4 Oil and Gas Industry. Cements and materials for cementing boreholes. Part 4: Preparation and testing of cement slurries under atmospheric pressure [39].
- ✓
- PN-EN 196-1: 2006 Cement testing methods. Strength determination [41].
2.2.3. Free Water
2.2.4. Cement Slurry Fractionation
2.2.5. Rheological Parameters
3. Results and Discussion
4. Conclusions
- Bentonite in lightweight cement slurries for geothermal boreholes reduces fractionation of the cement slurry, but also causes a significant increase in rheological parameters. The HB consistency coefficient for the slurry with bentonite is 72.71 Pa·sn, and the yield point of HB with bentonite is 275 Pa, where for the sample without bentonite the HB consistency index is 0.32 Pa·sn, and the yield point of HB without bentonite is 8.42 Pa
- Introducing a dispersing agent into the cement slurry reduces the rheological parameters. But by reducing the value of the intermolecular forces of the cement grains, the fractionation of the cement slurry increases. Therefore, the mutual amounts of dispersing agent and bentonite in the cement slurry should be optimized. The consistency coefficient is reduced from the value of 6.41 Pa·sn to 0.32 Pa·sn, and the Casson viscosity from the value of 0.03 Pa·s to 0.02 Pa·s after introducing the dispersant
- Water glass is used to significantly reduce fractionation. But because of the high concentration of the mixing water, a dispersant must be added additionally.
- A cement slurry for sealing geothermal boreholes (surface casing, intermediate casing) that is prepared using class G cement has greater fractionation resistance. It is related to the lower water-cement ratio required by the standard.
- Xanthan gum has a beneficial effect in reducing the fractionation of the cement slurry to geothermal boreholes. This material doesn’t cause a strong increase in rheological parameters, which is beneficial from the point of view of the technology of pressing the cement slurry into the borehole.
- Filtration perlite has the best properties in reducing the fractionation of the cement slurry to geothermal boreholes (surface casing, intermediate casing). The introduction of fine fractions of this material into the cement slurry results in a uniform structure of the liquid slurry while maintaining low consistency coefficient 0.03 Pa·sn and the yield point 0.8 Pa.
- The materials tested in order to reduce fractionation of the cement slurry for sealing geothermal boreholes increase the consistency coefficient and the slurry yield point and reduce the amount of free water. Thanks to this, it is possible to design a homogeneous cement sheath. Such cement slurry has the same values of the tested parameters at all measurement points, so it can be used for sealing geothermal boreholes (surface casing, intermediate casing).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Explanation |
w/c | Twater–cement ratio—expresses the amount of water per cement unit |
Casson viscosity | the liquid is described by Casson’s rheological model |
HB (yield point, con-sistency coefficient) | the liquid is described by the Herschel–Bulkley rheological model |
References
- Kremieniewski, M.; Kędzierski, M. Badanie frakcjonowania lekkich materiałów obniżających gęstość jako wstępnego parametru podczas projektowania receptury zaczynu lekkiego. Nafta-Gaz 2019, 12, 35–42. [Google Scholar] [CrossRef]
- Kremieniewski, M. Ultra-Lightweight Cement Slurry to Seal Wellbore of Poor Wellbore Stability. Energies 2020, 13, 3124. [Google Scholar] [CrossRef]
- Gaurina-Međimurec, N.; Pašić, B.; Mijić, P.; Medved, I. Drilling Fluid and Cement Slurry Design for Naturally Fractured Reservoirs. Appl. Sci. 2021, 11, 767. [Google Scholar] [CrossRef]
- Aliyu, M.; Chen, H.-P. Sensitivity analysis of deep geothermal reservoir: Effect of reservoir parameters on production temperature. Energy 2017, 129, 101–113. [Google Scholar] [CrossRef]
- Operacz, A.; Chowaniec, J. Perspectives of geothermal water use in the Podhale Basin according to geothermal step distribution. Geol. Geophys. Environ. 2018, 44, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Huculak, M.; Jarczewski, W.; Dej, M. Economic aspects of the use of deep geothermal heat in district heating in Poland. Renew. Sustain. Energy Rev. 2015, 49, 29–40. [Google Scholar] [CrossRef]
- Zheng, S.; Liu, T.; Jiang, G.; Fang, C.; Qu, B.; Gao, P.; Li, L.; Feng, Y. Effects of Water-to-Cement Ratio on Pore Structure Evolution and Strength Development of Cement Slurry Based on HYMOSTRUC3D and Micro-CT. Appl. Sci. 2021, 11, 3063. [Google Scholar] [CrossRef]
- Tao, C.; Kutchko, B.G.; Rosenbaum, E.; Massoudi, M. A Review of Rheological Modeling of Cement Slurry in Oil Well Applications. Energies 2020, 13, 570. [Google Scholar] [CrossRef] [Green Version]
- Kampa, Ł.; Chowaniec, A.; Królicka, A.; Sadowski, Ł. The Effect of the Addition of Polypropylene Fibers to Primer on the Pull-Off Strength of Epoxy Resin Coatings. Materials 2020, 13, 4674. [Google Scholar] [CrossRef]
- Yildirim, N.; Parmanto, S.; Akkurt, G.G. Thermodynamic assessment of downhole heat exchangers for geothermal power generation. Renew. Energy 2019, 141, 1080–1091. [Google Scholar] [CrossRef]
- Górecki, W.; Sowiżdżał, A.; Hajto, M.; Wachowicz-Pyzik, A. Atlases of geothermal waters and energy resources in Poland. Environ. Earth Sci. 2014, 74, 7487–7495. [Google Scholar] [CrossRef] [Green Version]
- Bujakowski, W.; Tomaszewska, B.; Miecznik, M. The Podhale geothermal reservoir simulation for long-term sustainable production. Renew. Energy 2016, 99, 420–430. [Google Scholar] [CrossRef]
- Jeleński, T.; Dendys, M.; Tomaszewska, B.; Pająk, L.; Tomasz, J. The Potential of RES in the Reduction of Air Pollution: The SWOT Analysis of Smart Energy Management Solutions for Krakow Functional Area (KrOF). Energies 2020, 13, 1754. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Yilmaz, E.; Song, W. Evaluation of Viscosity, Strength and Microstructural Properties of Cemented Tailings Backfill. Minerals 2018, 8, 352. [Google Scholar] [CrossRef] [Green Version]
- Kremieniewski, M. Zmiana wczesnej wytrzymałości na ściskanie pod wpływem wybranych środków poprawiających stabilność sedymentacyjną. Nafta-Gaz 2020, 76, 446–473. [Google Scholar] [CrossRef]
- Kremieniewski, M.; Kędzierski, M. Wpływ wybranych domieszek obniżających gęstość na parametry zaczynu cementowego. Nafta-Gaz 2020, 76, 143–153. [Google Scholar] [CrossRef]
- Kremieniewski, M. Recipe of Lightweight Slurry with High Early Strength of the Resultant Cement Sheath. Energies 2020, 13, 1583. [Google Scholar] [CrossRef] [Green Version]
- Elkatatny, S.; Gamal, H.; Ahmed, A.; Sarmah, P.; Sangaru, S.; Alohaly, M. A Novel Solution for Severe Loss Prevention While Drilling Deep Wells. Sustainability 2020, 12, 1339. [Google Scholar] [CrossRef] [Green Version]
- Almalkawi, A.T.; Salem, T.; Hamadna, S.; Darsanasiri, A.G.N.D.; Soroushian, P.; Balchandra, A.; Al-Chaar, G. Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures. Materials 2018, 11, 597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kremieniewski, M. Poprawa stabilności sedymentacyjnej zaczynu cementowego. Nafta-Gaz 2017, 73, 242–249. [Google Scholar] [CrossRef]
- Kremieniewski, M.; Pikłowska, A. Receptura zaczynu lekkiego do uszczelniania otworów w strefie niskich ciśnień złożowych. Nafta-Gaz 2020, 76, 577–584. [Google Scholar] [CrossRef]
- Bhatty, J.I.; Banfill, P.F.G. Sedimentation behaviour in cement pastes subjected to continuous shear in rotational viscometers. Cem. Concr. Res. 1982, 12, 69–78. [Google Scholar] [CrossRef]
- Stryczek, S.; Wiśniowski, R.; Gonet, A.; Złotkowski, A. The influence of time of rheological parameters of fresh cement slurries. AGH Drill. Oil Gas 2014, 31, 123–133. [Google Scholar] [CrossRef]
- Tao, C.; Kutchko, B.G.; Rosenbaum, E.; Wu, W.-T.; Massoudi, M. Steady Flow of a Cement Slurry. Energies 2019, 12, 2604. [Google Scholar] [CrossRef] [Green Version]
- Kremieniewski, M. Badania środków poprawiających stabilność sedymentacyjną zaczynów cementowych. Nafta-Gaz 2020, 76, 387–395. [Google Scholar] [CrossRef]
- Kremieniewski, M.; Stryczek, S.; Kotwica, Ł. Zmiany w mikrostrukturze płaszcza cementowego w zależności od warunków hydratacji zaczynu. Nafta-Gaz 2014, 12, 918–926. [Google Scholar]
- Szeląg, M. Mechano-Physical Properties and Microstructure of Carbon Nanotube Reinforced Cement Paste after Thermal Load. Nanomaterials 2017, 7, 267. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Tang, K.; Qiu, Q.; Pan, D.; Lei, Z.; Xing, F. Experimental Investigation on Pore Structure Characterization of Concrete Exposed to Water and Chlorides. Materials 2014, 7, 6646–6659. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, A.A.; Elkatatny, S.; Ahmed, A.; Gajbhiye, R. Influence of Nanoclay Content on Cement Matrix for Oil Wells Subjected to Cyclic Steam Injection. Materials 2019, 12, 1452. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.H.A.; Zulkarnain, N.N.; Shafiq, N. Experimental Study and Design of Experiment Using Statistical Analysis for the Development of Geopolymer Matrix for Oil-Well Cementing for Enhancing the Integrity. Crystals 2021, 11, 139. [Google Scholar] [CrossRef]
- Kremieniewski, M. Korelacja wyników badań wytrzymałości na ściskanie i przyczepności do rur stalowych płaszcza cementowego z zaczynu o obniżonej gęstości. Nafta-Gaz 2019, 75, 613–624. [Google Scholar] [CrossRef]
- Kremieniewski, M. Zaczyny do uszczelniania otworów w warunkach niskich wartości gradientów ciśnienia szczelinowania skał oraz do prac rekonstrukcyjnych. Nafta-Gaz 2020, 76, 102–109. [Google Scholar] [CrossRef]
- Sliwa, T.; Sapińska-Śliwa, A.; Wysogląd, T.; Kowalski, T.; Konopka, I. Strength Tests of Hardened Cement Slurries for Energy Piles, with the Addition of Graphite and Graphene, in Terms of Increasing the Heat Transfer Efficiency. Energies 2021, 14, 1190. [Google Scholar] [CrossRef]
- Lee, S.; Kim, B.; Seo, J.; Cho, S. Beneficial Use of MIBC in Metakaolin-Based Geopolymers to Improve Flowability and Compressive Strength. Materials 2020, 13, 3663. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Z.; Zheng, Y.; Cui, S.; Lan, M.; Li, H.; Zhu, J.; Liang, X. Preparation, Characterization and Performances of Powdered Polycarboxylate Superplasticizer with Bulk Polymerization. Materials 2014, 7, 6169–6183. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Yao, C.; Xiong, J.; Liu, X.; Zhang, H.; Zhang, S. Effects of Sodium Hexametaphosphate Addition on the Dispersion and Hydration of Pure Calcium Aluminate Cement. Materials 2020, 13, 5229. [Google Scholar] [CrossRef]
- Carpenter, R.B. Matrix Control Cementing Slurry. U.S. Patent No. 4,569,395, 11 February 1986. [Google Scholar]
- Chatterji, S. On the properties of freshly made Portland cement paste. Part 2. Sedimentation and strength of flocculation. Cem. Concr. Res. 1988, 18, 615–620. [Google Scholar] [CrossRef]
- ISO. Cements and Materials for Cementing Holes. In Part 4: Preparation and Testing of Cement Slurries under Atmospheric Pressure; PN-EN ISO 10426-4:2006 Oil and Gas Industry; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- ISO. Cements and Materials for Cementing Holes. In Lot 2: Testing of Drilling Cements; PN–EN ISO 10426-2:2006 Oil and Gas Industry; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- ISO. Cement Testing Methods. In Compressive Strength Determination; PN–EN 196-1:2016-07; ISO: Geneva, Switzerland, 2016. [Google Scholar]
Composition | Action | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 |
---|---|---|---|---|---|---|---|
Water-cement ratio | 0.46 | 0.46 | 0.46 | 0.50 | 0.50 | 0.50 | |
Defoaming agent | It prevents the aeration of the cement slurry | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 |
Dispersant | Liquefaction of the cement slurry | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | |
Bentonite | Eliminate fractionation | 1.0 | 1.0 | ||||
Aluminosilicate microsphere | Density reduction, thermal insulation | 10.0 | 10.0 | 10.0 | |||
High-molecular polymer | Eliminate fractionation | 4.0 | |||||
Class A cement (CEM I 42.5R) | It sets the cement slurry | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Composition | Action | No. 7 | No. 8 | No. 9 | No. 10 | No. 11 | No. 12 |
---|---|---|---|---|---|---|---|
Water–cement ratio | 0.46 | 0.46 | 0.46 | 0.50 | 0.50 | 0.50 | |
Defoaming agent | It prevents the aeration of the cement slurry | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 |
Dispersant | Liquefaction of the cement slurry | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | |
Bentonite | Eliminate fractionation | 1.0 | |||||
Sodium water glass (Aqueous dispersion of sodium silicate) | Eliminate fractionation | 3.0 | |||||
Xanthan gum | Eliminate fractionation | 0.15 | |||||
Filter perlite | Density reduction, thermal insulation | 2.0 | |||||
Class G cement (G HSR) | It sets the cement slurry | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Parameter | Composition No. | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
Free water | Angle 90° | 0.3 | 1.1 | 0.1 | 1.8 | 0.2 | 0.0 |
Angle 45° | 1.8 | 3.5 | 0.2 | 4.3 | 1.1 | 1.5 | |
Density | [kg/m3] | 1880 | 1780 | 1880 | 1620 | 1560 | 1600 |
Fractionation Density in the part of the column [kg/m3] Angle of 90° | Top | 1800 | 1610 | 1860 | 1530 | 1540 | 1580 |
Middle | 1870 | 1770 | 1870 | 1600 | 1550 | 1590 | |
Bottom | 1920 | 1830 | 1880 | 1720 | 1550 | 1600 | |
Fractionation Density in the part of the column [kg/m3] Angle of 45° | Top | 1770 | 1590 | 1860 | 1500 | 1530 | 1570 |
Middle | 1875 | 1750 | 1870 | 1580 | 1540 | 1590 | |
Bottom | 1945 | 1810 | 1880 | 1690 | 1560 | 1610 |
Parameter | Composition No. | ||||||
---|---|---|---|---|---|---|---|
7 | 8 | 9 | 10 | 11 | 12 | ||
Free water | Angle 90° | 1.1 | 4.7 | 0.1 | 0.3 | 2.4 | 0.1 |
Angle 45° | 3.5 | 5.3 | 1.7 | 1.3 | 4.9 | 1.7 | |
Density | [kg/m3] | 1900 | 1910 | 1910 | 1810 | 1840 | 1740 |
Fractionation Density in the part of the column [kg/m3] Angle of 90° | Top | 1880 | 1810 | 1910 | 1800 | 1830 | 1730 |
Middle | 1900 | 1870 | 1910 | 1810 | 1840 | 1740 | |
Bottom | 1920 | 1900 | 1910 | 1810 | 1840 | 1740 | |
Fractionation Density in the part of the column [kg/m3] Angle of 45° | Top | 1860 | 1760 | 1890 | 1790 | 1840 | 1700 |
Middle | 1890 | 1840 | 1910 | 1810 | 1840 | 1720 | |
Bottom | 1930 | 1910 | 1920 | 1820 | 1850 | 1740 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kremieniewski, M.; Jasiński, B.; Zima, G.; Kut, Ł. Reduction of Fractionation of Lightweight Slurry to Geothermal Boreholes. Energies 2021, 14, 3686. https://doi.org/10.3390/en14123686
Kremieniewski M, Jasiński B, Zima G, Kut Ł. Reduction of Fractionation of Lightweight Slurry to Geothermal Boreholes. Energies. 2021; 14(12):3686. https://doi.org/10.3390/en14123686
Chicago/Turabian StyleKremieniewski, Marcin, Bartłomiej Jasiński, Grzegorz Zima, and Łukasz Kut. 2021. "Reduction of Fractionation of Lightweight Slurry to Geothermal Boreholes" Energies 14, no. 12: 3686. https://doi.org/10.3390/en14123686
APA StyleKremieniewski, M., Jasiński, B., Zima, G., & Kut, Ł. (2021). Reduction of Fractionation of Lightweight Slurry to Geothermal Boreholes. Energies, 14(12), 3686. https://doi.org/10.3390/en14123686