Methods of Stability Control of Perovskite Solar Cells for High Efficiency
Abstract
:1. Introduction
1.1. The Structure of a PSC Device
- (1)
- n-i-p configuration, where ETL (n-type semiconductor) is deposited on the TCO substrate, and HTL (p-type semiconductor) is located above the perovskite layer;
- (2)
- p-i-n configuration, in which HTL is deposited at TCO surface and ETL on top of the perovskite layer.
1.2. PSC Working Principles
2. Perovskite Structure Stability Methods
2.1. Methods for Making Perovskite Films
Perovskite | Deposition Method | PCE, % | Jsc, mA/cm2 | Voc, V | FF | Reference |
---|---|---|---|---|---|---|
MAI-PbI2 | Single-step deposition | 19.50 | 23.40 | 1.08 | 77.00 | [61] |
MAI-PbI2 | Single-step deposition | 24.82 | 26.35 | 1.16 | 80.90 | [6] |
MAI-PbI2-DMSO | Single-step deposition | 19.71 | 23.8 | 1.08 | 76.20 | [70] |
MAI-PbI2 | Two-step sequential deposition | 20.13 | 23.81 | 1.10 | 76.75 | [64] |
MAI-PbI2 | Two-step sequential deposition | 19.27 | 23.48 | 1.12 | 73.66 | [65] |
FA-PbI3 | Two-step sequential deposition | 22.4 | 24.4 | 1.17 | 78.89 | [66] |
MAI-PbI2 | Vacuum deposition | 19.4 | 23.11 | 1.09 | 77 | [67] |
MAI-PbI2 | Vacuum deposition | 19.1 | 24.3 | 1.15 | 79.8 | [68] |
FA1–xMAxPbI3 | Vacuum deposition | 18.8 | 22.5 | 1.1 | 75.1 | [71] |
(FAPbI3⋅xMACl)/DMF⋅NMP | Vapor-assisted solution processing | 19.78 | 24.79 | 1.07 | 74.60 | [72] |
FA-PbI3 | Vapor-assisted solution processing | 21.4 | 25.2 | 1.12 | 77.5 | [73] |
MAI-PbI2 | Vapor-assisted solution processing | 19.46 | 20.89 | 1.16 | 80.4 | [74] |
2.2. Additives for Enhanced Crystallinity
3. Impact of Interface Modification on PSC Performance
3.1. ETLs Interfacial Modifications
3.2. Interfacial Modifications in НTLs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Bao, Q.; Shen, L.; Ding, L. Potential applications for perovskite solar cells in space. Nano Energy 2020, 1, 05019. [Google Scholar] [CrossRef]
- Yu, Z.; Hagfeldt, A.; Sun, L. The application of transition metal complexes in hole-transporting layers for perovskite solar cells: Recent progress and future perspectives. Coordin. Chem. Rev. 2020, 406, 213143. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, J.W.; Jung, H.S.; Shin, H.; Park, N.G. High-efficiency perovskite solar cells. Chem. Rev. 2020, 120, 7867–7918. [Google Scholar] [CrossRef]
- Fang, Z.; Zeng, Q.; Zuo, C.; Zhang, L.; Xiao, H.; Cheng, M.; Hao, F.; Bao, Q.; Zhang, L.; Wu, W.-Q.; et al. Perovskite-based tandem solar cells. Sci. Bull. 2020, 1, 1–7. [Google Scholar] [CrossRef]
- Wu, J.; Li, Y.; Tan, S.; Yu, B.; Li, H.; Li, Y.; Shi, J.; Wu, H.; Luo, Y.; Li, D.; et al. Enhanced perovskite solar cell efficiency via the electric-field-induced approach. ACS Appl. Mater. Interfaces 2020, 12, 27258–27267. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.; Choi, I.W.; Go, E.M.; Cho, Y.; Kim, M.; Lee, B.; Yang, C. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 2020, 369, 1615–1620. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Hou, Y.; Bao, C.; Yin, J.; Yuan, F.; Huang, Z.; Sing, K.; Liu, J.; Zhou, C.H.; Lin, Y.; et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 2020, 5, 131–140. [Google Scholar] [CrossRef]
- Park, N.G. Research direction toward scalable, stable, and high efficiency perovskite solar cells. Adv. Energy Mater. 2020, 10, 1903106. [Google Scholar] [CrossRef]
- Ghosh, S.; Singh, T. Role of ionic liquids in organic-inorganic metal halide perovskite solar cells efficiency and stability. Nano Energy 2019, 63, 103828. [Google Scholar] [CrossRef]
- Deng, K.; Chen, Q.; Li, L. Modification engineering in SnO2 electron transport layer toward perovskite solar cells: Efficiency and stability. Adv. Funct. Mater. 2020, 30, 2004209. [Google Scholar] [CrossRef]
- Luo, D.; Su, R.; Zhang, W.; Gong, Q.; Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 2020, 5, 44–60. [Google Scholar] [CrossRef]
- Gao, F.; Zhao, Y.; Zhang, X.; You, J. Recent progresses on defect passivation toward efficient perovskite solar cells. Adv. Energy Mater. 2020, 10, 1902650. [Google Scholar] [CrossRef]
- Domanski, K.; Alharbi, E.A.; Hagfeldt, A.; Grätzel, M.; Tress, W. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 2018, 3, 61–67. [Google Scholar] [CrossRef]
- Shaimenova, A.; Ilyassova, G.; Klyuyeva, Y.; Khashimova, A. Development of the Institution of Arbitration in Kazakhstan: Problems of Theory and Practice. J. Adv. Res. Law Econ. 2020, 11, 169–186. [Google Scholar] [CrossRef]
- Nan, G.; Zhang, X.; Lu, G. Self-healing of photocurrent degradation in perovskite solar cells: The role of defect-trapped excitons. J. Phys. Chem. Lett. 2019, 10, 7774–7780. [Google Scholar] [CrossRef]
- Lucchi, E.; Lopez, C.P.; Franco, G. A conceptual framework on the integration of solar energy systems in heritage sites and buildings. IOP Conf. Ser. Mater. Sci. Eng. 2020, 949, 012113. [Google Scholar] [CrossRef]
- Sánchez-Pantoja, N.; Vidal, R.; Pastor, M.C. EU-Funded Projects with actual implementation of renewable energies in cities. Analysis of their concern for aesthetic impact. Energies 2021, 14, 1627. [Google Scholar] [CrossRef]
- Chen, B.; Song, J.; Dai, X.; Liu, Y.; Rudd, P.N.; Hong, X.; Huang, J. Synergistic effect of elevated device temperature and excess charge carriers on the rapid light-induced degradation of perovskite solar cells. Adv. Mater. 2019, 31, 1902413. [Google Scholar] [CrossRef]
- Seok, S.I.; Grätzel, M.; Park, N.G. Methodologies toward highly efficient perovskite solar cells. Small 2018, 14, 1704177. [Google Scholar] [CrossRef] [PubMed]
- Correa-Baena, J.P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739–744. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Shao, Z.; Rao, Y.; Meng, H.; Gao, C.; Chen, C.; Liu, D.; Lv, P.; Li, Z.; Wang, X.; et al. A low-temperature additive-involved leaching method for highly efficient inorganic perovskite solar cells. Adv. Energy Mater. 2021, 11, 2002754. [Google Scholar] [CrossRef]
- Hima, A.; Lakhdar, N.; Benhaoua, B.; Saadoune, A.; Kemerchou, I.; Rogti, F. An optimized perovskite solar cell designs for high conversion efficiency. Superlatt. Microstruct. 2019, 129, 240–246. [Google Scholar] [CrossRef]
- Bi, S.; Leng, X.; Li, Y.; Zheng, Z.; Zhang, X.; Zhang, Y.; Zhou, H. Interfacial modification in organic and perovskite solar cells. Adv. Mater. 2019, 31, 1805708. [Google Scholar] [CrossRef]
- Tsindeliani, I.; Egorova, M.; Vasilyeva, E.; Bit-Shabo, I.; Kikavets, V. Collection of Taxes from Ultimate Beneficiaries: Russian Regulatory Model. Account. Econ. Law 2021, 1–24. [Google Scholar] [CrossRef]
- Ren, H.; Yu, S.; Chao, L.; Xia, Y.; Sun, Y.; Zuo, S.; Huang, W. Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photon. 2020, 14, 154–163. [Google Scholar] [CrossRef]
- Ono, L.K.; Qi, Y.; Liu, S.F. Progress toward stable lead halide perovskite solar cells. Joule 2018, 2, 1961–1990. [Google Scholar] [CrossRef] [Green Version]
- Sherafatipour, G.; Benduhn, J.; Patil, B.R.; Ahmadpour, M.; Spoltore, D.; Rubahn, H.G.; Vandewal, K.; Madsen, M. Degradation pathways in standard and inverted DBP-C 70 based organic solar cells. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gautier, R.; Massuyeau, F.; Galnon, G.; Paris, M. Lead halide post-perovskite-type chains for high-efficiency white-light emission. Adv. Mater. 2019, 31, 1807383. [Google Scholar] [CrossRef]
- Ito, N.; Kamarudin, M.A.; Hirotani, D.; Zhang, Y.; Shen, Q.; Ogomi, Y.; Hayase, S. Mixed Sn–Ge perovskite for enhanced perovskite solar cell performance in air. J. Phys. Chem. Lett. 2018, 9, 1682–1688. [Google Scholar] [CrossRef]
- Pitchaiya, S.; Natarajan, M.; Santhanam, A.; Asokan, V.; Yuvapragasam, A.; Ramakrishnan, V.M.; Velauthapillai, D. A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application. Arab. J. Chem. 2020, 13, 2526–2557. [Google Scholar] [CrossRef]
- Tao, L.; Wang, B.; Wang, H.; Chen, C.; Ding, X.; Tian, Y.; Lu, H.; Yang, X.; Cheng, M. Surface defect passivation and energy level alignment engineering with a fluorine-substituted hole transport material for efficient perovskite solar cells. ACS Appl. Mater. Interfaces 2021, 13, 13470–13477. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Yam, C. First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. Phys. Chem. 2018, 20, 6800–6804. [Google Scholar] [CrossRef]
- Xiao, Z.; Yan, Y. Progress in theoretical study of metal halide perovskite solar cell materials. Adv. Energy Mater. 2017, 7, 1701136. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, D.; Lv, J.; Sun, Y.Y.; Zhang, L. Perovskite solar absorbers: Materials by design. Small Methods 2018, 2, 1700316. [Google Scholar] [CrossRef]
- Hussain, I.; Tran, H.P.; Jaksik, J.; Moore, J.; Islam, N.; Uddin, M.J. Functional materials, device architecture, and flexibility of perovskite solar cell. Emerg. Mater. 2018, 1, 133–154. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Yang, R.T.; Weng, D.W.; Hu, H.; Singh, A.; Mohapatra, A.; Chen, Y.-T.; Lu, Y.-J.; Guo, T.-F.; Li, G.; et al. Low-temperature processed bipolar metal oxide charge transporting layers for highly efficient perovskite solar cells. Sol. Energy Mater. Sol. Cells 2021, 221, 110870. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Y.; Wang, M.; Cui, H.; Xie, W.; Shen, L.; Guo, W. Facilitating electron collection of organic photovoltaics by passivating trap states and tailoring work function. Sol. Energy 2019, 181, 9–16. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Z.; Hu, Z.; Hawash, Z.; Qiu, L.; Jiang, Y.; Ono, L.K.; Qi, Y. Highly efficient and stable perovskite solar cells via modification of energy levels at the perovskite/carbon electrode interface. Adv. Mater. 2019, 31, 1804284. [Google Scholar] [CrossRef] [PubMed]
- Park, N.G.; Segawa, H. Research direction toward theoretical efficiency in perovskite solar cells. ACS Photon. 2018, 5, 2970–2977. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2017, 2, 17032. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory (NREL). Research-Cell Efficiency Chart. Champion Module Efficiency Chart. Available online: https://www.nrel.gov/pv/module-efficiency.html (accessed on 27 October 2019).
- Chen, Z.; Turedi, B.; Alsalloum, A.Y.; Yang, C.; Zheng, X.; Gereige, I.; AlSaggaf, A.; Mohammed, O.F.; Bakr, O.M. Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency. ACS Energy Lett. 2019, 4, 1258–1259. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Dar, M.I.; Ono, L.K.; Zhang, T.; Kan, M.; Li, Y.; Zhao, Y. Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies > 18%. Science 2019, 365, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables (Version 46). Prog. Photovolt. 2015, 23, 1–9. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables (Version 48). Prog. Photovolt. 2016, 24, 905–913. [Google Scholar] [CrossRef] [Green Version]
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; HohlEbinger, J.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (Version 51). Prog. Photovolt. 2018, 26, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; HohlEbinger, J.; Yoshita, M.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (Version 53). Prog. Photovolt. 2019, 27, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Green, M.A.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Yoshita, M.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (Version 54). Prog. Photovolt. 2019, 27, 565–575. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (Version 55). Prog. Photovolt. 2020, 28, 3–15. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Hao, X. Solar cell efficiency tables (version 57). Prog. Photovolt. 2021, 29, 3–15. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Ke, W.; Kanatzidis, M.G. Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. 2019, 10, 965. [Google Scholar] [CrossRef]
- Pobedinsky, V.; Shestak, V. Improving Environmental Legislation in Central Asia. Environ. Policy Law 2020, 50, 69–79. [Google Scholar] [CrossRef]
- Katsuba, S.; Shestak, V.; Kvasnikova, T.; Bokov, Y. Liability for Violation of Environmental Legislation in the EU. Eur. Energy Environ. Law Rev. 2021, 30, 9–19. [Google Scholar]
- Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Kazmerski, L.L. Solar photovoltaics R&D at the tipping point: A 2005 technology overview. J. Electron. Spectrosc. Related Phenom. 2006, 150, 105–135. [Google Scholar]
- Wu, F.; Pathak, R.; Chen, K.; Wang, G.; Bahrami, B.; Zhang, W.H.; Qiao, Q. Inverted current–voltage hysteresis in perovskite solar cells. ACS Energy Lett. 2018, 3, 2457–2460. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, K.; Sarwar, S.; Mehran, M.T. Current status of electron transport layers in perovskite solar cells: Materials and properties. RSC Adv. 2017, 7, 17044–17062. [Google Scholar] [CrossRef] [Green Version]
- Qarony, W.; Hossain, M.I.; Salleo, A.; Knipp, D.; Tsang, Y.H. Rough versus planar interfaces: How to maximize the short circuit current of perovskite single and tandem solar cells. Mater. Today Energy 2019, 11, 106–113. [Google Scholar] [CrossRef]
- Xing, G.; Wu, B.; Wu, X.; Li, M.; Du, B.; Wei, Q.; Guo, J.; Yeow, E.K.L.; Sum, T.C.; Huang, W. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 2017, 8, 14558. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhang, T.; Wang, Y.; Liu, D.; Zhang, P.; Chen, H.; Ji, L.; Chen, L.; Chen, Z.D.; Wu, J.; et al. Correction: Steering the crystallization of perovskites for high-performance solar cells in ambient air. J. Mater. Chem. A 2020, 8, 18387. [Google Scholar] [CrossRef]
- Konstantakou, M.; Perganti, D.; Falaras, P.; Stergiopoulos, T. Anti-solvent crystallization strategies for highly efficient perovskite solar cells. Crystals 2017, 7, 291. [Google Scholar] [CrossRef] [Green Version]
- Ermanova, I.; Yaghoobi Nia, N.; Lamanna, E.; Di Bartolomeo, E.; Kolesnikov, E.; Luchnikov, L.; Di Carlo, A. Crystal engineering approach for fabrication of inverted perovskite solar cell in ambient conditions. Energies 2021, 14, 1751. [Google Scholar] [CrossRef]
- Sun, H.; Deng, K.; Zhu, Y.; Liao, M.; Xiong, J.; Li, Y.; Li, L. A novel conductive mesoporous layer with a dynamic two-step deposition strategy boosts efficiency of perovskite solar cells to 20%. Adv. Mater. 2018, 30, 1801935. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, X.; Han, X.; Hou, C.; Wang, H.; Qi, J.; Zhang, Q. Tuning the reactivity of PbI2 film via monolayer Ti3C2Tx MXene for two-step-processed CH3NH3PbI3 solar cells. Chem. Eng. J. 2020, 127912. [Google Scholar]
- Lee, D.G.; Kim, D.H.; Lee, J.M.; Kim, B.J.; Kim, J.Y.; Shin, S.S.; Jung, H.S. High efficiency perovskite solar cells exceeding 22% via a photo-assisted two-step sequential deposition. Adv. Funct. Mater. 2020, 2006718. [Google Scholar]
- Tavakoli, M.M.; Tavakoli, R. All-vacuum-processing for fabrication of efficient, large-scale, and flexible inverted perovskite solar cells. Rapid Res. Lett. 2021, 15, 2000449. [Google Scholar] [CrossRef]
- Kim, B.S.; Gil-Escrig, L.; Sessolo, M.; Bolink, H.J. Deposition kinetics and compositional control of vacuum-processed CH3NH3PbI3 perovskite. J. Phys. Chem. Lett. 2020, 11, 6852–6859. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Wei, X.; Xie, G.; Simon, T.; Cui, T. Numerical simulation of vapor deposition process of perovskite solar cells: The influence of MAI vapor flow to perovskite growth. J. Solar Energy Eng. 2020, 143, 011002. [Google Scholar] [CrossRef]
- Ahn, N.; Son, D.Y.; Jang, I.H.; Kang, S.M.; Choi, M.; Park, N.G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. J. Am. Chem. Soc. 2015, 37, 8696–8699. [Google Scholar] [CrossRef]
- Gil-Escrig, L.; Dreessen, C.; Kaya, I.C.; Kim, B.S.; Palazon, F.; Sessolo, M.; Bolink, H.J. Efficient vacuum-deposited perovskite solar cells with stable cubic FA1–x MA x PbI3. ACS Energy Lett. 2020, 5, 3053–3061. [Google Scholar] [CrossRef]
- Wang, D.; Wu, C.; Luo, W.; Guo, X.; Qi, X.; Zhang, Y.; Zhang, Z.; Qu, B.; Xiao, L.; Chen, Z. Glass rod-sliding and low pressure assisted solution processing composition engineering for high-efficiency perovskite solar cells. Sol. Energy Mater. Sol. Cells 2020, 211, 110532. [Google Scholar] [CrossRef]
- Lu, H.; Liu, Y.; Ahlawat, P.; Mishra, A.; Tress, W.R.; Eickemeyer, F.T.; Grätzel, M. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 2020, 370, eabb8985. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Meng, K.; Wang, X.; Qiao, Z.; Xu, Q.; Li, S.; Cheng, L.; Li, Z.; Chen, G. In situ observation of vapor-assisted 2D–3D heterostructure formation for stable and efficient perovskite solar cells. Nano Lett. 2020, 20, 1296–1304. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Li, P.; Gu, H.; Zhang, Y.; Li, F.; Song, Y.; Shao, G.; Mathews, N.; Xing, G. One-step inkjet printed perovskite in air for efficient light harvesting. Solar Rrl 2018, 2, 1700217. [Google Scholar] [CrossRef]
- Mathies, F.; Eggers, H.; Richards, B.S.; Hernandez-Sosa, G.; Lemmer, U.; Paetzold, U.W. Inkjet-printed triple cation perovskite solar cells. ACS Appl. Energy Mater. 2018, 1, 1834–1839. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, L.; Zhang, C.; Lu, Y.; Qiu, S.; Wang, C.; Liu, C.; Pan, L.; Wu, S.; Hu, J.; et al. Rational interface design and morphology control for blade-coating efficient flexible perovskite solar cells with a record fill factor of 81%. Adv. Funct. Mater. 2020, 30, 2001240. [Google Scholar] [CrossRef]
- Zhong, Y.; Munir, R.; Li, J.; Tang, M.C.; Niazi, M.R.; Smilgies, D.M.; Zhao, S.; Amassian, A. Blade-coated hybrid perovskite solar cells with efficiency > 17%: An in situ investigation. ACS Energy Lett. 2018, 3, 1078–1085. [Google Scholar] [CrossRef]
- Li, C.; Yin, J.; Chen, R.; Lv, X.; Feng, X.; Wu, Y.; Cao, J. Monoammonium porphyrin for blade-coating stable large-area perovskite solar cells with > 18% efficiency. J. Am. Chem. Soc. 2019, 141, 6345–6351. [Google Scholar] [CrossRef]
- Pelle, M.; Lucchi, E.; Maturi, L.; Astigarraga, A.; Causone, F. Coloured BIPV technologies: Methodological and experimental assessment for architecturally sensitive areas. Energies 2020, 13, 4506. [Google Scholar] [CrossRef]
- Dai, T.; Li, X.; Zhang, Y.; Xu, D.; Geng, A.; Zhao, J.; Chen, X. Performance improvement of polymer solar cells with binary additives induced morphology optimization and interface modification simultaneously. Solar Energy 2020, 201, 330–338. [Google Scholar] [CrossRef]
- Yang, D.; Grott, S.; Jiang, X.; Wienhold, K.S.; Schwartzkopf, M.; Roth, S.V.; Müller-Buschbaum, P. In situ studies of solvent additive effects on the morphology development during printing of bulk heterojunction films for organic solar cells. Small Methods 2020, 4, 2000418. [Google Scholar] [CrossRef]
- Hussein, H.T.; Zamel, R.S.; Mohamed, M.S.; Mohammed, M.K. High-performance fully-ambient air processed perovskite solar cells using solvent additive. J. Phys. Chem. Solids 2021, 149, 109792. [Google Scholar] [CrossRef]
- Lee, S.; Tang, M.C.; Munir, R.; Barrit, D.; Kim, Y.J.; Kang, R.; Kim, D.Y. In situ study of the film formation mechanism of organic–inorganic hybrid perovskite solar cells: Controlling the solvate phase using an additive system. J. Mater. Chem. 2020, 8, 7695–7703. [Google Scholar] [CrossRef]
- Hou, M.; Xu, Y.; Tian, Y.; Wu, Y.; Zhang, D.; Wang, G.; Zhang, X. Synergistic effect of MACl and DMF towards efficient perovskite solar cells. Org. Electron. 2021, 88, 106005. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, W.; Zhang, Z.; Liu, S.; Wu, J.; Guan, Y.; Han, H. Crystallization control of ternary-cation perovskite absorber in triple-mesoscopic layer for efficient solar cells. Adv. Energy Mater. 2020, 10, 1903092. [Google Scholar] [CrossRef]
- Oseni, S.O.; Mola, G.T. The effect of uni-and binary solvent additives in PTB7: PC61BM based solar cells. Solar Energy 2017, 150, 66–72. [Google Scholar] [CrossRef]
- Arias-Ramos, C.F.; Kumar, Y.; Abrego-Martínez, P.G.; Hu, H. Efficient and stable hybrid perovskite prepared at 60% relative humidity with a hydrophobic additive in anti-solvent. Solar Energy Mater. Solar Cells 2020, 215, 110625. [Google Scholar] [CrossRef]
- Song, X.; Wang, W.; Sun, P.; Ma, W.; Chen, Z.K. Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells. Appl. Phys. Lett. 2015, 106, 033901. [Google Scholar] [CrossRef]
- Nukusheva, A.; Ilyassova, G.; Rustembekova, D.; Zhamiyeva, R.; Arenova, L. Global warming problem faced by the international community: International legal aspect. Int. Environ. Agreem. Pol. Law Econ. 2020, 1–15. [Google Scholar] [CrossRef]
- Bai, Y.; Meng, X.; Yang, S. Interface engineering for highly efficient and stable planar p-i-n perovskite solar cells. Adv. Energy Mater. 2018, 8, 1701883. [Google Scholar] [CrossRef]
- Chen, J.; Park, N.G. Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett. 2020, 5, 2742–2786. [Google Scholar] [CrossRef]
- Bett, A.J.; Schulze, P.S.; Winkler, K.M.; Kabakli, Ö.S.; Ketterer, I.; Mundt, L.E.; Goldschmidt, J.C. Two-terminal Perovskite silicon tandem solar cells with a high-Bandgap Perovskite absorber enabling voltages over 1.8 V. Prog. Photovolt. 2020, 28, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Ferdowsi, P.; Ochoa-Martinez, E.; Alonso, S.S.; Steiner, U.; Saliba, M. Ultrathin polymeric films for interfacial passivation in wide band-gap perovskite solar cells. Sci. Rep. 2020, 10, 22260. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Xiang, B.; Zou, T.; Liu, C.; Wang, K.; Chen, J.; Zhou, H. Optimization of PMMA: PCBM interlayer for MAPbI 3/IGZO phototransistor. In Proceedings of the 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Penang, Malaysia, 6–21 April 2020; pp. 1–3. [Google Scholar]
- Hu, X.; Wang, H.; Wang, M.; Zang, Z. Interfacial defects passivation using fullerene-polymer mixing layer for planar-structure perovskite solar cells with negligible hysteresis. Solar Energy 2020, 206, 816–825. [Google Scholar] [CrossRef]
- Wang, H.; Cao, S.; Yang, B.; Li, H.; Wang, M.; Hu, X.; Zang, Z. NH4Cl-modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process. Solar Rrl 2020, 4, 1900363. [Google Scholar] [CrossRef]
- You, S.; Wang, H.; Bi, S.; Zhou, J.; Qin, L.; Qiu, X.; Tang, Z. A biopolymer heparin sodium interlayer anchoring TiO2 and MAPbI3 enhances trap passivation and device stability in perovskite solar cells. Adv. Mater. 2018, 30, 1706924. [Google Scholar] [CrossRef]
- Jiang, M.; Niu, Q.; Tang, X.; Zhang, H.; Xu, H.; Huang, W.; Xia, R. Improving the performances of perovskite solar cells via modification of electron transport layer. Polymers 2019, 11, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, F.; Deng, L.; Wang, K.; Han, C.; Liu, Z.; Yu, H.; Hu, B. Surface modification of SnO2 via MAPbI3 nanowires for a highly efficient non-fullerene acceptor-based organic solar cell. ACS Appl. Mater. Interfaces 2020, 12, 5120–5127. [Google Scholar] [CrossRef]
- Zou, Y.; Cui, Y.; Wang, H.Y.; Cai, Q.; Mu, C.; Zhang, J.P. Highly efficient and stable 2D–3D perovskite solar cells fabricated by interfacial modification. Nanotechnology 2019, 30, 275202. [Google Scholar] [CrossRef]
- Bi, W.; Wu, Y.; Zhang, B.; Jin, J.; Li, H.; Liu, L.; Song, H. Enhancing photostability of perovskite solar cells by Eu (TTA) 2 (Phen) MAA interfacial modification. ACS Appl. Mater. Interfaces 2019, 11, 11481–11487. [Google Scholar] [CrossRef]
- Mohseni, H.R.; Dehghanipour, M.; Dehghan, N.; Tamaddon, F.; Ahmadi, M.; Sabet, M.; Behjat, A. Enhancement of the photovoltaic performance and the stability of perovskite solar cells via the modification of electron transport layers with reduced graphene oxide/polyaniline composite. Solar Energy 2021, 213, 59–66. [Google Scholar] [CrossRef]
- Rong, B.; Jin, S.; Chen, X.; Wei, Y.; Fang, Y.; Zhao, Y.; Wu, J. Improving the efficiency of perovskite solar cells by additive engineering with ditetrabutylammonium dichromate. Org. Electron. 2020, 85, 105845. [Google Scholar] [CrossRef]
- Ali, J.; Li, Y.; Gao, P.; Hao, T.; Song, J.; Zhang, Q.; Liu, F. Interfacial and structural modifications in perovskite solar cells. Nanoscale 2020, 12, 5719–5745. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, Y.; Zhang, C.; Liu, Y.; Zheng, C.; Lv, W.; Chen, R. Improving the efficiency and stability of inverted perovskite solar cells by CuSCN-doped PEDOT:PSS. Solar Energy Mater. Solar Cells 2020, 206, 110316. [Google Scholar] [CrossRef]
- Liu, Z.; He, T.; Wang, H.; Song, X.; Liu, H.; Yang, J.; Ma, H. Improving the stability of the perovskite solar cells by V2O5 modified transport layer film. RSC Adv. 2017, 7, 18456–18465. [Google Scholar] [CrossRef] [Green Version]
- Lian, X.; Chen, J.; Shan, S.; Wu, G.; Chen, H. Polymer modification on the NiO x hole transport layer boosts open-circuit voltage to 1.19 V for perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 46340–46347. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Yuan, L.; Huang, J.; Shi, J.; Cao, Y.; Zi, W.; Zhang, W. Modified HTL-induced efficiency enhancement for inverted perovskite solar cells. Org. Electron. 2020, 78, 105557. [Google Scholar] [CrossRef]
- Jin, Z.; Guo, Y.; Yuan, S.; Zhao, J.S.; Liang, X.M.; Qin, Y.; Ai, X.C. Modification of NiO x hole transport layer for acceleration of charge extraction in inverted perovskite solar cells. RSC Adv. 2020, 10, 12289–12296. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Xu, W.; Ding, N.; Ji, Y.; Pan, G.; Zhu, J.; Song, H. Dual interfacial modification engineering with 2D MXene quantum dots and copper sulphide nanocrystals enabled high-performance perovskite solar cells. Adv. Funct. Mater. 2020, 30, 2003295. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muradov, A.; Frolushkina, D.; Samusenkov, V.; Zhamanbayeva, G.; Kot, S. Methods of Stability Control of Perovskite Solar Cells for High Efficiency. Energies 2021, 14, 2918. https://doi.org/10.3390/en14102918
Muradov A, Frolushkina D, Samusenkov V, Zhamanbayeva G, Kot S. Methods of Stability Control of Perovskite Solar Cells for High Efficiency. Energies. 2021; 14(10):2918. https://doi.org/10.3390/en14102918
Chicago/Turabian StyleMuradov, Abyl, Daria Frolushkina, Vadim Samusenkov, Gulsara Zhamanbayeva, and Sebastian Kot. 2021. "Methods of Stability Control of Perovskite Solar Cells for High Efficiency" Energies 14, no. 10: 2918. https://doi.org/10.3390/en14102918