Shipboard Power Management for Failure Mode Using the Hybrid MPC Approach
Abstract
1. Introduction
2. System Models and Problem Formulation
2.1. System Structure Overview
2.1.1. Generation Model
2.1.2. Propulsion Module
2.1.3. Power Network Model
2.2. Problem Formulation
- (1)
- optimizing the switch configuration to maximize the supplied power for loads.
- (2)
- maintaining power quality of the SPS and minimizing bus voltage deviation.
3. Problem Solution and Analysis
3.1. Upper Layer Solution
3.2. Lower Layer Solution
4. Simulation Results
4.1. Scenario 1
4.2. Scenario 2
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doerry, N.; McCoy, K. Next Generation Integrated Power System: NGIPS Technology Development Roadmap; Naval Sea Systems Command: Washington, DC, USA, 2007. [Google Scholar]
- Doerry, N. Naval Power Systems. IEEE Electrif. 2015, 3, 12–21. [Google Scholar] [CrossRef]
- Hebner, R.E.; Uriarte, F.M.; Kwasinski, A.; Gattozzi, A.L.; Estes, H.B.; Anwar, A.; Mccoy, T.J. Technical cross-fertilization between terrestrial microgrids and ship power systems. J. Mod. Power Syst. Clean Energy 2016, 4, 161–179. [Google Scholar] [CrossRef]
- Ahuja, A.; Das, S.; Pahwa, A. An AIS-ACO hybrid approach for multi-objective distribution system reconfiguration. IEEE Trans. Power Syst. 2007, 22, 1101–1111. [Google Scholar] [CrossRef]
- Ramos, E.R.; Martinez-Ramos, J.L.; Exposito, A.G.; Salado, A.J.U. Optimal reconfiguration of distribution networks for power loss reduction. In Proceedings of the 2001 IEEE Porto Power Tech Proceedings, Porto, Portugal, 10–13 September 2001; Volume 3, p. 5. [Google Scholar]
- Guimaraes, A.N.; Lorenzeti, J.F.C.; Castro, C.A. Reconfiguration of distribution systems for stability margin enhancement using tabu search. In Proceedings of the 2004 International Conference on Power System Technology, 2004. PowerCon 2004, Singapore, 21–24 November 2004; Volume 2, pp. 1556–1561. [Google Scholar]
- Panasetsky, D.; Sidorov, D.; Li, Y.; Ouyang, L.; Xiong, J.; He, L. Centralized emergency control for multi-terminal VSC-based shipboard power systems. Int. J. Electr. Power Energy Syst. 2019, 104, 205–214. [Google Scholar] [CrossRef]
- Jin, X.; Zhao, J.; Sun, Y.; Li, K.; Zhang, B. Distribution network reconfiguration for load balancing using binary particle swarm optimization. In Proceedings of the 2004 International Conference on Power System Technology, 2004. PowerCon 2004, Singapore, 21–24 November 2004; pp. 507–510. [Google Scholar]
- Srivastava, S.K.; Butler-Purry, K.L. Probability-based predictive self-healing reconfiguration for shipboard power systems. IET Gener. Transmiss. Distrib. 2007, 1, 405–413. [Google Scholar] [CrossRef]
- Seenumani, G.; Peng, H.; Sun, J. A reference governor-based hierarchical control for failure mode power management of hybrid power systems for all-electric ships. J. Power Sources 2011, 196, 1599–1607. [Google Scholar] [CrossRef]
- Bose, S.; Pal, S.; Natarajan, B.; Scoglio, C.M.; Das, S.; Schulz, N.N. Analysis of optimal reconfiguration of shipboard power systems. IEEE Trans. Power Syst. 2012, 27, 189–197. [Google Scholar] [CrossRef]
- Nelson, M.; Jordan, P.E. Automatic reconfiguration of a ship’s power system using graph theory principles. IEEE Trans. Ind. Appl. 2015, 51, 2651–2656. [Google Scholar] [CrossRef]
- Amba, T.; Butler-Purry, K.L.; Falahi, M. Genetic algorithm-based damage control for shipboard power systems. In Proceedings of the 2009 IEEE Electric Ship Technologies Symposium, Baltimore, MD, USA, 20–22 April 2009; pp. 242–252. [Google Scholar]
- Jiang, Y.; Jiang, J.; Zhang, Y. A novel fuzzy multiobjective model using adaptive genetic algorithm based on cloud theory for service restoration of shipboard power systems. IEEE Trans. Power Syst. 2012, 27, 612–620. [Google Scholar] [CrossRef]
- Kanellos, F.; Anvari-Moghaddam, A.; Guerrero, J. A cost-effective and emission-aware power management system for ships with integrated full electric propulsion. Electr. Power Syst. Res. 2017, 150, 63–75. [Google Scholar] [CrossRef]
- Haung, Y. Fast Reconfiguration Algorithm Development for Shipboard Power Systems. Master’s Thesis, Mississippi State University, Starkville, MS, USA, 2006. [Google Scholar]
- Kumar, N.; Srivastava, A.; Schulz, N.N. Shipboard power system restoration using binary particle swarm optimization. In Proceedings of the 2007 39th North American Power Symposium, Las Cruces, NM, USA, 30 September–2 October 2007; pp. 164–169. [Google Scholar]
- Padamati, K.R.; Schulz, N.N.; Srivastava, A.K. Application of genetic algorithm for reconfiguration of shipboard power system. In Proceedings of the 2007 39th North American Power Symposium, Las Cruces, NM, USA, 30 September–2 October 2007; pp. 159–163. [Google Scholar]
- Qudaih, Y.; Hiyama, T. Reconfiguration of power distribution system using multi agent and hierarchical-based load following operation with energy capacitor system. In Proceedings of the 2007 International Power Engineering Conference, Singapore, 3–6 December 2007; pp. 223–227. [Google Scholar]
- Feng, X.; Butler-Purry, K.L.; Zourntos, T. A multi-agent system framework for real-time electric load management in MVAC all-electric ship power systems. IEEE Trans. Power Syst. 2015, 30, 1327–1336. [Google Scholar] [CrossRef]
- Das, S.; Bose, S.; Pal, S.; Schulz, N.N.; Scoglio, C.M.; Natarajan, B. Dynamic reconfiguration of shipboard power systems using reinforcement learning. IEEE Trans. Power Syst. 2013, 28, 669–676. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, B.; Han, Q.; Yuan, Y.; Chen, C.; Guan, X. Optimal Power Management for Failure Mode of MVDC Microgrids in All-Electric Ships. IEEE Trans. Power Syst. 2019, 34, 1054–1067. [Google Scholar] [CrossRef]
- Mitra, P.; Venayagamoorthy, G.K. Real-time implementation of an intelligent algorithm for electric ship power system reconfiguration. In Proceedings of the 2009 IEEE Electric Ship Technologies Symposium, Baltimore, MD, USA, 20–22 April 2009; pp. 219–226. [Google Scholar]
- Mitra, P.; Venayagamoorthy, G.K. Implementation of an intelligent reconfiguration algorithm for an electric ship’s power system. IEEE Trans. Ind. Appl. 2011, 47, 2292–2300. [Google Scholar] [CrossRef]
- Shariatzadeh, F.; Vellaithurai, C.B.; Biswas, S.S.; Zamora, R.; Srivastava, A.K. Real-time implementation of intelligent reconfiguration algorithm for microgrid. IEEE Trans. Sustain. Energy 2014, 5, 598–607. [Google Scholar] [CrossRef]
- Zohrabi, N.; Abdelwahed, S.; Jian, S. Reconfiguration of MVDC shipboard power systems: A model predictive control approach. In Proceedings of the 2017 IEEE Electric Ship Technologies Symposium, Arlington, VA, USA, 15–17 August 2017. [Google Scholar]
- Kekatos, N.; Forets, M.; Frehse, G. Modeling the Wind Turbine Benchmark with PWA Hybrid Automata. In Proceedings of the 4th International Workshop on Applied Verification of Continuous and Hybrid Systems, Pittsburgh, PA, USA, 18–20 April 2017; Volume 48, pp. 100–113. [Google Scholar]
- Khakimova, A.; Kusatayeva, A.; Shamshimova, A.; Sharipova, D.; Bemporad, A.; Familiant, Y.; Rubagotti, M. Optimal energy management of a small-size building via hybrid model predictive control. Energy Build. 2017, 140, 1–8. [Google Scholar] [CrossRef]
- Sarailoo, M.; Rezaie, B.; Rahmani, Z. MLD Model of Boiler-Turbine System Based on PWA Linearization Approach. Int. J. Control. Sci. Eng. 2012, 2, 88–92. [Google Scholar] [CrossRef]
- Du, J.J.; Song, C.Y.; Li, P. Multilinear model control of Hammerstein-like systems based on an included angle dividing method and the MLD-MPC strategy. Ind. Eng. Chem. Res. 2009, 48, 3934–3943. [Google Scholar] [CrossRef]
- IEEE Recommended Practice for 1 kV to 35 kV Medium-Voltage DC Power Systems on Ships; IEEE Std, 1709-2010; IEEE: New York, NY, USA, 2010; pp. 1–54.
- IEEE Recommended Practice for Electrical Installations on Shipboard-Design; IEEE Std, 45.1-2017; IEEE: New York, NY, USA, 2017; pp. 1–198.
- Doktorcik, C.J. Modeling and Simulation of a Hybrid Ship Power System. Master’s Thesis, Department Electrical Computer Engineering, Purdue University, West Lafayette, IN, USA, 2010. [Google Scholar]
- Yurii, N.; Nemirovskii, A. Interior Point Polynomial Time Methods in Convex Programming; SIAM: Philadelphia, PA, USA, 2004. [Google Scholar]
- Grossmann, I.E. Mixed-integer nonlinear programming techniques for the synthesis of engineering systems. Chem. Res. Eng. Des. 1990, 1, 205–228. [Google Scholar] [CrossRef]
- Floudas, C.A. Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications; Oxford University Press: London, UK, 1995. [Google Scholar]
Symbol | Description | Symbol | Description |
---|---|---|---|
Inertia of the power turbine | Maximum absolute rate | ||
Fuel power flowing into gas turbine | Power of working fluid in gas turbine | ||
Power transferred to working fluid by the compressor | Command steady-state value of | ||
Efficiency of combustor | Time constant of the fuel system | ||
Rotational speed of the power turbine | Constant in power output equation | ||
Stator winding resistance of generator | Referred field winding resistance | ||
q-axis stator magnetizing inductance | d-axis stator magnetizing inductance | ||
L | Machine dependent parameter | Mechanical rotor speed | |
Number of machine poles | Inverter efficiency | ||
Maximum allowable stator current in generator | Stator winding resistance of IM | ||
Maximum allowable stator current in IM | Machine inductance | ||
Rotor winding resistance | Rotor inductance | ||
Mechanical rotor speed | Inverter efficiency in IM |
Position | Zone1 | Zone2 | Zone5 | Zone6 | Zone3 | Zone4 |
---|---|---|---|---|---|---|
PB | 1 | 1 | 0 | 0 | 1 | 1 |
SB | 0 | 0 | 1 | 1 | 0 | 0 |
Parameters | ||||||
---|---|---|---|---|---|---|
max. | 12 MW | 4 MW | 1 MW | 0.5 MW | 0.5 MW | 3 MW |
min. | 0 MW | 0 MW | 0 MW | 0 MW | 0 MW | 0 MW |
Algorithm | CTE | Position | Z1 | Z2 | Z5 | Z6 | Z3 | Z4 |
---|---|---|---|---|---|---|---|---|
Hi-HMPC | 0.038 | PB | 1 | 1 | 0 | 0 | 0 | 0 |
SB | 0 | 0 | 1 | 1 | 1 | 1 | ||
MINLP | 0.473 | PB | 1 | 1 | 0 | 0 | 0 | 0 |
SB | 0 | 0 | 1 | 1 | 1 | 1 | ||
PSO | 1.000 | PB | 1 | 1 | 0 | 0 | 0 | 0 |
SB | 0 | 0 | 1 | 1 | 1 | 1 |
Algorithm | CTE | Position | Z1 | Z2 | Z5 | Z6 | Z3 | Z4 |
---|---|---|---|---|---|---|---|---|
Hi-HMPC | 0.046 | PB | 1 | 0 | 0 | 0 | 0 | 1 |
SB | 0 | 1 | 1 | 1 | 1 | 0 | ||
MINLP | 0.871 | PB | 1 | 0 | 0 | 0 | 0 | 1 |
SB | 0 | 1 | 1 | 1 | 1 | 0 | ||
PSO | 1.000 | PB | 1 | 0 | 0 | 0 | 0 | 1 |
SB | 0 | 1 | 1 | 1 | 1 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Wang, B.; Zhang, L.; Su, P. Shipboard Power Management for Failure Mode Using the Hybrid MPC Approach. Energies 2021, 14, 2915. https://doi.org/10.3390/en14102915
Peng X, Wang B, Zhang L, Su P. Shipboard Power Management for Failure Mode Using the Hybrid MPC Approach. Energies. 2021; 14(10):2915. https://doi.org/10.3390/en14102915
Chicago/Turabian StylePeng, Xiuyan, Bo Wang, Lanyong Zhang, and Peng Su. 2021. "Shipboard Power Management for Failure Mode Using the Hybrid MPC Approach" Energies 14, no. 10: 2915. https://doi.org/10.3390/en14102915
APA StylePeng, X., Wang, B., Zhang, L., & Su, P. (2021). Shipboard Power Management for Failure Mode Using the Hybrid MPC Approach. Energies, 14(10), 2915. https://doi.org/10.3390/en14102915