Shipboard Power Management for Failure Mode Using the Hybrid MPC Approach
Abstract
:1. Introduction
2. System Models and Problem Formulation
2.1. System Structure Overview
2.1.1. Generation Model
2.1.2. Propulsion Module
2.1.3. Power Network Model
2.2. Problem Formulation
- (1)
- optimizing the switch configuration to maximize the supplied power for loads.
- (2)
- maintaining power quality of the SPS and minimizing bus voltage deviation.
3. Problem Solution and Analysis
3.1. Upper Layer Solution
3.2. Lower Layer Solution
4. Simulation Results
4.1. Scenario 1
4.2. Scenario 2
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doerry, N.; McCoy, K. Next Generation Integrated Power System: NGIPS Technology Development Roadmap; Naval Sea Systems Command: Washington, DC, USA, 2007. [Google Scholar]
- Doerry, N. Naval Power Systems. IEEE Electrif. 2015, 3, 12–21. [Google Scholar] [CrossRef]
- Hebner, R.E.; Uriarte, F.M.; Kwasinski, A.; Gattozzi, A.L.; Estes, H.B.; Anwar, A.; Mccoy, T.J. Technical cross-fertilization between terrestrial microgrids and ship power systems. J. Mod. Power Syst. Clean Energy 2016, 4, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, A.; Das, S.; Pahwa, A. An AIS-ACO hybrid approach for multi-objective distribution system reconfiguration. IEEE Trans. Power Syst. 2007, 22, 1101–1111. [Google Scholar] [CrossRef]
- Ramos, E.R.; Martinez-Ramos, J.L.; Exposito, A.G.; Salado, A.J.U. Optimal reconfiguration of distribution networks for power loss reduction. In Proceedings of the 2001 IEEE Porto Power Tech Proceedings, Porto, Portugal, 10–13 September 2001; Volume 3, p. 5. [Google Scholar]
- Guimaraes, A.N.; Lorenzeti, J.F.C.; Castro, C.A. Reconfiguration of distribution systems for stability margin enhancement using tabu search. In Proceedings of the 2004 International Conference on Power System Technology, 2004. PowerCon 2004, Singapore, 21–24 November 2004; Volume 2, pp. 1556–1561. [Google Scholar]
- Panasetsky, D.; Sidorov, D.; Li, Y.; Ouyang, L.; Xiong, J.; He, L. Centralized emergency control for multi-terminal VSC-based shipboard power systems. Int. J. Electr. Power Energy Syst. 2019, 104, 205–214. [Google Scholar] [CrossRef]
- Jin, X.; Zhao, J.; Sun, Y.; Li, K.; Zhang, B. Distribution network reconfiguration for load balancing using binary particle swarm optimization. In Proceedings of the 2004 International Conference on Power System Technology, 2004. PowerCon 2004, Singapore, 21–24 November 2004; pp. 507–510. [Google Scholar]
- Srivastava, S.K.; Butler-Purry, K.L. Probability-based predictive self-healing reconfiguration for shipboard power systems. IET Gener. Transmiss. Distrib. 2007, 1, 405–413. [Google Scholar] [CrossRef]
- Seenumani, G.; Peng, H.; Sun, J. A reference governor-based hierarchical control for failure mode power management of hybrid power systems for all-electric ships. J. Power Sources 2011, 196, 1599–1607. [Google Scholar] [CrossRef]
- Bose, S.; Pal, S.; Natarajan, B.; Scoglio, C.M.; Das, S.; Schulz, N.N. Analysis of optimal reconfiguration of shipboard power systems. IEEE Trans. Power Syst. 2012, 27, 189–197. [Google Scholar] [CrossRef]
- Nelson, M.; Jordan, P.E. Automatic reconfiguration of a ship’s power system using graph theory principles. IEEE Trans. Ind. Appl. 2015, 51, 2651–2656. [Google Scholar] [CrossRef]
- Amba, T.; Butler-Purry, K.L.; Falahi, M. Genetic algorithm-based damage control for shipboard power systems. In Proceedings of the 2009 IEEE Electric Ship Technologies Symposium, Baltimore, MD, USA, 20–22 April 2009; pp. 242–252. [Google Scholar]
- Jiang, Y.; Jiang, J.; Zhang, Y. A novel fuzzy multiobjective model using adaptive genetic algorithm based on cloud theory for service restoration of shipboard power systems. IEEE Trans. Power Syst. 2012, 27, 612–620. [Google Scholar] [CrossRef]
- Kanellos, F.; Anvari-Moghaddam, A.; Guerrero, J. A cost-effective and emission-aware power management system for ships with integrated full electric propulsion. Electr. Power Syst. Res. 2017, 150, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Haung, Y. Fast Reconfiguration Algorithm Development for Shipboard Power Systems. Master’s Thesis, Mississippi State University, Starkville, MS, USA, 2006. [Google Scholar]
- Kumar, N.; Srivastava, A.; Schulz, N.N. Shipboard power system restoration using binary particle swarm optimization. In Proceedings of the 2007 39th North American Power Symposium, Las Cruces, NM, USA, 30 September–2 October 2007; pp. 164–169. [Google Scholar]
- Padamati, K.R.; Schulz, N.N.; Srivastava, A.K. Application of genetic algorithm for reconfiguration of shipboard power system. In Proceedings of the 2007 39th North American Power Symposium, Las Cruces, NM, USA, 30 September–2 October 2007; pp. 159–163. [Google Scholar]
- Qudaih, Y.; Hiyama, T. Reconfiguration of power distribution system using multi agent and hierarchical-based load following operation with energy capacitor system. In Proceedings of the 2007 International Power Engineering Conference, Singapore, 3–6 December 2007; pp. 223–227. [Google Scholar]
- Feng, X.; Butler-Purry, K.L.; Zourntos, T. A multi-agent system framework for real-time electric load management in MVAC all-electric ship power systems. IEEE Trans. Power Syst. 2015, 30, 1327–1336. [Google Scholar] [CrossRef]
- Das, S.; Bose, S.; Pal, S.; Schulz, N.N.; Scoglio, C.M.; Natarajan, B. Dynamic reconfiguration of shipboard power systems using reinforcement learning. IEEE Trans. Power Syst. 2013, 28, 669–676. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, B.; Han, Q.; Yuan, Y.; Chen, C.; Guan, X. Optimal Power Management for Failure Mode of MVDC Microgrids in All-Electric Ships. IEEE Trans. Power Syst. 2019, 34, 1054–1067. [Google Scholar] [CrossRef] [Green Version]
- Mitra, P.; Venayagamoorthy, G.K. Real-time implementation of an intelligent algorithm for electric ship power system reconfiguration. In Proceedings of the 2009 IEEE Electric Ship Technologies Symposium, Baltimore, MD, USA, 20–22 April 2009; pp. 219–226. [Google Scholar]
- Mitra, P.; Venayagamoorthy, G.K. Implementation of an intelligent reconfiguration algorithm for an electric ship’s power system. IEEE Trans. Ind. Appl. 2011, 47, 2292–2300. [Google Scholar] [CrossRef]
- Shariatzadeh, F.; Vellaithurai, C.B.; Biswas, S.S.; Zamora, R.; Srivastava, A.K. Real-time implementation of intelligent reconfiguration algorithm for microgrid. IEEE Trans. Sustain. Energy 2014, 5, 598–607. [Google Scholar] [CrossRef]
- Zohrabi, N.; Abdelwahed, S.; Jian, S. Reconfiguration of MVDC shipboard power systems: A model predictive control approach. In Proceedings of the 2017 IEEE Electric Ship Technologies Symposium, Arlington, VA, USA, 15–17 August 2017. [Google Scholar]
- Kekatos, N.; Forets, M.; Frehse, G. Modeling the Wind Turbine Benchmark with PWA Hybrid Automata. In Proceedings of the 4th International Workshop on Applied Verification of Continuous and Hybrid Systems, Pittsburgh, PA, USA, 18–20 April 2017; Volume 48, pp. 100–113. [Google Scholar]
- Khakimova, A.; Kusatayeva, A.; Shamshimova, A.; Sharipova, D.; Bemporad, A.; Familiant, Y.; Rubagotti, M. Optimal energy management of a small-size building via hybrid model predictive control. Energy Build. 2017, 140, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sarailoo, M.; Rezaie, B.; Rahmani, Z. MLD Model of Boiler-Turbine System Based on PWA Linearization Approach. Int. J. Control. Sci. Eng. 2012, 2, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Du, J.J.; Song, C.Y.; Li, P. Multilinear model control of Hammerstein-like systems based on an included angle dividing method and the MLD-MPC strategy. Ind. Eng. Chem. Res. 2009, 48, 3934–3943. [Google Scholar] [CrossRef]
- IEEE Recommended Practice for 1 kV to 35 kV Medium-Voltage DC Power Systems on Ships; IEEE Std, 1709-2010; IEEE: New York, NY, USA, 2010; pp. 1–54.
- IEEE Recommended Practice for Electrical Installations on Shipboard-Design; IEEE Std, 45.1-2017; IEEE: New York, NY, USA, 2017; pp. 1–198.
- Doktorcik, C.J. Modeling and Simulation of a Hybrid Ship Power System. Master’s Thesis, Department Electrical Computer Engineering, Purdue University, West Lafayette, IN, USA, 2010. [Google Scholar]
- Yurii, N.; Nemirovskii, A. Interior Point Polynomial Time Methods in Convex Programming; SIAM: Philadelphia, PA, USA, 2004. [Google Scholar]
- Grossmann, I.E. Mixed-integer nonlinear programming techniques for the synthesis of engineering systems. Chem. Res. Eng. Des. 1990, 1, 205–228. [Google Scholar] [CrossRef] [Green Version]
- Floudas, C.A. Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications; Oxford University Press: London, UK, 1995. [Google Scholar]
Symbol | Description | Symbol | Description |
---|---|---|---|
Inertia of the power turbine | Maximum absolute rate | ||
Fuel power flowing into gas turbine | Power of working fluid in gas turbine | ||
Power transferred to working fluid by the compressor | Command steady-state value of | ||
Efficiency of combustor | Time constant of the fuel system | ||
Rotational speed of the power turbine | Constant in power output equation | ||
Stator winding resistance of generator | Referred field winding resistance | ||
q-axis stator magnetizing inductance | d-axis stator magnetizing inductance | ||
L | Machine dependent parameter | Mechanical rotor speed | |
Number of machine poles | Inverter efficiency | ||
Maximum allowable stator current in generator | Stator winding resistance of IM | ||
Maximum allowable stator current in IM | Machine inductance | ||
Rotor winding resistance | Rotor inductance | ||
Mechanical rotor speed | Inverter efficiency in IM |
Position | Zone1 | Zone2 | Zone5 | Zone6 | Zone3 | Zone4 |
---|---|---|---|---|---|---|
PB | 1 | 1 | 0 | 0 | 1 | 1 |
SB | 0 | 0 | 1 | 1 | 0 | 0 |
Parameters | ||||||
---|---|---|---|---|---|---|
max. | 12 MW | 4 MW | 1 MW | 0.5 MW | 0.5 MW | 3 MW |
min. | 0 MW | 0 MW | 0 MW | 0 MW | 0 MW | 0 MW |
Algorithm | CTE | Position | Z1 | Z2 | Z5 | Z6 | Z3 | Z4 |
---|---|---|---|---|---|---|---|---|
Hi-HMPC | 0.038 | PB | 1 | 1 | 0 | 0 | 0 | 0 |
SB | 0 | 0 | 1 | 1 | 1 | 1 | ||
MINLP | 0.473 | PB | 1 | 1 | 0 | 0 | 0 | 0 |
SB | 0 | 0 | 1 | 1 | 1 | 1 | ||
PSO | 1.000 | PB | 1 | 1 | 0 | 0 | 0 | 0 |
SB | 0 | 0 | 1 | 1 | 1 | 1 |
Algorithm | CTE | Position | Z1 | Z2 | Z5 | Z6 | Z3 | Z4 |
---|---|---|---|---|---|---|---|---|
Hi-HMPC | 0.046 | PB | 1 | 0 | 0 | 0 | 0 | 1 |
SB | 0 | 1 | 1 | 1 | 1 | 0 | ||
MINLP | 0.871 | PB | 1 | 0 | 0 | 0 | 0 | 1 |
SB | 0 | 1 | 1 | 1 | 1 | 0 | ||
PSO | 1.000 | PB | 1 | 0 | 0 | 0 | 0 | 1 |
SB | 0 | 1 | 1 | 1 | 1 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Wang, B.; Zhang, L.; Su, P. Shipboard Power Management for Failure Mode Using the Hybrid MPC Approach. Energies 2021, 14, 2915. https://doi.org/10.3390/en14102915
Peng X, Wang B, Zhang L, Su P. Shipboard Power Management for Failure Mode Using the Hybrid MPC Approach. Energies. 2021; 14(10):2915. https://doi.org/10.3390/en14102915
Chicago/Turabian StylePeng, Xiuyan, Bo Wang, Lanyong Zhang, and Peng Su. 2021. "Shipboard Power Management for Failure Mode Using the Hybrid MPC Approach" Energies 14, no. 10: 2915. https://doi.org/10.3390/en14102915
APA StylePeng, X., Wang, B., Zhang, L., & Su, P. (2021). Shipboard Power Management for Failure Mode Using the Hybrid MPC Approach. Energies, 14(10), 2915. https://doi.org/10.3390/en14102915