AC Volume Breakdown and Surface Flashover of a 4% NovecTM 4710/96% CO2 Gas Mixture Compared to CO2 in Highly Nonhomogeneous Fields
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Gas Breakdown
3.2. Discharge Characteristics with Solid Insulators in the Gap
- (a)
- PE
- (b)
- PTFE
- (c)
- Epoxy
3.3. Discharge Characteristics for an Earthed Needle
4. Discussion
4.1. Discharge Characteristics of Gases
4.1.1. CO2
4.1.2. 4%NovecTM 4710/96% CO2
- (i)
- (ii)
- The first avalanche reaches its critical size and, with increasing applied voltage, new avalanches are initiated (See Figure 7b), and finally
- (iii)
- Increasing the voltage induces more current activity, which generates a sufficient critical space charge avalanche to create a discharge (See Figure 7c).
4.2. Surface Discharge and Flashover with Solid Insulator
- (i)
- A repulsion effect in the case of positive space charge at the head that pushes the discharge to move away in order to catch other photoelectrons (photoionization and photoemission). Those photoelectrons are responsible for the positive current pulses and the heating of the leader/spark channel.
- (ii)
- An attraction effect of negative space charge from the solid insulator and from the gas that contribute to the increase of the local attachment and/or recombination at the interface. This can explain the presence of electronegative elements at the arced insulator surface.
4.2.1. CO2
- (i)
- 1 < P ≤ 2 bar abs: The flashover occurs on the negative half-cycle peak (see Table 3a) where the negative leader current pulses are observed at the beginning of the negative half-cycle. The leader current pulses are the result of charge accumulation left by the previous activity. During the positive half-cycle, the density of the current pulses is less than is typical for positive streamers and presents also some leader current peaks after charge injection at the beginning of the positive half-cycle. The negative half-cycle just before flashover shows that the leader propagates quickly (final jump) because, at this stage, the critical length was achieved and the unbridged gap between the discharge head and the ground electrode is partially ionized, as suggested in [35,36].
- (ii)
- P > 2 bar abs: The flashover occurs on the positive half-cycle peak where positive streamers currents and leader pulse current are observable for pressures up to 5 bar abs (see Table 3c). During the positive half cycle, at P = 3 bar abs and as the voltage increases, the stages to discharges are streamer onset, glow corona onset and the leader channels bypass the positive glow corona volume and follows the same process as described in (i). Whereas, during the negative half cycle, the streamer mode is involved before the flashover on the positive half-cycle (See Figure 11b).
- (iii)
- For pressures P ≥ Pc, the gas breakdown (see Figure 5c in) and the surface flashover (see Figure 11c) occur on the positive half-cycle peak. In Figure 5c, the transition from streamer discharge to leader discharge is immediate and breakdown is immediately after streamer onset, with only a small increase of voltage. Comparing the current activities in Figure 5c and Figure 11c (negative half-cycles), the surface pre-discharge peak current is 4 times higher than the gas pre-discharge one. In fact, the surface pre-discharge includes supplementary mechanisms for discharge development (photoemission, photoionization and electron detachment). Furthermore, no current pulses were detected preceding surface flashover as shown in Figure 11c. Ions generated during the pre-discharge phenomenon on negative half-cycles may not be removed before polarity reversal occurs, resulting in a space-charge induced field distortion. This results in a reduction of the surface flashover voltage. On the other hand, it was observed that the surface discharge trends to stick the insulator surface with the increasing of the gas pressure [33,34,37,38]. This can explain the relative stability of the surface flashover voltage for high pressures: the main electrical charges are collected from insulator caused by the increase of the attachment process with the gas pressure rising. Moreover, according to [35,36,37], the discharge velocity increases with the energy increase according to the following equation.
4.2.2. 4%NovecTM 4710/96% CO2
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nechmi, H.E. Recherche de Gaz/Mélanges Gazeux Sans Hexafluorure de Soufre Pour des Applications Haute Tension. Ph.D. Thesis, Ecole Centrale de Lyon, Université of Lyon, Lyon, France, 2016. [Google Scholar]
- Nechmi, H.E.; Beroual, A.; Girodet, A.; Vinson, P. Fluoronitriles/CO2 gas mixture as an eco-friendly alternative candidate to SF6 in high voltage insulation systems. In Proceedings of the 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Toronto, ON, Canada, 16–19 October 2016; pp. 384–387. [Google Scholar]
- Nechmi, H.E.; Beroual, A.; Girodet, A.; Vinson, P. Fluoronitriles/CO2 gas mixture as promising substitute to SF6 for insulation in high voltage applications. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2587–2593. [Google Scholar] [CrossRef]
- Nechmi, H.E.; Beroual, A.; Girodet, A.; Vinson, P. Effective ionization coefficients and limiting field strength of fluoronitriles-CO2 mixtures. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 886–892. [Google Scholar] [CrossRef]
- Simka, P.; Doiron, C.B.; Scheel, S.; Di-Gianni, A. Decomposition of alternative gaseous insulation under partial discharge. In Proceedings of the 20th International Symposium on High Voltage Engineering, Buenos Aires, Argentina, 28 August–1 September 2017. [Google Scholar]
- Zhang, B.; Li, C.; Xiong, J.; Zhang, Z.; Li, X.; Deng, Y. Decomposition characteristics of C4F7N/CO2 mixture under AC discharge breakdown. AIP Adv. 2019, 9, 115212. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, X.; Zhang, J.; Xie, C.; Shao, X.; Wang, Z.; Chen, D.; Xiao, S. Study on the thermal decomposition characteristics of C4F7N-CO2 mixture as eco-friendly gas insulating medium. High Volt. 2020, 5, 46–52. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Xiao, S.; Tian, S.; Deng, Z.; Tang, J. Theoretical study of the decomposition mechanism of environmentally friendly insulating medium C3F7CN in the presence of H2O in a discharge. J. Phys. D Appl. Phys. 2017, 50, 325201. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Chen, Q.; Zhang, J.; Li, Y.; Xiao, S.; Tang, J. Influence of oxygen on dielectric and decomposition properties of C4F7N-N2-O2 mixture. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1279–1286. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Xiao, S.; Chen, D.; Liu, C.; Shi, Y. Insights into the interaction between C4F7N decomposition products and Cu (1 1 1), Ag (1 1 1) surface. J. Fluor. Chem. 2018, 213, 24–30. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Chen, Q.; Zhang, J.; Chen, D.; Cui, Z.; Xiao, S.; Tang, J. Study on the thermal interaction mechanism between C4F7N-N2 and copper, aluminum. Corros. Sci. 2019, 153, 32–46. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Xiao, S.; Zhang, J.; Chen, D.; Cui, Z. Insight into the compatibility between C4F7N and silver: Experiment and theory. J. Phys. Chem. Solids 2019, 126, 105–111. [Google Scholar] [CrossRef]
- Xiao, S.; Chen, D.; Tang, J.; Li, Y. Adsorption Behavior of γ-Al2O3 Toward Heptafluoroisobutyronitrile and its Decompositions: Theoretical and Experimental Insights. IEEE Access 2020, 8, 36741–36748. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, Y.; Liu, J.; Zhang, Y.; Zeng, L. Study on the Compatibility of Gas Adsorbents Used in a New Insulating Gas Mixture C4F7N/CO2. Processes 2019, 7, 698. [Google Scholar] [CrossRef] [Green Version]
- Preve, C.; Lahaye, G.; Richaud, M.; Maladen, R.; Penelon, T.; Galas, S. Hazard study of medium-voltage switchgear with SF6 alternative gas in electrical room. CIRED Open Access Proc. J. 2017, 2017, 198–201. [Google Scholar] [CrossRef] [Green Version]
- Preve, C.; Maladen, R.; Piccoz, D. Alternative gases to SF6 as breaking medium for switching performance: Measurement of the concentrations of by-products and assessment of the acute toxicity. In Proceedings of the 21st International Symposium on High Voltage Engineering (ISH), Budapest, Hungary, 26–30 August 2019. [Google Scholar]
- Li, Y.; Zhang, X.; Zhang, J.; Xiao, S.; Xie, B.; Chen, D.; Gao, Y.; Tang, J. Assessment on the toxicity and application risk of C4F7N: A new SF6 alternative gas. J. Hazard. Mater. 2019, 368, 653–660, ISSN 0304-3894. [Google Scholar] [CrossRef] [PubMed]
- 3M USA Safety Data Sheet (SDS), 3M™ Novec™ 4710 Dielectric Fluid, 33-6330-6, Version 9.11, 18-03-2020. Available online: https://multimedia.3m.com/mws/mediawebserver?mwsId=SSSSSuUn_zu8l00xmxmBmxmSOv70k17zHvu9lxtD7SSSSSS-- (accessed on 2 April 2020).
- Li, Z.; Ding, W.; Liu, Y.; Li, Y.; Zheng, Z.; Liu, W.; Gao, K. Surface flashover characteristics of epoxy insulator in C4F7N/CO2 mixtures in a uniform field under AC voltage. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1065–1072. [Google Scholar] [CrossRef]
- Slama, M.E.A.; Beroual, A.; Girodet, A.; Vinson, P. Barrier effect on Surface Breakdown of Epoxy Solid Dielectric in SF6 with Various Pressures. In Proceedings of the Conference on Electrical Insulation and Dielectrics Phenomena, CEIDP 2016. Toronto, ON, Canada, 23 October 2016. [Google Scholar]
- Hinterholzer, T.; Boeck, W. Breakdown in SF6 influenced by corona-stabilization. In Proceedings of the Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Victoria, BC, Canada, 15–18 October 2000; Volume 1, pp. 413–416. [Google Scholar]
- Takahashi, T.; Yamada, T.; Hayakawa, N.; Yuasa, S.; Okabe, S.; Okubo, H. Corona stabilization effect in SF6 gas viewed from sequential generation of partial discharge. In Proceedings of the Eleventh International Symposium on High Voltage Engineering (ISH), London, UK, 23–27 August 1999; Volume 3, pp. 88–91. [Google Scholar]
- Hermstein, W. Die entwicklung der positiven vorentladungen in luft zum durchschlag. Arch. Elektrotech. 1960, 45, 279–288. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Q.; Zhang, L.; Guo, C.; Du, Q.; Pang, L. Neglected culprit of nonlinear discharge characteristics in SF6: Shielding effect induced by positive glow corona discharge. Plasma Sources Sci. Technol. 2019, 28, 085018. [Google Scholar] [CrossRef]
- Tu, Y.; Cheng, Y.; Wang, C.; Ai, X.; Zhou, F.; Chen, G. Insulation characteristics of fluoronitriles/CO2 gas mixture under DC electric field. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1324–1331. [Google Scholar] [CrossRef]
- Wang, C.; Ai, X.; Zhang, Y.; Tu, Y.; Yan, X.; Liu, W. Decomposition products and formation path of C3F7CN/CO2 mixture with suspended discharge. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1949–1955. [Google Scholar] [CrossRef]
- Gallimbertti, I.; Marchesi, I.; Niemeyer, L. Streamer corona at an insulating surface. In Proceedings of the 7th International Symposium on High Voltage Engineering, Dresden, Germany, 26–30 August 1991; pp. 1–4. [Google Scholar]
- Seeger, M.; Avaheden, J.; Pancheshnyi, S.; Votteler, T. Streamer parameters and breakdown in CO2. J. Phys. D Appl. Phys. 2016, 50, 015207. [Google Scholar] [CrossRef]
- Hayakawa, N.; Hatta, K.; Okabe, S.; Okubo, H. Streamer and leader discharge propagation characteristics leading to breakdown in electronegative gases. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 842–849. [Google Scholar] [CrossRef]
- Perez, A.; Beroual, A.; Girodet, A.; Jacquier, F. Characteristics of Creeping Discharges Along Epoxy Surface in Fluoronitrile/CO2 Gas Mixture under Lightning Impulse. In Proceedings of the 21st International Symposium on High Voltage Engineering: ISH 2019; Németh, B., Ed.; Lecture Notes in Electrical Engineering. Springer: Cham, Switzerland, 2020; Volume 599. [Google Scholar]
- Sudarshan, T.S.; Dougal, R. Mechanisms of surface flashover along solid dielectrics in compressed gases: A Review. IEEE Trans. Electr. Insul. 1986, 21, 727–746. [Google Scholar] [CrossRef]
- Odic, E.; Goldman, A.; Goldman, M.; Dhainaut, M.; Dussart, R. Current distribution of ac surface discharges and associated chemistry. J. Electrost. 2006, 64, 477–484. [Google Scholar] [CrossRef] [Green Version]
- Beroual, A.; Coulibaly, M.-L.; Aitken, O.; Girodet, A. Effect of micro-fillers in PTFE insulators on the characteristics of surface discharges in presence of SF6, CO2 and SF6–CO2 mixture. IET Gener. Transm. Distrib. 2012, 6, 951–957. [Google Scholar] [CrossRef]
- Slama, M.E.A.; Beroual, A.; Haddad, A. Surface Discharges and Flashover Modelling of Solid Insulators in Gases. Energies 2020, 13, 591. [Google Scholar] [CrossRef] [Green Version]
- Beroual, A.; Coulibaly, M.L.; Aitken, O.; Girodet, A. Investigation on creeping discharges propagating over epoxy resin and glass insulators in presence of different gases and mixtures. Eur. Phys. J. Appl. Phys. 2011, 56, 30802–30809. [Google Scholar] [CrossRef] [Green Version]
- Béroual, A. Electronic gaseous process in the breakdown phenomena of dielectric liquids. J. Appl. Phys. 1993, 73, 4528–4533. [Google Scholar] [CrossRef]
- Fofana, I.; Beroual, A. A New Proposal for Calculation of the leader Velocity based on Energy Considerations. J. Phys. D Appl. Phys. 1996, 29, 691–696. [Google Scholar] [CrossRef]
- Slama, M.E.A.; Beroual, A.; Haddad, A. A predictive dynamic model of creeping discharge along solid insulator in air at atmospheric pressure. In Proceedings of the IEEE International Conference on High Voltage Engineering and Application (ICHVE), Athens, Greece, 10–13 September 2018. [Google Scholar]
MahrSurf PS 10 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ra | Rz | Relative Permittivity (εr) | Surface Resistivity Ohm/sq | Volume Resistivity ohm/cm | |||||||||
Sample Number | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |||
PTFE | 0.79 | 0.71 | 0.86 | 0.82 | 0.79 | 4.07 | 3.77 | 4.34 | 6.06 | 4.10 | 2.1 | 1017 | 1018−1019 |
Polyethylene - HDPE | 0.23 | 0.32 | 0.03 | 0.06 | 0.06 | 1.53 | 1.59 | 0.49 | 1.14 | 0.65 | 2.3 | 1013 | 1015−1018 |
Polyethylene – UHMW | 1.13 | 1.16 | 1.25 | 1.13 | 1.21 | 6.59 | 6.86 | 7.56 | 7.30 | 7.15 | 2.3 | 1013 | 1018 |
Epoxy 1 | 0.52 | 0.59 | 0.58 | 0.62 | 0.57 | 4.94 | 5.14 | 5.27 | 5.07 | 5.12 | 4–4.5 | - | - |
Epoxy 2 | 5.28 | 5.24 | 4.57 | 4.59 | 4.57 | 31.09 | 29.27 | 25.16 | 24.49 | 25.41 | 4–4.5 | - | - |
Needle on HV Electrode Polarity of Breakdown | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pressures (bar abs) | 0.4 | 1 | 2 | 2.5 | 3 | 4 | 5 | 6 | 7.2 | 8 | 8.8 |
CO2 | − | − | − | + | + | + | + | + | + | + | + |
4%NovecTM 4710/96%CO2 | − | −/+ | + | + | + | + | + | + | + | + | + |
(a) CO2. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
CO2 Polarity of Flashover | ||||||||||
Pressures (bar abs) | 1 | 2 | 2.5 | 3 | 4 | 5 | 6 | 7.2 | 8 | 8.8 |
PE | − | − | + | + | + | + | + | + | + | + |
PTFE | − | − | −/+ | + | + | + | + | + | + | + |
(b) 4%NovecTM 4710/96%CO2. | ||||||||||
4%NovecTM 4710/96% CO2 Polarity of Flashover | ||||||||||
Pressures (bar abs) | 1 | 2 | 2.5 | 3 | 4 | 5 | 6 | 7.2 | 8 | 8.8 |
PTFE | + | + | + | + | + | + | + | + | + | + |
PE | + | + | + | + | + | + | + | + | + | + |
Epoxy | −/+ | − | − | − | −/+ | + | + | + | + | + |
(a) Breakdown in 4%NovecTM 4710/96%CO2. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Needle on ground Electrode Polarity of Breakdown | ||||||||||
Pressures (bar abs) | 0.4 | 1 | 2 | 2.5 | 3 | 4 | 5 | 6 | 7.2 | 8 |
4%NovecTM 4710/96%CO2 | −/+ | − | − | − | − | − | − | − | − | − |
(b) Flashover in 4% NovecTM 4710/96%CO2. | ||||||||||
4%NovecTM 4710/96% CO2 Polarity of Flashover | ||||||||||
Pressures (bar abs) | 1 | 2 | 2.5 | 3 | 4 | 5 | 6 | 7.2 | 8 | 8.8 |
PTFE | −/+ | − | − | − | − | − | − | − | − | |
(c) Flashover in CO2 | ||||||||||
Pressures (bar abs) | 1 | 2 | 2.5 | 3 | 4 | 5 | 6 | 7.2 | 8 | |
PTFE | + | + | + | + | − | − | − | − | − |
(a) 4%NovecTM 4710/96%CO2 (UHMW-PE, Flashover Discharge) | ||||||
---|---|---|---|---|---|---|
Pressure (bar abs) | 1 | 2 | 3 | 5 | 8 | 8.8 |
4%NovecTM4710/CO2 (UHMW-PE) | × | × | × | |||
(b) CO2 (Breakdown Discharge) | ||||||
Pressure (bar abs) | 1 | 2 | 3 | 5 | 8 | 8.8 |
CO2 | × | × | × | |||
(c) CO2 (UHMW-PE, Flashover Discharge) | ||||||
Pressure (bar abs) | 1 | 2 | 3 | 5 | 8 | 8.8 |
CO2 (UHMW-PE) | × | × | × |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nechmi, H.E.; Slama, M.E.A.; Haddad, A.; Wilson, G. AC Volume Breakdown and Surface Flashover of a 4% NovecTM 4710/96% CO2 Gas Mixture Compared to CO2 in Highly Nonhomogeneous Fields. Energies 2020, 13, 1710. https://doi.org/10.3390/en13071710
Nechmi HE, Slama MEA, Haddad A, Wilson G. AC Volume Breakdown and Surface Flashover of a 4% NovecTM 4710/96% CO2 Gas Mixture Compared to CO2 in Highly Nonhomogeneous Fields. Energies. 2020; 13(7):1710. https://doi.org/10.3390/en13071710
Chicago/Turabian StyleNechmi, Houssem Eddine, Mohammed El Amine Slama, Abderrahmane (Manu) Haddad, and Gordon Wilson. 2020. "AC Volume Breakdown and Surface Flashover of a 4% NovecTM 4710/96% CO2 Gas Mixture Compared to CO2 in Highly Nonhomogeneous Fields" Energies 13, no. 7: 1710. https://doi.org/10.3390/en13071710