Algorithm for Reducing Truck Noise on Via Baltica Transport Corridors in Lithuania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substantiation of the Selection of the Transport Logistics Corridor
2.2. Research and Expert Evaluation Methodologies
3. Results
3.1. Noise Research Results
3.2. Expert Evaluation Results
- Design and installation of noise energy absorbing elements;
- introduction of additional taxes which would be designated for the development of noise energy reduction infrastructure;
- time restrictions for heavy trucks.
- The noise level would decrease to the permissible level nearby settlements alone;
- the noise level would decrease to the permissible level throughout the entire Via Baltic section;
- such a measure would be inadequate and would not prove suitable.
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Prezelj, J.; Murovec, J. Traffic noise modelling and measurement: Inter-laboratory comparison. Appl. Acoust. 2017, 127, 160–168. [Google Scholar] [CrossRef]
- Wallas, A.; Eriksson, C.; Gruzieva, O.; Lind, T.; Pyko, A.; Sjöström, M.; Ögren, M.; Pershagen, G. Road traffic noise and determinants of saliva cortisol levels among adolescents. Int. J. Hyg. Environ. Health 2018, 221, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.L.; Kang, J. Relationship between traffic noise resistance and village form in China. Landsc. Urban Plan. 2017, 163, 44–55. [Google Scholar] [CrossRef]
- Fernandes, P.; Vilaça, M.; Macedo, E.; Sampaio, C.; Bahmankhah, B.; Bandeira, J.M.; Guarnaccia, C.; Rafael, S.; Fernandes, A.P.; Relvas, H.; et al. Integrating road traffic externalities through a sustainability indicator. Sci. Total Environ. 2019, 691, 483–498. [Google Scholar] [CrossRef] [PubMed]
- Roswall, N.; Raaschou-Nielsen, O.; Jensen, S.S.; Tjønneland, A.; Sørensen, M. Long-term exposure to residential railway and road traffic noise and risk for diabetes in a Danish cohort. Environ. Res. 2018, 160, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Zöldy, M. Improving Heavy Duty Vehicles Fuel Consumption with Density and Friction Modifier. Int. J. Automot. Technol. 2019, 20, 971–978. [Google Scholar] [CrossRef]
- Zöldy, M.; Szalay, Z.; Tihanyi, V. Challenges in homologation process of vehicles with artificial intelligence. Transport 2020, 35, 435–446. [Google Scholar] [CrossRef]
- Jain, M.; Jehling, M. Analysing transport corridor policies: An integrative approach to spatial and social disparities in India. J. Transp. Geogr. 2020, 86, 102781. [Google Scholar] [CrossRef]
- Maghrour Zefreh, M.; Torok, A. Single loop detector data validation and imputation of missing data. Measurement 2018, 116, 193–198. [Google Scholar] [CrossRef]
- Proboste, F.; Muñoz, J.C.; Gschwender, A. Comparing social costs of public transport networks structured around an Open and Closed BRT corridor in medium sized cities. Transp. Res. Part Policy Pract. 2020, 138, 187–212. [Google Scholar] [CrossRef]
- Buczaj, A.; Krzysiak, Z.; Pecyna, A.; Caban, J.; Brumercik, F. Safety during chemical transport of dangerous goods. PRZEMYSL Chem. 2019, 98, 1276–1280. [Google Scholar] [CrossRef]
- Kozak, M.; Lijewski, P.; Fuc, P. Exhaust Emissions from a City Bus Fuelled by Oxygenated Diesel Fuel; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Warguła, Ł.; Krawiec, P.; Waluś, K.J.; Kukla, M. Fuel Consumption Test Results for a Self-Adaptive, Maintenance-Free Wood Chipper Drive Control System. Appl. Sci. 2020, 10, 2727. [Google Scholar] [CrossRef] [Green Version]
- Nailya, I.; Marina, L.; Aislu, T.; Vyacheslav, K.; Zumrat, S. Post-project assessment of transport and environmental risks of the “Western Europe–Western China” international corridor. Procedia Comput. Sci. 2019, 149, 441–449. [Google Scholar] [CrossRef]
- Romanova, A.; Vygnanov, A.; Vygnanova, M.; Sokolova, E.; Eiduks, J. Problems of the formation of a single transport space on sections of international transport corridors. Procedia Comput. Sci. 2019, 149, 537–541. [Google Scholar] [CrossRef]
- Öberg, M.; Nilsson, K.L.; Johansson, C.M. Complementary governance for sustainable development in transport: The European TEN-T Core network corridors. Case Stud. Transp. Policy 2018, 6, 674–682. [Google Scholar] [CrossRef]
- Kilikevičius, A.; Kilikevičienė, K.; Fursenko, A.; Matijošius, J. The Analysis of Vibration Signals of Critical Points of the Bus Body Frame. Period. Polytech. Transp. Eng. 2020, 48, 296–304. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Chen, J.; Zhang, C.; Zhan, L.; Guyot, A.; Li, L. An entropy-based analysis method of precipitation isotopes revealing main moisture transport corridors globally. Glob. Planet. Change 2020, 187, 103134. [Google Scholar] [CrossRef]
- Batarlienė, N.; Čižiūnienė, K.; Vaičiūtė, K.; Šapalaitė, I.; Jarašūnienė, A. The Impact of Human Resource Management on the Competitiveness of Transport Companies. Procedia Eng. 2017, 187, 110–116. [Google Scholar] [CrossRef]
- Matijošius, J.; Vasiliauskas, A.V.; Vasilienė-Vasiliauskienė, V.; Krasodomskis, Ž. The Assessment of Importance of the Factors that Predetermine the Quality of a Service of Transportation by Road Vehicles. Procedia Eng. 2016, 134, 422–429. [Google Scholar] [CrossRef] [Green Version]
- Jarašūnienė, A.; Sinkevičius, G.; Čižiūnienė, K.; Čereška, A. Adaptation of the Management Model of Internationalization Processes in the Development of Railway Transport Activities. Sustainability 2020, 12, 6248. [Google Scholar] [CrossRef]
- Bureika, G.; Steišūnas, S. Complex Evaluation of Electric Rail Transport Implementation in Vilnius City. Transp. Probl. 2016, 11, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Jarašūnienė, A.; Čižiūnienė, K.; Petraška, A. Research on rail and maritime transport interoperability in the area of information systems: The case of lithuania. Transport 2019, 34, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Malek, A.; Caban, J.; Wojciechowski, L. Charging electric cars as a way to increase the use of energy produced from RES. Open Eng. 2020, 10, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Warguła, Ł.; Kukla, M.; Lijewski, P.; Dobrzyński, M.; Markiewicz, F. Influence of the Use of Liquefied Petroleum Gas (LPG) Systems in Woodchippers Powered by Small Engines on Exhaust Emissions and Operating Costs. Energies 2020, 13, 5773. [Google Scholar] [CrossRef]
- Gorbunov, M.; Kravchenko, K.; Bureika, G.; Gerlici, J.; Nozhenko, O.; Vaičiūnas, G.; Bučinskas, V.; Steišūnas, S. Estimation of sand electrification influence on locomotive wheel / rail adhesion processes. Eksploatacja i Niezawodność 2019, 21, 460–467. [Google Scholar] [CrossRef]
- Barrachina, D.G.-L.; Boldizsar, A.; Zoldy, M.; Torok, A. Can Neural Network Solve Everything? Case Study Of Contradiction In Logistic Processes With Neural Network Optimisation. In Proceedings of the 2019 Modern Safety Technologies in Transportation (MOSATT), Moscow, Russia, 28–29 November 2019; IEEE: Kosice, Slovakia, 2019; pp. 21–24. [Google Scholar]
- Žuraulis, V.; Sokolovskij, E. Vehicle Velocity Relation to Slipping Trajectory Change: An Option for Traffic Accident Reconstruction. PrometTraffic Transp. 2018, 30, 395–406. [Google Scholar] [CrossRef] [Green Version]
- Maghrour Zefreh, M.; Torok, A. Theoretical Comparison of the Effects of Different Traffic Conditions on Urban Road Traffic Noise. J. Adv. Transp. 2018, 2018, 7949574. [Google Scholar] [CrossRef] [Green Version]
- Bereczky, A. The Past, Present and Future of the Training of Internal Combustion Engines at the Department of Energy Engineering of BME. In Vehicle and Automotive Engineering; Jarmai, K., Bollo, B., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 225–234. [Google Scholar]
- Zhao, W.-J.; Liu, E.-X.; Poh, H.J.; Wang, B.; Gao, S.-P.; Png, C.E.; Li, K.W.; Chong, S.H. 3D traffic noise mapping using unstructured surface mesh representation of buildings and roads. Appl. Acoust. 2017, 127, 297–304. [Google Scholar] [CrossRef]
- Pravilonis, T.; Sokolovskij, E.; Kilikevičius, A.; Matijošius, J.; Kilikevičienė, K. The Usage of Alternative Materials to Optimize Bus Frame Structure. Symmetry 2020, 12, 1010. [Google Scholar] [CrossRef]
- Rövid, A.; Remeli, V.; Paufler, N.; Lengyel, H.; Zöldy, M.; Szalay, Z. Towards Reliable Multisensory Perception and Its Automotive Applications. Period. Polytech. Transp. Eng. 2020, 48, 334–340. [Google Scholar] [CrossRef]
- Li, F.; Lin, Y.; Cai, M.; Du, C. Dynamic simulation and characteristics analysis of traffic noise at roundabout and signalized intersections. Appl. Acoust. 2017, 121, 14–24. [Google Scholar] [CrossRef]
- Lijewski, P.; Kozak, M.; Fuc, P.; Rymaniak, L.; Ziolkowski, A. Exhaust emissions generated under actual operating conditions from a hybrid vehicle and an electric one fitted with a range extender. Transp. Res. PART Transp. Environ. 2020, 78, 102183. [Google Scholar] [CrossRef]
- Ow, L.F.; Ghosh, S. Urban cities and road traffic noise: Reduction through vegetation. Appl. Acoust. 2017, 120, 15–20. [Google Scholar] [CrossRef]
- Maghrour Zefreh, M.; Török, Á.; Mészáros, F. Average Vehicles Length in Two-lane Urban Roads: A Case Study in Budapest. Period. Polytech. Transp. Eng. 2017, 45, 218. [Google Scholar] [CrossRef]
- Debnath, A.; Singh, P.K. Environmental traffic noise modelling of Dhanbad township area – A mathematical based approach. Appl. Acoust. 2018, 129, 161–172. [Google Scholar] [CrossRef]
- Estévez-Mauriz, L.; Forssén, J. Dynamic traffic noise assessment tool: A comparative study between a roundabout and a signalised intersection. Appl. Acoust. 2018, 130, 71–86. [Google Scholar] [CrossRef]
- Klompmaker, J.O.; Hoek, G.; Bloemsma, L.D.; Marra, M.; Wijga, A.H.; van den Brink, C.; Brunekreef, B.; Lebret, E.; Gehring, U.; Janssen, N.A.H. Surrounding green, air pollution, traffic noise exposure and non-accidental and cause-specific mortality. Environ. Int. 2020, 134, 105341. [Google Scholar] [CrossRef]
- Yamawaki, Y.; Castro Filho, F.M.; Costa, G.E.G. Mega-event transport legacy in a developing country: The case of Rio 2016 Olympic Games and its Transolímpica BRT corridor. J. Transp. Geogr. 2020, 88, 102858. [Google Scholar] [CrossRef]
- Stefanović, N.; Milijić, S.; Hristić, N.D. System approach in process of planning and project documentation preparation for highway corridors as an instrument for establishing the Trans-European Transport Network. Transp. Res. Procedia 2020, 45, 491–498. [Google Scholar] [CrossRef]
- Kilikevičius, A.; Skeivalas, J.; Kilikevičienė, K.; Matijošius, J. Analysis of Dynamic Parameters of a Railway Bridge. Appl. Sci. 2019, 9, 2545. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.; Guarnaccia, C.; Teixeira, J.; Sousa, A.; Coelho, M.C. Multi-Criteria Assessment of Crosswalk Location on a Corridor with Roundabouts: Incorporating a Noise Related Criterion. Transp. Res. Procedia 2017, 27, 460–467. [Google Scholar] [CrossRef]
- Zeeb, H.; Hegewald, J.; Schubert, M.; Wagner, M.; Dröge, P.; Swart, E.; Seidler, A. Traffic noise and hypertension–results from a large case-control study. Environ. Res. 2017, 157, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Nemtanu, F.; Costea, I.M.; Dumitrescu, C. Spectral Analysis of Traffic Functions in Urban Areas. PROMET TrafficTransp. 2015, 27, 477–484. [Google Scholar] [CrossRef] [Green Version]
- Schlingensiepen, J.; Naroska, E.; Nemtanu, F.C. Improving Integrated Travel Planning by Enhancing Travel Planning Model with Rail Station Data. In Sustainable Rail Transport; Marinov, M., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 147–168. ISBN 978-3-319-58642-7. [Google Scholar]
- Can, A.; Aumond, P. Estimation of road traffic noise emissions: The influence of speed and acceleration. Transp. Res. Part Transp. Environ. 2018, 58, 155–171. [Google Scholar] [CrossRef]
- Lu, X.; Kang, J.; Zhu, P.; Cai, J.; Guo, F.; Zhang, Y. Influence of urban road characteristics on traffic noise. Transp. Res. Part Transp. Environ. 2019, 75, 136–155. [Google Scholar] [CrossRef]
- Jiang, L.; Kang, J. Effect of traffic noise on perceived visual impact of motorway traffic. Landsc. Urban Plan. 2016, 150, 50–59. [Google Scholar] [CrossRef]
- Hamad, K.; Ali Khalil, M.; Shanableh, A. Modeling roadway traffic noise in a hot climate using artificial neural networks. Transp. Res. Part Transp. Environ. 2017, 53, 161–177. [Google Scholar] [CrossRef]
- Pedersen, M.; Olsen, S.F.; Halldorsson, T.I.; Zhang, C.; Hjortebjerg, D.; Ketzel, M.; Grandström, C.; Sørensen, M.; Damm, P.; Langhoff-Roos, J.; et al. Gestational diabetes mellitus and exposure to ambient air pollution and road traffic noise: A cohort study. Environ. Int. 2017, 108, 253–260. [Google Scholar] [CrossRef]
- Cai, M.; Lan, Z.; Zhang, Z.; Wang, H. Evaluation of road traffic noise exposure based on high-resolution population distribution and grid-level noise data. Build. Environ. 2019, 147, 211–220. [Google Scholar] [CrossRef]
- Benocci, R.; Molteni, A.; Cambiaghi, M.; Angelini, F.; Roman, H.E.; Zambon, G. Reliability of Dynamap traffic noise prediction. Appl. Acoust. 2019, 156, 142–150. [Google Scholar] [CrossRef]
- Hakzah; Pawelloi, A.I.; Nasir, N.; Hamzah, S. The effect of traffic noise on public health. Enferm. Clínica 2020, 30, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Kakosimos, K.; Jensen, S.S.; Hertel, O.; Sørensen, M.; Gulliver, J.; Ketzel, M. The spatial relationship between traffic-related air pollution and noise in two Danish cities: Implications for health-related studies. Sci. Total Environ. 2020, 726, 138577. [Google Scholar] [CrossRef] [PubMed]
- Quintero, G.; Balastegui, A.; Romeu, J. Annual traffic noise levels estimation based on temporal stratification. J. Environ. Manage. 2018, 206, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewandowska, A.; Branowski, B.; Joachimiak-Lechman, K.; Kurczewski, P.; Selech, J.; Zablocki, M. Sustainable Design: A Case of Environmental and Cost Life Cycle Assessment of a Kitchen Designed for Seniors and Disabled People. Sustainability 2017, 9, 1329. [Google Scholar] [CrossRef] [Green Version]
- Enoksson Wallas, A.; Eriksson, C.; Edstedt Bonamy, A.-K.; Gruzieva, O.; Kull, I.; Ögren, M.; Pyko, A.; Sjöström, M.; Pershagen, G. Traffic noise and other determinants of blood pressure in adolescence. Int. J. Hyg. Environ. Health 2019, 222, 824–830. [Google Scholar] [CrossRef]
- Brink, M.; Schäffer, B.; Vienneau, D.; Foraster, M.; Pieren, R.; Eze, I.C.; Cajochen, C.; Probst-Hensch, N.; Röösli, M.; Wunderli, J.-M. A survey on exposure-response relationships for road, rail, and aircraft noise annoyance: Differences between continuous and intermittent noise. Environ. Int. 2019, 125, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Zaranka, J.; Pečeliūnas, R.; Matijošius, J. Analysis of the influence of fatigue on passenger transport drivers’ performance capacity. Transport 2012, 27, 351–356. [Google Scholar] [CrossRef]
- Covaciu, D.; Florea, D.; Timar, J. Estimation of the noise level produced by road traffic in roundabouts. Appl. Acoust. 2015, 98, 43–51. [Google Scholar] [CrossRef]
- Kilikevičius, A.; Kilikevičienė, K.; Matijošius, J. Investigation of Drivers’ Comfort Factors Influencing Urban Traffic Safety. In Vision Zero for Sustainable Road Safety in Baltic Sea Region; Varhelyi, A., Žuraulis, V., Prentkovskis, O., Eds.; Lecture Notes in Intelligent Transportation and Infrastructure; Springer International Publishing: Cham, Switzerland, 2020; pp. 159–165. ISBN 978-3-030-22374-8. [Google Scholar]
- Rossi, I.A.; Vienneau, D.; Ragettli, M.S.; Flückiger, B.; Röösli, M. Estimating the health benefits associated with a speed limit reduction to thirty kilometres per hour: A health impact assessment of noise and road traffic crashes for the Swiss city of Lausanne. Environ. Int. 2020, 145, 106126. [Google Scholar] [CrossRef]
- Vaitkus, A.; Andriejauskas, T.; Vorobjovas, V.; Jagniatinskis, A.; Fiks, B.; Zofka, E. Asphalt wearing course optimization for road traffic noise reduction. Constr. Build. Mater. 2017, 152, 345–356. [Google Scholar] [CrossRef]
- Donkers, A.; Yang, D.; Viktorović, M. Influence of driving style, infrastructure, weather and traffic on electric vehicle performance. Transp. Res. Part Transp. Environ. 2020, 88, 102569. [Google Scholar] [CrossRef]
- Mikulski, M.; Ambrosewicz-Walacik, M.; Duda, K.; Hunicz, J. Performance and emission characterization of a common-rail compression-ignition engine fuelled with ternary mixtures of rapeseed oil, pyrolytic oil and diesel. Renew. Energy 2020, 148, 739–755. [Google Scholar] [CrossRef]
- Laib, F.; Braun, A.; Rid, W. Modelling noise reductions using electric buses in urban traffic. A case study from Stuttgart, Germany. Transp. Res. Procedia 2019, 37, 377–384. [Google Scholar] [CrossRef]
- Ögren, M.; Molnár, P.; Barregard, L. Road traffic noise abatement scenarios in Gothenburg 2015–2035. Environ. Res. 2018, 164, 516–521. [Google Scholar] [CrossRef]
- Meysam Mousavi, S.; Antuchevičienė, J.; Zavadskas, E.K.; Vahdani, B.; Hashemi, H. A new decision model for cross-docking center location in logistics networks under interval-valued intuitionistic fuzzy uncertainty. Transport 2019, 34, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Mahdiraji, H.A.; Beheshti, M.; Razavi Hajiagha, S.H.; Zavadskas, E.K. A fuzzy binary bi objective transportation model: Iranian steel supply network. Transport 2018, 33, 810–820. [Google Scholar] [CrossRef] [Green Version]
- Pehlivan, N.Y.; Şahin, A.; Zavadskas, E.K.; Turskis, Z. A comparative study of integrated fmcdm methods for evaluation of organizational strategy development. J. Bus. Econ. Manag. 2018, 19, 360–381. [Google Scholar] [CrossRef] [Green Version]
- Lithuanian Road Administration under the Ministry of Transport and Communications. Available online: https://lakd.lrv.lt/en/ (accessed on 8 November 2018).
- Inhabitants in Lithuania—Official Portal of Statistics (In Lithuanian)—Gyventojai—Oficialiosios Statistikos Portalas. Available online: https://osp.stat.gov.lt/gyventojai1 (accessed on 25 November 2020).
- International Standard ISO 1996-2: 2017. Available online: https://www.iso.org/standard/59766.html (accessed on 21 November 2019).
- V-604 Dėl Lietuvos Higienos Normos HN 33:2011 “Triukšmo Ribiniai Dydžiai Gyvenamuosiuose ir Visuomeninė. Available online: https://www.e-tar.lt/portal/lt/legalAct/TAR.8B79388EACD2 (accessed on 8 November 2018).
- Remeikiene, R.; Gaspareniene, L.; Schneider, F.G. THE DEFINITION OF DIGITAL SHADOW ECONOMY. Technol. Econ. Dev. Econ. 2017, 24, 696–717. [Google Scholar] [CrossRef] [Green Version]
- Fahey, C.J.; Delaney, R.A. Exploring expert variability in defining pseudoparalysis: An international survey. J. Shoulder Elbow Surg. 2020, S1058274620307096. [Google Scholar] [CrossRef]
- Howell, T.J.; Bennett, P.C. Preventing predatory behaviour in greyhounds retired from the racing industry: Expert opinions collected using a survey and interviews. Appl. Anim. Behav. Sci. 2020, 226, 104988. [Google Scholar] [CrossRef]
- Klok, F.A.; Schreiber, K.; Stach, K.; Ageno, W.; Middeldorp, S.; Eichinger, S.; Delluc, A.; Blondon, M.; Ay, C. Oral contraception and menstrual bleeding during treatment of venous thromboembolism: Expert opinion versus current practice. Thromb. Res. 2017, 153, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Torres, J.M.; Miles, I. The role of future-oriented technology analysis in e-Government: A systematic review. Eur. J. Futur. Res. 2017, 5, 15. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin: London, UK, 1970; ISBN 978-0-85264-199-6. [Google Scholar]
- Sivilevičius, H. Application of Expert Evaluation Method to Determine the Importance of Operating Asphalt Mixing Plant Quality Criteria and Rank Correlation. Balt. J. Road Bridge Eng. 2011, 6, 48–58. [Google Scholar] [CrossRef]
- Yang, W.; Cai, M.; Luo, P. The calculation of road traffic noise spectrum based on the noise spectral characteristics of single vehicles. Appl. Acoust. 2020, 160, 107128. [Google Scholar] [CrossRef]
- Begou, P.; Kassomenos, P.; Kelessis, A. Effects of road traffic noise on the prevalence of cardiovascular diseases: The case of Thessaloniki, Greece. Sci. Total Environ. 2020, 703, 134477. [Google Scholar] [CrossRef] [PubMed]
- Meyer, R.; Benetto, E.; Mauny, F.; Lavandier, C. Characterization of damages from road traffic noise in life cycle impact assessment: A method based on emission and propagation models. J. Clean. Prod. 2019, 231, 121–131. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Jo, H.I. Three-dimensional virtual reality-based subjective evaluation of road traffic noise heard in urban high-rise residential buildings. Build. Environ. 2019, 148, 468–477. [Google Scholar] [CrossRef]
- Paiva, K.M.; Cardoso, M.R.A.; Zannin, P.H.T. Exposure to road traffic noise: Annoyance, perception and associated factors among Brazil’s adult population. Sci. Total Environ. 2019, 650, 978–986. [Google Scholar] [CrossRef]
- Chen, L.; Tang, B.; Liu, T.; Xiang, H.; Sheng, Q.; Gong, H. Modeling traffic noise in a mountainous city using artificial neural networks and gradient correction. Transp. Res. Part Transp. Environ. 2019, S1361920919305024. [Google Scholar] [CrossRef]
- Gloaguen, J.-R.; Can, A.; Lagrange, M.; Petiot, J.-F. Road traffic sound level estimation from realistic urban sound mixtures by Non-negative Matrix Factorization. Appl. Acoust. 2019, 143, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Nourani, V.; Gökçekuş, H.; Umar, I.K. Artificial intelligence based ensemble model for prediction of vehicular traffic noise. Environ. Res. 2020, 180, 108852. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gao, H.; Cai, M. Simulation of traffic noise both indoors and outdoors based on an integrated geometric acoustics method. Build. Environ. 2019, 160, 106201. [Google Scholar] [CrossRef]
- Kuehnel, N.; Moeckel, R. Impact of simulation-based traffic noise on rent prices. Transp. Res. Part Transp. Environ. 2019, S1361920919308430. [Google Scholar] [CrossRef]
Transport Corridor Section | Measurement Point | Maximum Permissible Speed, km/h |
---|---|---|
A1 Vilnius—Kaunas—Klaipėda section from 102 km to 114 km | At 102.36 km of the section (in Kaunas) | 80 |
A5 Kaunas—Marijampolė—Suvalkai section from 0 km to 96 km | At 15.5 km of the section (Jonučių settlement) | 80 |
A8 Panevėžys—Aristava—Sitkūnai section from 8 km to 88 km | At 25 km of the section (in Ramygala) | 50 |
A10 Panevėžys—Pasvalys—Ryga section from 9 km to 66 km | At 39 km of the section (nearby Pasvalys city) | 70 |
Section of A17 Panevėžys Bypass from 0 km to 22 km | At 9.4 km of the section (Paviešečių settlement) | 70 |
Parameter Name | Formula |
---|---|
Kendall’s coefficient of concordance | |
Sums of R squares S (dispersion) | |
Total average | |
Sum of n indicator rankings of all n experts | |
Total average | |
Average rank of each criterion R | |
Coefficient of concordance when there are no associated ranks | |
Sum of squares S of deviations of ranks R of each criterion from the average rank | |
Sum of squares S in an ideal approved case | |
Pearson’s χ2 criterion | |
Lowest value of the coefficient of concordance Wmin | |
Reverse value of the criterion q | |
Criteria importance indicators | |
Importance of criteria of the object being evaluated by experts |
Factor Encryption Symbol (m = 3) * | |||
---|---|---|---|
a | b | c | |
13 | 24 | 23 | |
1.3 | 2.4 | 2300 | |
−7 | 4 | 3 | |
49 | 16 | 9 |
Indicator Sign | Factor Encryption Symbol | Sum | ||
---|---|---|---|---|
a | b | c | ||
0.2167 | 0.4000 | 0.3833 | 1 | |
0.7833 | 0.6000 | 0.6167 | 2 | |
0.3917 | 0.3000 | 0.3083 | 1 | |
0.4500 | 0.2667 | 0.2833 | 1 | |
Factor arrangement | 1 | 3 | 2 |
Factor Encryption Symbol (m = 3) * | |||
---|---|---|---|
a | b | c | |
20 | 13 | 27 | |
2 | 1.3 | 2.7 | |
0 | −7 | 7 | |
0 | 49 | 49 |
Indicator Sign | Factor Encryption Symbol | Sum | ||
---|---|---|---|---|
a | b | c | ||
0.3333 | 0.2167 | 0.4500 | 1 | |
0.6667 | 0.7833 | 0.5500 | 2 | |
0.3333 | 0.3917 | 0.2750 | 1 | |
0.3333 | 0.4500 | 0.2167 | 1 | |
Factor arrangement | 2 | 1 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čižiūnienė, K.; Matijošius, J.; Čereška, A.; Petraška, A. Algorithm for Reducing Truck Noise on Via Baltica Transport Corridors in Lithuania. Energies 2020, 13, 6475. https://doi.org/10.3390/en13246475
Čižiūnienė K, Matijošius J, Čereška A, Petraška A. Algorithm for Reducing Truck Noise on Via Baltica Transport Corridors in Lithuania. Energies. 2020; 13(24):6475. https://doi.org/10.3390/en13246475
Chicago/Turabian StyleČižiūnienė, Kristina, Jonas Matijošius, Audrius Čereška, and Artūras Petraška. 2020. "Algorithm for Reducing Truck Noise on Via Baltica Transport Corridors in Lithuania" Energies 13, no. 24: 6475. https://doi.org/10.3390/en13246475
APA StyleČižiūnienė, K., Matijošius, J., Čereška, A., & Petraška, A. (2020). Algorithm for Reducing Truck Noise on Via Baltica Transport Corridors in Lithuania. Energies, 13(24), 6475. https://doi.org/10.3390/en13246475