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Abstract: This article analyses the dispersion of vibration accelerations of a railway bridge during the
passage of a train, and presents an analysis of their parameters after the application of the theory of
covariance functions. The measurements of vibration accelerations at the fixed points of the beams of
the overlay of the bridge were recorded in the time scale as digital arrays (matrices). The values of
inter-covariance functions of the arrays of data of measurements of digital vibration accelerations
and the values of auto-covariance functions of the individual arrays, changing the quantization
interval in the time scale, were calculated. The compiled software Matlab 7 in the operator package
environment was used in calculations. This article aims at determining the interdependencies of
results of vibrations of bridge points rather than at the impact which a train makes on a bridge
without emphasizing the modal parameters of the bridge. The aforementioned interdependencies
make it possible to predict the results of hard-to-reach points.
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1. Introduction

An analysis of the dispersion of vibration accelerations of the beams of the railway bridge overlay
with a locomotive moving at 60 km/h and a freight train moving at 80 km/h was conducted in this
study [1]. The theory of covariance functions was used in the analysis of vibration parameters.
Graphical expressions of covariance functions illustrate the change of inter-dependence of vibration
parameters over a given time scale [2]. The degree of the change of spatial dependences depends on
technological and dynamic properties of the object being examined and the stability of the structure of
the bridge trusses [3].

Many articles have been written on analyses of rail bridge vibrations. Such research has mainly
focused on bridge conditions [4], such as a resonance mechanism explained by Xia et al. [5], vibration
mode-coupling and intermittent contact loss and vibration instability in a large motion bistable
compliant mechanism by Nikman et al. [6,7], the stability of dynamic response by Capsoni et al. [8],
the dependence of bridge vibration parameters on cross winds by Xu et al. [9] and the use of
bridge-track-vehicle element by Cheng et al. [10].

There are methods described in literature (1, 2 and 3 [11–13]) aimed at optimizing the number
of metering points. Although there may be many different algorithms for the placement of sensors
in order to optimize the number and locations of sensors on the structure, increasing the volume
of available information is the key criterion identified in the examined sources of literature [14,15].
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The purpose of the information received is to identify structural defects or to provide information on
structural changes (usually using modal analysis). Artificial Neural Networks (ANNs), Pattern Search
(PS) and Evolutionary Strategies (ES), such as the Genetic Algorithms (GA) [5], the Particle Swarm
Optimization (PSO) [6], and the Covariance-Matrix Adaptation Evolution Strategy (CMA-ES) are
some of the countless examples available in the literature [7,16–18]. This article focuses on analysing
hard-to-reach significant points (because the examined object is an old-structure bridge that is not
adapted for dynamic research) by performing dynamic load tests (with a train moving at different
speeds). This article is aimed at determining the interdependencies of results of vibrations of bridge
points rather than the impact that a train makes on a bridge without emphasizing the modal parameters
of the bridge. The identification of the aforementioned interdependencies makes it possible to predict
the results of hard-to-reach points.

Methods of reversal analysis efficiently support studies of vibrations of railway bridges.
Simplification of the measurement process and fewer sensors for determining vibration parameters
make it possible to use the received compositional models. Diagnosing bridge condition status with
the proposed methods is an important bridge resource forecasting tool for assessing the moving level
of moving rolling stocks. The aim of this paper is to show that the proposed method can be used
to assess the dependence of accelerometer points, and thus, that fewer sensors can be used in the
experiment (because of a complicated bridge design, it is often impossible to physically measure
significant acceleration of bridge points because of a difficult access to the bridge).

There are many ways to diagnose bridge structures. The assessment of bridge structures is very
important because of long service life, structural deformations, natural wear and tear and increasing
need for axle load. A dynamic enhancement factor (DAF), which determines dynamic impact of
moving trains on the bridge, is an important factor. The accurate assessment of DAF ensures sustainable
management of existing bridges [1]. Assessing the main natural frequencies and mode forms of the
bridge is of particular importance [19]. They can also be monitored using GAMMA Portable Radar
Interferometer (GPRI) [20]. The TTB model could also be used for testing rail bridge parameters,
and shows that shorter wavelengths are important for safety analyses. Longer wavelengths are more
relevant to vehicle train quality [21]. It is also possible to apply the linear superposition principle to
analyses of the fatigue characteristics of rail bridges [22]. The bridge model can be supplemented with
mechanical bridge performance tests and approved using the FEM bridge model [23].

2. Modelling Vibration Parameters

Accelerometers were placed on beams and the vibrations of the beams were measured. Sensors
were positioned on the upper plane (i.e., the top view). The sensor layout was selected to display
dynamic variations at all significant points. Signals received during measurements were processed
using Brüel & Kjær software (Sampling frequency 400 Hz). The weight of the moving locomotive was
119 t. The tests were conducted under the same environmental conditions, namely, the temperature
was 30 ◦C and humidity was at 70%.

The array of vibration accelerations consists of 8 vectors. Data of vectors 1–4 capture accelerations
of the rear steady point 1 of the railway bridge beam at time intervals τk → 0.0039 s during the
movement of the locomotive (vectors 1 and 2) and train (vectors 3 and 4). Vectors 1 and 3 show changes
in vertical acceleration, while vectors 2 and 4 show changes in longitudinal acceleration. The data of
vectors 5–8 show the change of the vertical accelerations of the mid-points of beams 1 and 2 of the
railway bridge at time intervals τk → 0.00097 s during the movement of a locomotive (vectors 5 and 6)
and a train (vectors 7 and 8) [11].

The study presents a means to calculate of the most reliable trend values of the vibration vector
which uses the least squares method. The trend of the vibrations vector is assumed to be a discrete
dimension with a fixed value. The use of the least squares method partially eliminates random
vibration errors. When processing large-scale measurement data, the method of the least squares also
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provides asymptotically effective values of the calculated parameters when the distribution of the
measurement data is not normal [12].

The array of the measurement of vibration accelerations consists of 8 vectorsϕ (columns). Each
vector is understood as a random function with random measurement errors. In application of the
method of least squares, the most reliable trend value, ϕ̃, also called the weighted average, is calculated
for each vector ϕ [13]. Assuming that the vector trend value differs according to the harmonic
law, when the forecasted wave length corresponds to the length of the vibration acceleration vector,
the parametric equation of a single vector valueϕi is expressed as:

εi = ϕi − aiϕ̃, (1)

where εi is the random acceleration error,ϕi is the acceleration value, and ϕ̃ is the acceleration vector
trend. Coefficient ai is expressed as:

ai = cos∆i, (2)

where ∆i = ∆·i, ∆ = 2π/n is the value of the unit of measure, rad, i = 1, 2, . . . , n. Equation (1) in the
expression of matrices is expressed as:

ε = ϕ−Aϕ̃, (3)

where ε is the vector of random errors,ϕ = (ϕ1, ϕ2, . . . ,ϕn)
T is the vector of vibrations accelerations,

and A = (a1, a2, . . . , an)
T is the matrix of coefficients of parametric equations (n× 1) [14].

The most reliable trend value of the vibration acceleration vector ϕ is calculated using the
condition of the method of the least squares:

Φ = εTPε = min, (4)

where P is the diagonal matrix (n× n) of weight pi of vibration accelerations.
Weights of single acceleration valuesϕi are calculated according to the formula:

pi =
σ2

0

σ2
ϕi

, (5)

where σ0 is the standard deviation of the measurement resultϕ0, the weight of which is assumed to
be equal to 1 p0 = 1. Thus, the value σ0 is chosen freely because it has no impact on the calculation
results. The measurement resultϕ0 is selected for weights pi to be close to 1 (to reduce the scope of
calculations).

From the equation
ui = lnϕi,

the following value is derived:
σϕi = σuiϕi. (6)

Formula (6) shows that the value of σϕi depends on the value of vibration accelerationϕi. Thus,
acceleration of a higher value is less accurate, becauseϕi � σui .

Using formula (5) the following is obtained:

pi =
σ2

0

σ2
ui
ϕ2

i

= ϕ−2
i ·10−7, (7)

where the acceptable average value is
σ2

0
σ2

ui
= 10−7.
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The extremity of the function (4) is determined by finding its partial derivatives according to the
parameter ϕ̃, equating it to zero and having solved the equation [15]:

∂Φ

∂ϕ̃
= 2

(
∂ε
∂ϕ̃

)T

P·ε = 0, (8)

we receive:
−ATPε = 0

and
ATPAϕ̃−ATPϕ = 0, (9)

The solution is equal to zero.

ϕ̃ =
(
ATPA

)−1
ATPϕ = N−1ω, (10)

where
N =

(
ATPA

)−1
, (11)

ω = ATPϕ. (12)

The accuracy of estimates of parameters calculated in application of the method of the least
squares is assessed by their covariance matrix Kϕ̃ [15].

3. Object of the Research and Measurement Results

In this article, an old bridge in Jonava, Kaunas district, Republic of Lithuania, was chosen as the
object of research. It was built in 1914 but destroyed during the World War II by the Soviet Union and
Nazi German troops. A new railway bridge was built in 1948. The aim of this article was to evaluate
the dynamic parameters of the railway bridge after more than 70 years of intensive operation.

Signals received during measurements were processed using Brüel & Kjær software (Figure 1) [15].
Signal filtering was used to eliminate noises in observance of the requirements laid down in source [17,18]
which require considering frequencies to the greater of: (a) 30 Hz, (b) frequency of the main form of
vibrations of the element being examined multiplied by 1.5; (c) frequency of the third form of vibrations
of the element.
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Figure 1. Brüel & Kjær measurement system of dynamic parameters (a), piezo-ceramic low frequency
(b) and less sensitive (c) converters for measuring vertical and horizontal fluctuations.

Measurements were carried out with the locomotive moving at 60 km/h and a passenger train
moving at 80 km/h. Vertical acceleration of 2 points (Figures 2–4) and vertical and longitudinal
accelerations of point 1 were measured. Points 3 and 4 are points in the middle of the bridge are located
on beams 1 and 2, respectively, while point 1 is a support point (bridge bearing).
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Figure 3. Vertical vibrations and their spectral density of beams 1 (a,c) and 2 (b,d) of the road overlay,
(a,b) during the locomotive movement; (c,d) during the freight train movement.
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Figure 4. Vertical (a,c) and longitudinal (b,d) vibrations and their spectral density of the support
(filtered vibrations above 30 Hz): (a,b) during the locomotive movement; (c,d) during the freight
train movement.

Measurement data arrays were processed using the compiled computer software with Matlab
programme package operators.

Since a size (scalar) is the trend of cases of this problem, the following equation is used:

K
′

ϕ̃ = σ
′2
ϕ̃ = σ

′2
0N−1. (13)

where σ
′

0 is the estimate of the standard deviation σ0, which is calculated according to the formula:

σ
′2
0 =

1
n− 1

εTPε (14)

The quality of data of all 8 acceleration vectors was assessed at their precision indicator by one
standard deviation. Estimates of standard deviations are presented in Table 1.

Table 1. Shapes and frequencies of bridge overlay vibrations; values of their suppression coefficients.

Mode No. Frequency [Hz] Suppression Coefficient [%]

I 1.71 3.89
II 3.20 2.17
III 4.21 1.51
IV 8.14 0.475
IV 10.38 0.656

The results in Figures 3 and 4 show vertical (a,c) and longitudinal (b,d) vibrations and their
spectral density of 1, 3 and 4 points (Figure 1) point 1. The spectral density graphs illustrate the change
of acceleration amplitudes in the frequency range from 0 to 30 Hz. The analysis of the acceleration
amplitudes of vertical direction manifesting at the middle section of the bridge during the running of a
locomotive, which are presented in graphs in Figure 3a,b (the graphs show acceleration measurement
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results at 3 and 4 points (Figure 1)), revealed that the amplitude at 3.25 Hz dominated in the frequency
range from 1 to 10 Hz, while the respective analysis of the frequency range from 10 to 30 Hz showed
the dominant amplitudes at 16.81, 24.75, 25.06, 26.69 and 26.8 Hz. The analysis of the acceleration
amplitudes of vertical direction manifesting at the middle section of the bridge during the movement of
a freight train, which are presented in graphs in Figure 3c,d (the graphs show acceleration measurement
results at 3 and 4 points (Figure 1)), revealed that the acceleration amplitudes from 2.25 to 3.94 Hz
dominated at the frequency range from 1 to 10 Hz, while the respective analysis of the frequency range
from10 to 30 Hz showed the dominant amplitudes at 23.88, 26.00 and 27.13 Hz. The analysis of the
acceleration amplitudes of vertical and horizontal direction manifesting at the bridge support during
the running of a locomotive, which are presented in graphs in Figure 4a,b (the graphs show results of
measurement of acceleration at 1 point (Figure 1)) showed that the dominant amplitude was 3.80 Hz
in the frequency range from 1 to 30 Hz. The analysis of the acceleration amplitudes of vertical and
horizontal direction manifesting at the bridge support during the running of a freight train, which
are presented in graphs in Figure 4c,d (the graphs show results of measurement of acceleration at 1
point (Figure 1)) revealed the manifestation of dominant amplitudes in the frequency range from 1 to
11.5 Hz, with significantly dominating amplitudes at 4.25, 7.11 and 11.48 Hz.

Figure 5 illustrates the first shapes of the 5 modes used in the experimental modal analysis, while
Table 1 presents the key data of the experimental modal analysis: frequency values of the modes and
suppression coefficients for each mode.
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Table 2 shows Figures 3 and 4; statistical parameters of acceleration values, 1–4 vectors are
described in Figure 4, and vectors 5–8 are described in Figure 3. Figure 3 the unfiltered acceleration
values o 4 are filtered and filtered at 30 Hz (filtered vibrations above 30 Hz), resulting in this difference.

Table 2. Precision indicators of acceleration vectors.

Vector Name Standard Deviation Estimate of an Individual Result σϕ, m/s2

1 0.001
2 0.005
3 0.010
4 0.027
5 0.379
6 0.349
7 0.532
8 0.452

Parameter Name Value m/s2

‘ Estimate of standard deviation of the result the weight of which is equal to one σ
′

0 3.16·10−4

Estimate of standard deviation of the result the weight of which is equal to one σ
′

0 3.16·10−4

Estimate of standard deviation of weighted average σ
′

ϕ̃ 8.5·10−9

Estimate of standard deviation of weighted average σ
′

ϕ̃ 7.05·10−5

4. Covariance Model of Vibration Signal Parameters

In the theoretical model [24–27], errors of measurement of digital vibration signals are assumed to
be random and systematic.

The trend of measurement data of vectors is eliminated in each vector of the arrays of measurement
of vibrations parameters. Time interval of dissemination of vibrations is used as one of the parameters.

A random function compiled on the basis of arrays of measurement data of vibration parameters
ϕ is considered stationary (in the broad sense), i.e., with the average of M

{
ϕ(t)

}
→ const, while the

covariance function depends solely on the difference between arguments τ − Kϕ(τ) Discrete Fourier
transformation [16–19,28–32] may be used to process digital signals. Auto-covariance function of one
data array or inter-covariance function of two arrays Kϕ(τ) is expressed as follows [78]:

Kϕ(τ) = M
{
ε
=
ϕ1(u)·ε

=
ϕ2(u + τ)

}
. (15)

or

Kϕ(τ) =
1

T − τ

∫ T−

0

{
ε
=
ϕ1(u)·ε

=
ϕ2(u + τ)

}
du, . (16)

where εϕ1 = ϕ1 − ϕ̃1, εϕ2 = ϕ2 − ϕ̃2 are the centred measurement vectors of vibration parameters
ϕ, after the elimination of the trend, u is the vibrations parameter, τ = k·∆ is the variable quantum
interval, k is the number of units of measure, ∆ is the value of units of measure, T is time, and M is the
symbol of an average.

According to the available vibration parameter measurement data, the covariance function
estimate K′ϕ(k) is calculated as follows:

K′ϕ(τ) = K′ϕ(k) =
1

n− k

n−k∑
i=1

εϕ1(ui)εϕ2(ui+k), (17)

where n is the total number of discrete intervals.
Formula (14) may be applied in the form of an auto-covariance or inter-covariance function.

In case of an auto-covariance function, arrays εϕ1(u) and εϕ2(u + τ) are parts of individual arrays,
and when a function is a covariance function, there are two different arrays.



Appl. Sci. 2019, 9, 2545 11 of 17

The estimate of the normalized covariance function is:

R′ϕ(k) =
K′ϕ(k)

K′ϕ(0)
=

K′ϕ(k)

σ′2ϕ
, (18)

where σ
′

ϕ is the estimate of standard deviation of a random function.
The following formulas are used to eliminate the trend of the digital i measurement array vectors:

εϕi = ϕi − e·ϕ∼T
i =

(
εϕ f i . . . εϕim

)
, (19)

where εϕi is the array of reduced values of i digital array, with eliminatedϕi vector trend;ϕi − i array
of the measured vibration parameters, e is the the only vector measured at (n × 1); n is the number of
lines in i array,ϕ∼i is the vector of weighted averages of i array vectors,ϕij is the j vector of reduced
values of i array, j = 1, . . . , m.

Arithmetic or a weighted average is used to eliminate the vector trend. The vector of arithmetic
averages of i array vectors is calculated according to the formula:

ϕi =
1
n
ϕT

i ·e.., (20)

The weighted average of vectors is calculated in application of the method of the least squares.
Estimate of covariance matrix of i array of vibration parameters looks as follows:

K′(ϕi) =
1

n− 1
εϕT

i ·εϕi, (21)

K′
(
ϕi,ϕ j

)
=

1
n− 1

εϕT
i ·εϕ j, (22)

whereϕi,ϕ j array dimensions must be the same.
The accuracy of the calculated correlation coefficient is defined by the standard deviation σr

assessing its value according to the formula

σr =
1
√

k

(
1− r2

)
, (23)

where k => 8000 r is the correlation coefficient. The greatest standard deviation estimate is received
when r value is close to zero, then σ

′

r ≈ 0.011 where r ≈ 0.5 we have σ′r ≈ 0.007 [29–41].

5. Results of the Analysis of the Vibration Accelerations Model

Eight arrays of data of measurements of vibration accelerations were received using accelerometer
8344. Signals were captured at the following time intervals: τ∆ = 0.0039 s and τ∆ = 0.00097 s 64 s and
16 s. n = 16, 387 vibration signal acceleration values were fitted in each vector of the array.

The expression of each measurement vector is a random function for random measurement errors,
when, by bringing its expression close to the shape of a stationary function, trend components, which
were calculated in application of the method of the least squares, were eliminated.

Values of the quantization interval of the normalized covariance functions range from 1 to
n/2 = 8000. Estimate K′ϕ(τ) of the normalized auto-covariance function K′ϕ(τ) was calculated
for each vector of vibrations and graphical expressions of 8 normalized auto-covariance functions
were received.

Estimates of normalized inter-covariance functions K′ϕ(τ) were calculated in the same manner
according to 8 vectors for both vibrations, and 28 graphical expressions of them were received according
to their respective combinations.
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All normalized auto-covariance functions for 8 vibration acceleration vectors receive their highest
correlation coefficient values r→ 1.0 at the quantization interval values k→ 0(τk → 0 s) and further
decrease to r→ 0 at k→ 2000(τk → 7.8 s) for 1–4 vectors and τk → 1.9 s for 5–8 vectors. According
to the data of different vectors, the rate of decrease of correlation is different.

Normalized inter-covariance functions have correlation coefficient values close to zero for all pairs
of vectors, except r56 → ±0.7 , and decrease to r56 → 0 at k→ 2000(τk → 1.9 s) and r78 → 0.5.

Figures 6–13 illustrate more significant graphical expressions.
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Analysis of Figures 6–13 made it possible to determine the correlation values between the examined
vectors (from Table 1). The results shown in Figure 6 revealed (1st vibration accelerations vector) that
the correlation coefficient value varies ±0.4 where k→ 0 ; accordingly, at k→ 1000 , the correlation
coefficient value changes ±0.2 and with increasing k→ 8000 , the correlation coefficient value is r→ 0 .
The results of Figure 7 showed (7th vibration accelerations vector) that the correlation coefficient value
changes from +0.53 to −0.44 k→ 0 ; accordingly, with increasing k→ 8000 , the correlation coefficient
value is k→ ±0.2 . The assessment of the results of Figure 8 revealed (1st and 2nd vibration accelerations
vectors) that the correlation coefficient value ranges from +0.21 to −0.24 at k→ 0 , and accordingly,
at k→ 1000 the correlation coefficient value varies ±0.16 and with increasing k→ 8000 , the value
is r→ 0 . An assessment of the results of Figure 9 revealed (1st and 6th vibration accelerations
vectors) that the correlation coefficient value changes ±0.07 at k→ 0 , and with increasing k→ 8000 ,
the correlation coefficient value r→ ± 0.01 . The assessment of the results of Figure 10 showed (2nd
and 5th vibration accelerations vectors) that the correlation coefficient value ranges from +0.06 to −0.05,
when k→ 0 , and with respectively increasing k→ 8000 , the correlation coefficient value r→ ±0.005 .
An assessment of the results of Figure 11 revealed (3th and 4th vibration accelerations vectors) that
the correlation coefficient value ranges from +0.18 to −0.23 at k→ 0 , and with increasing k→ 8000
the correlation coefficient value r→ ±0.05 . The analysis of the results of Figure 12 showed (5th and
6th vibration accelerations vectors) that the correlation coefficient value varies from +0.88 to −0.68 at
k→ 0 ; accordingly, where k→ 1000 , the correlation coefficient value ranges ±0.4 and with increasing
k→ 8000 , the correlation coefficient value r→ 0 . The assessment of the results of Figure 13 revealed
(7th and 8th vibration accelerations vectors) that the correlation coefficient value varies ±0.45 at k→ 0 ,
and with increasing k→ 8000 , the correlation coefficient value r→ ±0.1 .

6. Conclusions

Normalized auto- covariance and inter- covariance functions of vibration signal accelerations
of the bridge points allowed us to determine the change in correlation and probability dependence
between signal accelerations according to quantization range of signal time.

Values of normalized auto-covariance functions of all acceleration vectors changed from r→ 1.0
at the quantization interval values k→ 0(τk → 0 s) and r→ 0 at k→ 2000(τk → 7.8 s) . The curve of
correlation of different vectors differs, thus the probabilistic dependence between the parameters of the
same acceleration vector decreased rather slowly over time.

Normalized inter-correlation functions have correlation coefficient values which are close to zero
for pairs of vectors of accelerations (vertical and longitudinal) of all points of the bridge overlay, which
shows that the structure of bridge trusses is stable enough, and that each node works in individual
mode. This assumption was also confirmed by the expressions of normalized auto-covariance functions
of 8 acceleration vectors when the rate of their change is individual. However, inter-correlation of
5–8 acceleration vectors is notable when r56 → ±0.7 and decreases to r56 → 0 at k→ 2000(τk → 1.9 s)
and r78 → 0.5, which shows that acceleration vectors of two beams of the bridge have a probabilistic
interconnection having possibly formed due to their structural properties.

The impact which a train has on the bridge was analysed without emphasizing the bridge
parameters, determining interdependences of vibration results of points in the bridge structure.
Determining said interdependences makes it possible to predict the dynamic results of hard-to-reach
points of the bridge structure. The results of this method could be used in structural health monitoring
(SHM).
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