# Far-Field Maximal Power Absorption of a Bulging Cylindrical Wave Energy Converter

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Theory

#### 2.1. Far-Field Maximal Absorption Width without Constraint

#### 2.2. Far-Field Maximal Absorption Width under Constraint

#### 2.3. Modal Analysis of the SBM Offshore’s S3 Device

## 3. Numerical Results

#### 3.1. Implementation and Setup

#### 3.2. Mesh Convergence Study

#### 3.3. Examples of Deformation Profiles

#### 3.4. Maximal Absorption Width with and without Constraint

#### 3.5. Comparison with the Linear Response of the WEC

## 4. Discussion and Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Desmars, N.; Tchoufag, J.; Younesian, D.; Alam, M.R. Interaction of surface waves with an actuated submerged flexible plate: Optimization for wave energy extraction. J. Fluids Struct.
**2018**, 81, 673–692. [Google Scholar] [CrossRef] - Tay, Z.Y.; Wei, Y. Power enhancement of pontoon-type wave energy convertor via hydroelastic response and variable power take-off system. J. Ocean. Eng. Sci.
**2020**, 5, 1–18. [Google Scholar] [CrossRef] - Mei, C.C. Nonlinear resonance in Anaconda. J. Fluid Mech.
**2014**, 750, 507–517. [Google Scholar] [CrossRef] - Renzi, E. Hydroelectromechanical modelling of a piezoelectric wave energy converter. Proc. R. Soc. A
**2016**, 472, 20160715. [Google Scholar] [CrossRef] [Green Version] - Babarit, A.; Singh, J.; Mélis, C.; Wattez, A.; Jean, P. A numerical model for analysing the hydroelastic response of a flexible Electro Active Wave Energy Converter. J. Fluid Struct.
**2017**, 74, 356–384. [Google Scholar] [CrossRef] [Green Version] - Folley, M. Numerical Modelling of Wave Energy Converters: State-of-the-Art Techniques for Single Devices and Arrays; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Babarit, A. Ocean Wave Energy Conversion; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Newman, J. Absorption of wave energy by elongated bodies. Appl. Ocean Res.
**1979**, 1, 189–196. [Google Scholar] [CrossRef] - Farley, F. Wave energy conversion by flexible resonant rafts. Appl. Ocean Res.
**1982**, 4, 57–63. [Google Scholar] [CrossRef] - Farley, F. Far-field theory of wave power capture by oscillating systems. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
**2012**, 370, 278–287. [Google Scholar] [CrossRef] [PubMed] - Ancellin, M.; Babarit, A.; Jean, P.; Dias, F. Far Field Maximal Power Absorption of a Bulging Cylindrical Wave Energy Converter: Preliminary Numerical Results. Actes des Journées de l’Hydrodynamique 2018. 2018. Available online: http://website.ec-nantes.fr/actesjh/images/16JH/Articles/JH2018_papier_07D_Ancellin_et_al.pdf (accessed on 15 October 2020).
- Dong, M. Hydro-Elastic Response of a Bulging Cylindrical Wave Energy Converter; Internship Report; University College Dublin: Dublin, Ireland, 2019. [Google Scholar]
- Falnes, J.; Kurniawan, A. Fundamental formulae for wave-energy conversion. R. Soc. Open Sci.
**2015**, 2, 140305. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Zheng, S.; Meylan, M.H.; Zhu, G.; Greaves, D.; Iglesias, G. Hydroelastic interaction between water waves and an array of circular floating porous elastic plates. J. Fluid Mech.
**2020**, 900. [Google Scholar] [CrossRef] - Ancellin, M.; Dias, F. Capytaine: A Python-based linear potential flow solver. J. Open Source Softw.
**2019**, 4, 1341. [Google Scholar] [CrossRef] - Babarit, A.; Delhommeau, G. Theoretical and numerical aspects of the open source BEM solver NEMOH. In Proceedings of the 11th European Wave and Tidal Energy Conference (EWTEC2015), Nantes, France, 6–11 September 2015. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods
**2020**, 17, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kraft, D. A software package for sequential quadratic programming. In Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt; DFLVR: Oberpfaffenhofen, Germany, 1988; Volume DFLVR-FB 88-28. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng.
**2007**, 9, 90–95. [Google Scholar] [CrossRef] - Hoyer, S.; Hamman, J. xarray: N-D labeled arrays and datasets in Python. J. Open Res. Softw.
**2017**, 5. [Google Scholar] [CrossRef] [Green Version] - Lam, S.K.; Pitrou, A.; Seibert, S. Numba: A LLVM-Based Python JIT Compiler. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC; Association for Computing Machinery: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Ancellin, M.; Dias, F. Using the floating body symmetries to speed up the numerical computation of hydrodynamics coefficients with Nemoh. In Proceedings of the 37th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2018), Madrid, Spain, 17–22 June 2018. [Google Scholar] [CrossRef]

**Figure 3.**The relative error on the maximal absorption width computed with the first four modes and the first fifteen modes of the S3 with respect to a reference solution with 11850 panels, for several wavelengths and with and without constraint on the maximal deformation ($b\to \infty $ means no constraint). Table 1 gives the parameters of the problem.

**Figure 4.**Cross section at a given time of a cylinder with length $L=60$ m and radius ${r}_{S}=0.9$ m following its maximal motion predicted while using the first five modes of deformation for waves of wavelength $\lambda =0.8\phantom{\rule{3.33333pt}{0ex}}L$ traveling in the direction of the device, for several incoming wave amplitudes $|\widehat{A}|$ and several constraints b.

**Figure 5.**Dimensionless maximal absorption width as a function of the wavelength of the incoming waves. Each line corresponds to the absorption width of the different degrees of freedom of the S3 taken individually. The dotted lines are the unconstrained absorption widths. The solid lines are the absorption width under the constraint $b=1.0$.

**Figure 6.**Dimensionless maximal absorption width as a function of the wavelength of the incoming waves. Each line corresponds to the absorption width for the combination of several modes. The dotted lines are the unconstrained absorption widths. The solid lines are the absorption widths under the constraint $b=1.0$.

**Figure 7.**Dimensionless maximal absorption width as a function of the direction of the incoming waves. Each line corresponds to the absorption width for the combination of several modes. The dotted lines are the unconstrained absorption widths. The solid lines are the absorption widths under the constraint $b=1.0$.

**Figure 8.**A wave with wavelength $\lambda $ propagating in the direction of the cylinder is exciting the mode of wavelength $\lambda $. When the same wavelength is propagating with an angle $\beta $ with respect to the cylinder, it can excite a mode of wavelength $\lambda /cos\left(\beta \right)$.

**Figure 9.**Dimensionless absorption width as a function of the wavelength of the incoming waves for the optimal deformation under constraint and the linear response for two values of $\eta $. The solid lines represent the constrained maximal absorption widths. The dash-dotted lines correspond to the linear response.

length L | 60 $\mathbf{m}$ |
---|---|

radius ${r}_{S}$ | $0.9\text{}$$\mathrm{m}$ |

cross section ${S}_{s}$ | $2.544\text{}$${\mathrm{m}}^{2}$ |

${z}_{S}$ | $-1.35\text{}$$\mathrm{m}$ |

D | $2.248\times {10}^{-5}$ ${\mathrm{Pa}}^{-1}$ |

${T}_{s}$ | $3.8\times {10}^{4}$$\mathrm{N}$ |

M | 38,000 kg |

$\eta $ | $0.323$ ${\mathrm{m}}^{2}$${\mathrm{s}}^{-2}$ |

${B}_{R}$ | $8\pi \phantom{\rule{0.166667em}{0ex}}\xb7\phantom{\rule{0.166667em}{0ex}}{10}^{-6}$ |

water density $\rho $ | 1025 $\mathrm{k}\mathrm{g}$/${\mathrm{m}}^{-3}$ |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ancellin, M.; Dong, M.; Jean, P.; Dias, F.
Far-Field Maximal Power Absorption of a Bulging Cylindrical Wave Energy Converter. *Energies* **2020**, *13*, 5499.
https://doi.org/10.3390/en13205499

**AMA Style**

Ancellin M, Dong M, Jean P, Dias F.
Far-Field Maximal Power Absorption of a Bulging Cylindrical Wave Energy Converter. *Energies*. 2020; 13(20):5499.
https://doi.org/10.3390/en13205499

**Chicago/Turabian Style**

Ancellin, Matthieu, Marlène Dong, Philippe Jean, and Frédéric Dias.
2020. "Far-Field Maximal Power Absorption of a Bulging Cylindrical Wave Energy Converter" *Energies* 13, no. 20: 5499.
https://doi.org/10.3390/en13205499