High Performance Single-Phase Single-Stage Grid-Tied PV Current Source Inverter Using Cascaded Harmonic Compensators
Abstract
1. Introduction
2. System under Investigation
2.1. Applied Pulse Width Modulation Scheme
2.2. System Modelling
2.3. Parameters’ Design
2.3.1. AC Output Filter
2.3.2. DC-Link Inductor
3. Proposed Control Scheme
3.1. CSI Control Loops
3.2. Outer DC-Link Current Control Loop
3.3. Inner Grid Current Control Loop
4. Simulation Results
5. Experimental Results
6. Conclusions
7. Discussion
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Reference | Hardware | PWM Technique | Harmonic Mitigation Method | Experimental THD | Advantages | Disadvantages |
---|---|---|---|---|---|---|
[20] | Single phase | PAM | Using PWM only | No experimental results (4.8% in simulation) | 1. Simplified PWM 2. No extra hardware | 1. Limited performance at low modulation indices 2. Not harmonic specific cancellation |
[21] | Single phase | NPWM | Using PWM only | 4.42% | 1. Analogue based 2. Deteriorated THD at low power operation | |
[25] | Single phase | SPWM | Using PWM only via 3rd harmonic cancellation | No experimental THD calculation (3.42% in simulation) | 1. Only mitigates 3rd harmonic grid current. | |
[26] | Single phase | Modified carrier based | double-tuned parallel resonant circuit to attenuate the 2nd and 4th order harmonics at the inverter dc side | 2.3% | 1. Double action mitigation both hardware and software 2. High performance | 1. High cost and size 2. Bulky 3. Difficult to tune the double parallel filter |
[27] | Single phase | Pulse transform witching table | Active buffer power decoupling circuit | 4.24% | 1. High performance 2. High power density | 1. More active semiconductors 2. High cost and size 3. bulky 4. Extra voltage sensor is needed |
Proposed controller | Single phase | Modified sinusoidal | Software based Cascaded harmonic compensators for the grid current control | 3.19% | 1. High performance 2. Low cost and size 3. Less bulky 4. Easily tuned compensators | 1. Care must be taken at various DC-link inductor values specially at very low modulation indices |
Appendix C
Simulation Analysis Parameters | Experimental Validation Parameters | |
---|---|---|
Grid voltage | 220 V single phase pure sinusoidal supply | 220 V single phase near-sinusoidal supply at IEEE519 Std. distortion level THD = 3.9% |
Grid frequency | 50 Hz | |
Output filter Capacitance | 25 µF | |
Output filter Inductance | 5 mH | |
Switching frequency | 15 KHz | |
PV panel | 285 W PV panel ASE-285-DGF/17 MODULE | Low-cost PV emulator |
References
- Guerrero, J.M.; Blaabjerg, F.; Zhelev, T.; Hemmes, K.; Monmasson, E.; Jemei, S.; Comech, M.P.; Granadino, R.; Frau, J.I. Distributed generation: Toward a new energy paradigm. IEEE Ind. Electron. Mag. 2010, 4, 52–64. [Google Scholar] [CrossRef]
- Liserre, M.; Sauter, T.; Hung, J.Y. Future energy systems: Integrating renewable energy sources into the smart power grid through industrial electronics. IEEE Ind. Electron. Mag. 2010, 4, 18–37. [Google Scholar] [CrossRef]
- Gonzalez, R.; Lopez, J.; Sanchis, P.; Marroyo, L. Transformerless inverter for single-phase photovoltaic systems. IEEE Trans. Power Electron. 2007, 22, 693–697. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory (NREL). Energy Analysis: Solar Power and the Electric Grid; National Renewable Energy Laboratory: Golden, CO, USA, 2010.
- Kouro, S.; Leon, J.I.; Vinnikov, D.; Franquelo, L.G. Grid-connected photovoltaic systems: An overview of recent research and emerging PV converter technology. IEEE Ind. Electron. Mag. 2015, 9, 47–61. [Google Scholar] [CrossRef]
- Romero-Cadaval, E.; Francois, B.; Malinowski, M.; Qing-Chang, Z. Grid-connected photovoltaic plants: An alternative energy source, replacing conventional sources. IEEE Ind. Electron. Mag. 2015, 9, 18–32. [Google Scholar] [CrossRef]
- Kjaer, S.B.; Pedersen, J.K.; Blaabjerg, F. A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans. Ind. Appl. 2005, 41, 1292–1306. [Google Scholar] [CrossRef]
- Romero-Cadaval, E.; Spagnuolo, G.; Franquelo, L.G.; Ramos-Paja, C.A.; Suntio, T.; Xiao, W.M. Grid-connected photovoltaic generation plants: Components and operation. IEEE Ind. Electron. Mag. 2013, 7, 6–20. [Google Scholar] [CrossRef]
- Xiao, W.; Ozog, N.; Dunford, W. Topology study of photovoltaic interface for maximum power point tracking. IEEE Trans. Ind. Electron. 2007, 54, 1696–1704. [Google Scholar] [CrossRef]
- Roman, E.; Alonso, R.; Ibanez, P.; Elorduizapatarietxe, S.; Goitia, D. Intelligent PV module for grid-connected PV systems. IEEE Trans. Ind. Electron. 2006, 53, 1066–1073. [Google Scholar] [CrossRef]
- Chowdhury, S.; Chowdhury, S.P.; Crossley, P. Microgrids and Active Distribution Networks; IET Renewable Energy Series 6; Institution of Engineering and Technology: London, UK, 2009. [Google Scholar]
- Blaabjerg, F.; Teodorescu, R.; Liserre, M.; Timbus, A.V. Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 2006, 53, 1398–1409. [Google Scholar] [CrossRef]
- Eltawil, M.A.; Zhao, Z. Grid-connected photovoltaic power systems: Technical and potential problems—A review. Renew. Sustain. Energy Rev. 2010, 14, 112–129. [Google Scholar] [CrossRef]
- Shimizu, T.; Wada, K.; Nakamura, N. Flyback-type single-phase utility interactive inverter with power pulsation decoupling on the dc input for an ac photovoltaic module system. IEEE Trans. Power Electron. 2006, 21, 1264–1272. [Google Scholar] [CrossRef]
- Hu, H.; Harb, S.; Kutkut, N.; Batarseh, I.; Shen, Z.J. A review of power decoupling techniques for micro inverters with three different decoupling capacitor locations in PV systems. IEEE Trans. Power Electron. 2013, 28, 2711–2726. [Google Scholar] [CrossRef]
- Jain, S.; Agarwal, V. A single-stage grid connected inverter topology for solar PV systems with maximum power point tracking. IEEE Trans. Power Electron. 2007, 22, 1928–1940. [Google Scholar] [CrossRef]
- Wu, T.; Chang, C.; Lin, L.; Kuo, C. Power loss comparison of single- and two-stage grid-connected photovoltaic systems. IEEE Trans. Energy Convers. 2011, 26, 707–715. [Google Scholar] [CrossRef]
- Jain, S.; Agarwal, V. Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems. IET Electr. Power Appl. 2007, 1, 753–762. [Google Scholar] [CrossRef]
- Chen, Y.M.; Chang, C.H.; Wu, H.C. DC-Link capacitor selections for the single-phase grid-connected PV system. In Proceedings of the 2009 International Conference on Power Electronics and Drive Systems (PEDS), Taipei, Taiwan, 2–5 November 2009; pp. 72–77. [Google Scholar]
- Hirachi, K.; Ishitobi, M.; Matsumoto, K.; Hatton, H.; Ishibashi, M.; Nakaoka, M.; Takahashi, N.; Kato, Y. Pulse area modulation control implementation for single-phase current source-fed inverter for solar photovoltaic power conditioner. In Proceedings of the IEEE Power Electronic Drives and Energy Systems for Industrial Growth Conference, Perth, Australia, 1–3 December 1998; pp. 677–682. [Google Scholar]
- Li, R.T.H.; Chung, H.S.H.; Chan, T.K.M. An active modulation technique for single-phase grid-connected CSI. IEEE Trans. Power Electron. 2007, 22, 1373–1382. [Google Scholar] [CrossRef]
- Patel, H.; Agarwal, V. A Single-Stage Single-Phase Transformer-Less Doubly Grounded Grid-Connected PV Interface. IEEE Trans. Energy Convers. 2009, 24, 93–101. [Google Scholar] [CrossRef]
- Ertasgin, G.; Whaley, D.M.; Ertugrul, N.; Soong, W.L. Analysis and design of energy storage for current-source 1-ph grid-connected PV inverters. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC 2008), Austin, TX, USA, 24–28 February 2008; pp. 1229–1234. [Google Scholar]
- Komurcugil, H. Steady-state analysis and passivity-based control of single-phase PWM current-source inverters. IEEE Trans. Ind. Electron. 2010, 57, 1026–1030. [Google Scholar] [CrossRef]
- Darwish, A.; Abdelsalam, A.K.; Massoud, A.M.; Ahmed, S. Single phase grid connected current source inverter: Mitigation of oscillating power effect on the grid current. In Proceedings of the IET Conference on Renewable Power Generation, Edinburgh, UK, 6–8 September 2011; pp. 1–7. [Google Scholar]
- Alajmi, B.N.; Ahmed, K.H.; Adam, G.P.; Williams, B.W. Single-phase single-stage transformer less grid-connected PV system. IEEE Trans. Power Electron. 2013, 28, 2664–2676. [Google Scholar] [CrossRef]
- Ohnuma, Y.; Orikawa, K.; Itoh, J. A single-phase current-source PV inverter with power decoupling capability using an active buffer. IEEE Trans. Ind. Appl. 2015, 51, 531–538. [Google Scholar] [CrossRef]
- Wu, B. High-Power Converters and AC Drives Handbook; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Wiechmann, E.P.; Aqueveque, P.; Burgos, R.; Rodríguez, J. On the efficiency of voltage source and current source inverters for high-power drives. IEEE Trans. Ind. Electron. 2008, 55, 1771–1782. [Google Scholar] [CrossRef]
- Abdelsalam, A.K.; Massoud, A.; Darwish, A.; Ahmed, S. Simplified generic on-line PWM technique for single phase grid connected current source inverters. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC 2012), Orlando, FL, USA, 5–9 February 2012; pp. 1398–1403. [Google Scholar]
- Rashid, M.H. Power Electronics Handbook; Butterworth-Hinemann: Oxford, UK, 2011. [Google Scholar]
- Araújo, S.V.; Zacharias, P.; Mallwitz, R. Highly efficient single-phase transformerless inverters for grid-connected photovoltaic systems. IEEE Trans. Ind. Electron. 2010, 57, 3118–3128. [Google Scholar] [CrossRef]
- Hohm, D.P.; Ropp, M.E. Comparative study of maximum power point tracking algorithms. Prog. Photovolt. Res. Appl. 2003, 11, 47–62. [Google Scholar] [CrossRef]
- Esram, T.; Chapman, P.L. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 2007, 22, 439–449. [Google Scholar] [CrossRef]
- Spiazzi, G.; Buso, S.; Mattavelli, P.; Tenti, P. Low complexity MPPT techniques for PV module converters. In Proceedings of the International Power Electronics Conference, Sapporo, Japan, 21–24 June 2010; pp. 2074–2081. [Google Scholar]
- Liu, F.; Duan, S.; Liu, F.; Liu, B.; Kang, Y. A variable step size INC MPPT method for PV systems. IEEE Trans. Ind. Electron. 2008, 55, 2622–2628. [Google Scholar]
- Mei, Q.; Shan, M.; Liu, L.; Guerrero, J.M. A novel improved variable step-size incremental- resistance MPPT method for PV systems. IEEE Trans. Ind. Electron. 2011, 58, 2427–2434. [Google Scholar] [CrossRef]
- Zakzouk, N.E.; Abdelsalam, A.K.; Helal, A.A.; Williams, B.W. Modified variable-step incremental conductance maximum power point tracking technique for photovoltaic systems. In Proceedings of the IEEE Industrial Electronics Society Conference (IECON 2013), Vienna, Austria, 10–13 November 2013; pp. 1741–1748. [Google Scholar]
- Ninad, N.A.; Lopes, L.A.C. Operation of single-phase grid-connected inverters with large DC bus voltage ripple. In Proceedings of the IEEE Electrical Power Conference (EPC 2007), Montreal, QC, Canada, 25–26 October 2007; pp. 172–176. [Google Scholar]
- Wai, R.J.; Wang, W.H. Grid-connected photovoltaic generation system. IEEE Trans. Circuits Syst. 2008, 55, 953–964. [Google Scholar]
- Ciobotaru, M.; Teodorescu, R.; Blaabjerg, F. Control of single-stage single-phase PV inverter. In Proceedings of the IEEE European Power Electronics and Applications Conference (EPE), Dresden, Germany, 11–14 September 2005; pp. 1–10. [Google Scholar]
- Zammit, D.; Staines, C.S.; Apap, M. Comparison between PI and PR current controllers in grid connected PV inverters. Int. J. Electr. Robot. Electron. Commun. Eng. 2014, 8, 217–222. [Google Scholar]
- Fukuda, S.; Yoda, T. A novel current-tracking method for active filters based on a sinusoidal internal model. IEEE Trans. Ind. Electron. 2001, 37, 888–895. [Google Scholar] [CrossRef]
- Yuan, X.; Merk, W.; Stemmler, H.; Allmeling, J. Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions. IEEE Trans. Ind. Appl. 2002, 38, 523–532. [Google Scholar] [CrossRef]
- Mastromauro, R.A.; Liserre, M.; Aquila, A.D. Control issues in single-stage photovoltaic systems: MPPT, current and voltage control. IEEE Trans. Ind. Inform. 2012, 8, 241–254. [Google Scholar] [CrossRef]
- Teodorescu, R.; Blaabjerg, F.; Liserre, M.; Loh, P.C. Proportional-resonant controllers and filters for grid connected voltage-source converters. IEE Proc. Electr. Power Appl. 2006, 153, 750–762. [Google Scholar] [CrossRef]
- Kulkarni, A.; John, V. Mitigation of lower order harmonics in a grid-connected single-phase PV inverter. IEEE Trans. Power Electron. 2013, 28, 5024–5037. [Google Scholar] [CrossRef]
- Chattopadhyay, R.; De, A.; Bhattacharya, S. Comparison of PR controller and damped PR controller for grid current control of LCL filter based grid-tied inverter under frequency variation and grid distortion. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 3634–3641. [Google Scholar]
- Castilla, M.; Miret, J.; Matas, J.; de Vicuña, L.G.; Guerrero, J.M. Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators. IEEE Trans. Ind. Electron. 2009, 56, 4492–4501. [Google Scholar] [CrossRef]
- Castilla, M.; Miret, J.; Camacho, A.; Matas, J.; de Vicuña, L.G. Reduction of current harmonic distortion in three-phase grid-connected photovoltaic inverters via resonant current control. IEEE Trans. Ind. Electron. 2013, 60, 1464–1471. [Google Scholar] [CrossRef]
- Teodorescu, R.; Blaabjerg, F. Proportional-resonant controllers. A new breed of controllers suitable for grid-connected voltage-source converters. Proc. Optim. 2004, 3, 9–14. [Google Scholar]
- de Araujo, M.B.; Rocha, L.R.; Martins, L.T.; Vieira, R.P. Multiloop Current Control Strategy for a Grid-connected VSI with LCL Filter Using Backstepping and Proportional+Resonant Controller. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Conference, Gramado, Brazil, 15–18 September 2019; pp. 1–6. [Google Scholar]
- Teodorescu, R.; Blaabjerg, F.; Borup, U.; Liserre, M. A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC 2004), Anaheim, CA, USA, 22–26 February 2004; pp. 580–589. [Google Scholar]
- Ciobotaru, M.; Kerekes, T.; Teodorescu, R.; Bouscayrol, A. PV inverter simulation using MATLAB/Simulink graphical environment and PLECS blockset. In Proceedings of the IEEE Industrial Electronics Conference (IECON2006), Paris, France, 6–10 November 2006; pp. 5313–5318. [Google Scholar]
- Timbus, A.; Liserre, M.; Teodorescu, R.; Rodriguez, P.; Blaabjerg, F. Evaluation of current controllers for distributed power generation systems. IEEE Trans. Power Electron. 2009, 24, 654–662. [Google Scholar] [CrossRef]
- IEEE. IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems; IEEE: New York, NY, USA, 1993. [Google Scholar]
- Mukerjee, A.K.; Dasgupta, N. DC power supply used as photovoltaic simulator for testing MPPT algorithms. Renew. Energy 2006, 32, 587–592. [Google Scholar] [CrossRef]
- IEEE. IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems; IEEE: New York, NY, USA, 2014. [Google Scholar]
- Zakzouk, N.E.; Abdelsalam, A.K.; Helal, A.A.; Williams, B.W. PV single-phase grid-connected converter: DC-link voltage sensorless prospective. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 526–546. [Google Scholar] [CrossRef]
- Zakzouk, N.E.; Khamis, A.K.; Abdelsalam, A.K.; Williams, B.W. Continuous-input continuous-output current buck-boost DC/DC converters for renewable energy applications: Modelling and performance assessment. Energies 2019, 12, 2208. [Google Scholar] [CrossRef]
Nominal short circuit current (ISCn) | 18.4 | A |
Nominal open circuit voltage (VOCn) | 20 | V |
Maximum power current (IMPP) | 16.8 | A |
Maximum power voltage (VMPP) | 17 | V |
Maximum output power (Pmax) | 285 | W |
Current/temp. coefficient (Ki) | 18.4 × 10−3 | A/°C |
Voltage/temp. coefficient (Kv) | −7.6 × 10−2 | V/°C |
Series cells | 216 | - |
150 mH, for = 0.33 A, and 50 mH, for = 1 A | |
25 µF and 5 mH for fs = 15 kHz |
Case | Irradiance | Settling Time, (s) | PV Power, (W) | Grid Power, (W) | Overall Efficiency |
---|---|---|---|---|---|
Ldc = 150 mH CPRC | 1000 W/m2 | 0.185 | 284.8 | 245 | 86% |
700 W/m2 | 0.025 | 195 | 174 | 89% | |
Ldc = 50 mH CPRC | 1000 W/m2 | 0.055 | 282 | 260 | 92% |
700 W/m2 | 0.015 | 186 | 175 | 94% | |
Ldc = 50 mH PCHC | 1000 W/m2 | 0.055 | 282.5 | 260 | 92% |
700 W/m2 | 0.015 | 188 | 177 | 94% |
ζOVERALL | ζconv. | ζMPPT. | |
---|---|---|---|
CPRC at 150 mH | 86% | 90% | 95% |
CPRC at 50 mH | 92% | 97% | 94% |
PCHC at 50 mH | 92% | 97% | 94% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakzouk, N.E.; Abdelsalam, A.K.; Helal, A.A.; Williams, B.W. High Performance Single-Phase Single-Stage Grid-Tied PV Current Source Inverter Using Cascaded Harmonic Compensators. Energies 2020, 13, 380. https://doi.org/10.3390/en13020380
Zakzouk NE, Abdelsalam AK, Helal AA, Williams BW. High Performance Single-Phase Single-Stage Grid-Tied PV Current Source Inverter Using Cascaded Harmonic Compensators. Energies. 2020; 13(2):380. https://doi.org/10.3390/en13020380
Chicago/Turabian StyleZakzouk, Nahla E., Ahmed K. Abdelsalam, Ahmed A. Helal, and Barry W. Williams. 2020. "High Performance Single-Phase Single-Stage Grid-Tied PV Current Source Inverter Using Cascaded Harmonic Compensators" Energies 13, no. 2: 380. https://doi.org/10.3390/en13020380
APA StyleZakzouk, N. E., Abdelsalam, A. K., Helal, A. A., & Williams, B. W. (2020). High Performance Single-Phase Single-Stage Grid-Tied PV Current Source Inverter Using Cascaded Harmonic Compensators. Energies, 13(2), 380. https://doi.org/10.3390/en13020380