Influence of Gaseous Hydrogen Addition on Initiation of Rotating Detonation in Liquid Fuel–Air Mixtures
Abstract
:1. Introduction
2. Aim of the Research. Experimental Facility
3. Results
3.1. Initial Calculations
3.2. Experimental Results for Liquid Kerosene–Hydrogen–Air Mixture
3.3. Experimental Results for Liquid Hexane/Ethanol–Hydrogen–Air Mixture
3.4. Experimental Results for Propane–Air Mixture
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Symbols and Abbreviations
Symbols | Abbreviations |
f | frequency (Hz) |
λ | cell size (mm) |
ϕ | equivalence ratio (-) |
CH | detonation chamber |
const. | constant |
FFT | Fast Fourier Transform |
HHV | higher heating value (MJ/kg) |
IPN | isopropyl nitrate |
LDL | lean detonation limit |
LHV | lower heating value (MJ/kg) |
NOx | nitrous oxides |
NPT | normal pressure and temperature |
PDE | Pulsed Detonation Engine |
RDE | Rotating Detonation Engine |
References
- ICAO 2019 Environment Report. Available online: https://www.icao.int/environmental-protection/Documents/ICAO-ENV-Report2019-F1-WEB%281%29.pdf (accessed on 15 September 2020).
- Zel’dovich, Y. To the Question of Energy Use of Detonation Combustion. J. Propuls. Power 2006, 22, 588–592. [Google Scholar] [CrossRef]
- Nicholls, J.A.; Wilkinson, H.R.; Morrison, R. Intermittent Detonation as a Thrust-Producing Mechanism. J. Jet Propuls. 1957, 27, 534–541. [Google Scholar] [CrossRef]
- Adamson, T.C.; Olsson, G.R. Performance analysis of a rotating detonation wave rocket engine. Astronaut. Acta 1967, 13, 405–415. [Google Scholar]
- Shen, P.I.w.; Adamson, T.C. Theoretical analysis of a rotating two-phase detonation in liquid rocket motors. Astronaut. Acta 1972, 17, 715–728. [Google Scholar]
- Voytsekhovskiy, B.V. Stationary Detonation. Dokl. Akad. Nauk Ussr 1959, 129, 1254–1256. [Google Scholar]
- Cullen, R.E.; Nicholls, J.A.; Ragland, K.W. Feasibility studies of a rotating detonation wave rocket motor. J. Spacecr. Rocket. 1966, 3, 893–898. [Google Scholar] [CrossRef]
- Bykovskii, F.A.; Vedernikov, E.F. Continuous detonation of a subsonic flow of a propellant. Combust. Explos. Shock Waves 2003, 39, 323–334. [Google Scholar] [CrossRef]
- Wolanski, P.; Kindracki, J.; Fujiwara, T. An experimental study of small rotating detonation engine. In Pulsed and Continuous Detonations; Roy, G., Frolov, S., Sinibaldi, J., Eds.; Torus Press: Moscow, Russia, 2006; pp. 332–338. [Google Scholar]
- Kindracki, J. Badania Eksperymentalne i Symulacje Numeryczne Procesu Wirującej Detonacji Gazowej. [Experimental research and numerical calculation of the rotating detonation]. Ph.D. Thesis, Warsaw University of Technology, Warsaw, Poland, 2008. (In Polish). [Google Scholar]
- Kindracki, J. Analysis of the experimental results of the initiation of detonation in short tubes with kerosene–oxidizer mixtures. J. Loss Prev. Process Ind. 2013, 26, 1515–1523. [Google Scholar] [CrossRef]
- Kublik, D.; Kindracki, J.; Wolański, P. Evaluation of wall heat loads in the region of detonation propagation of detonative propulsion combustion chambers. Appl. Them. Eng. 2019, 156, 606–618. [Google Scholar] [CrossRef]
- Falempin, F.; Daniau, E.; Getin, N.; Bykovskii, F.A.; Zhdan, S. Toward a continuous detonation wave rocket engine demonstrator. In Proceedings of the A Collection of Technical Papers—14th AIAA/AHI International Space Planes and Hypersonic Systems and Technologies Conference, Canberra, Australia, 6–9 November 2006; Volume 1, pp. 501–511. [Google Scholar]
- Hishida, M.; Fujiwara, T.; Wolanski, P. Fundamentals of rotating detonations. Shock Waves 2009, 19, 1–10. [Google Scholar] [CrossRef]
- Wilson, D.R.; Lu, F.K. Summary of Recent Research on Detonation Wave Engines at UTA. In Proceedings of the 2011 International Workshop on Detonation for Propulsion, Busan, Korea, 14–15 November 2011. [Google Scholar]
- Yi, T.H.; Turangan, C.; Lou, J.; Wolanski, P.; Kindracki, J. A three-dimensional numerical study of rotational detonation in an annular chamber. In Proceedings of the 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Shao, Y.-T.; Liu, M.; Wang, J.-P. Numerical Investigation of Rotating Detonation Engine Propulsive Performance. Combust. Sci. Technol. 2010, 182, 1586–1597. [Google Scholar] [CrossRef]
- Wolanski, P. Detonative propulsion. Proc. Combust. Inst. 2013, 34, 125–158. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, B. Acceleration of DDT by non-thermal plasma in a single-trial detonation tube. Chin. J. Aeronaut. 2018, 31, 1012–1019. [Google Scholar] [CrossRef]
- Li, J.; Lai, W.H.; Chung, K.; Lu, F.K. Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air. Combust. Flame 2008, 154, 331–345. [Google Scholar] [CrossRef]
- Liu, Q.; Bai, C.; Dai, W.; Jiang, L. Deflagration-to-detonation transition in isopropyl nitrate mist/air mixtures. Combust. Explos. Shock Waves 2011, 47, 448–456. [Google Scholar] [CrossRef]
- Zhang, F.; Akbar, R.; Thibault, P.A.; Murray, S.B. Effects of nitrates on hydrocarbon-air flames and detonations. Shock Waves 2001, 10, 457–466. [Google Scholar] [CrossRef]
- McAllister, S.; Chen, J.-Y.; Fernandez-Pello, A.C. Fundamentals of Combustion Processes; Springer: New York, NY, USA, 2011; ISBN 978-1-4419-7942-1. [Google Scholar]
- Coward, H.F.; Jones, G.W. Limits of inflammability of gases and vapors. J. Frankl. Inst. 1927, 203, 161. [Google Scholar] [CrossRef] [Green Version]
- Nettleton, M.A. Gaseous Detonations; Springer: Dordrecht, The Netherlands, 1987; ISBN 978-94-010-7915-0. [Google Scholar]
- Kistiakowsky, G.B.; Knight, H.T.; Malin, M.E. Gaseous Detonations. III. Dissociation Energies of Nitrogen and Carbon Monoxide. J. Chem. Phys. 1952, 20, 876–883. [Google Scholar] [CrossRef]
- Stamps, D.W.; Tieszen, S.R. The influence of initial pressure and temperature on hydrogen-air-diluent detonations. Combust. Flame 1991, 83, 353–364. [Google Scholar] [CrossRef]
- Austin, J.M.; Shepherd, J.E. Detonations in hydrocarbon fuel blends. Combust. Flame 2003, 132, 73–90. [Google Scholar] [CrossRef] [Green Version]
- Mendiburu Zevallos, A.A.; Ciccarelli, G.; Carvalho, J.A., Jr. DDT limits of ethanol–air in an obstacles-filled tube. Combust. Sci. Technol. 2018, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bull, D.C.; Elsworth, J.E.; Shuff, P.J.; Metcalfe, E. Detonation cell structures in fuel/air mixtures. Combust. Flame 1982, 45, 7–22. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef] [Green Version]
- US Department of Energy. The Green Hydrogen Report. The 1995 Progress Report of the Secretary of Energy’s Hydrogen Technical Advisory Panel; US Department of Energy: Golden, CO, USA, 1995.
- Yuksel, Y.E.; Ozturk, M.; Dincer, I. Energetic and exergetic assessments of a novel solar power tower based multigeneration system with hydrogen production and liquefaction. Int. J. Hydrog. Energy 2019, 44, 13071–13084. [Google Scholar] [CrossRef]
- Wang, H.; Kong, H.; Pu, Z.; Li, Y.; Hu, X. Feasibility of high efficient solar hydrogen generation system integrating photovoltaic cell/photon-enhanced thermionic emission and high-temperature electrolysis cell. Energy Convers. Manag. 2020, 210, 112699. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Q.; Zhang, T.; Yan, X.; Duan, R. Analysis of chemical-looping hydrogen production and power generation system driven by solar energy. Renew. Energy 2020, 154, 863–874. [Google Scholar] [CrossRef]
- Hosseini, S.E. Performance evaluation of a solarized gas turbine system integrated to a high temperature electrolyzer for hydrogen production. Int. J. Hydrog. Energy 2020. [Google Scholar] [CrossRef]
- Ishaq, H.; Siddiqui, O.; Chehade, G.; Dincer, I. A solar and wind driven energy system for hydrogen and urea production with CO2 capturing. Int. J. Hydrog. Energy 2020, 1–12. [Google Scholar] [CrossRef]
- Ishaq, H.; Dincer, I. Dynamic analysis of a new solar-wind energy- based cascaded system for hydrogen to ammonia. Int. J. Hydrog. Energy 2020. [Google Scholar] [CrossRef]
- Ni, M.; Leung, M.K.H.; Sumathy, K.; Leung, D.Y.C. Potential of renewable hydrogen production for energy supply in Hong Kong. Int. J. Hydrog. Energy 2006, 31, 1401–1412. [Google Scholar] [CrossRef]
- ETN Global. Hydrogen Gas Turbines; ETN Global: Brussels, Belgium, 2020. [Google Scholar]
- Goldmeer, J. Power to Gas: Hydrogen for power Generation—Fuel Flexible Gas Turbines as Enablers for a Low or Reduced Carbon Energy Ecosystem. Available online: https://www.ge.com/content/dam/gepower/global/en_US/documents/fuel-flexibility/GEA33861 Power to Gas—Hydrogen for Power Generation.pdf (accessed on 29 September 2020).
- Rowiński, A.; Łukasik, B.; Irzycki, A.; Czyż, S. The study of the continuously rotating detonation combustion chamber supplied with different types of fuel. J. Kones 2013, 20, 259–266. [Google Scholar]
- Ikema, D.; Yokota, A.; Kurata, W.; Kawana, H.; Ishii, K. Propagation stability of rotating detonation waves using hydrogen/oxygen-enriched air mixtures. Trans. Jpn. Soc. Aeronaut. Space Sci. 2018, 61, 268–273. [Google Scholar] [CrossRef]
- Zhou, S.; Ma, H.; Liu, D.; Yan, Y.; Li, S.; Zhou, C. Experimental study of a hydrogen-air rotating detonation combustor. Int. J. Hydrog. Energy 2017, 42, 14741–14749. [Google Scholar] [CrossRef]
- Rankin, B.A.; Codoni, J.R.; Cho, K.Y.; Hoke, J.L.; Schauer, F.R. Investigation of the structure of detonation waves in a non-premixed hydrogen-air rotating detonation engine using mid-infrared imaging. Proc. Combust. Inst. 2019, 37, 3479–3486. [Google Scholar] [CrossRef]
- Kindracki, J. Study of detonation initiation in kerosene–oxidizer mixtures in short tubes. Shock Waves 2014, 24, 603–618. [Google Scholar] [CrossRef] [Green Version]
- Kindracki, J. Experimental studies of kerosene injection into a model of a detonation chamber. J. Power Technol. 2012, 92, 80–89. [Google Scholar]
- Kindracki, J. Experimental research on rotating detonation in liquid fuel-gaseous air mixtures. Aerosp. Sci. Technol. 2015, 43. [Google Scholar] [CrossRef]
- Kindracki, J.; Kobiera, A.; Wolański, P.; Gut, Z.; Folusiak, M.; Swiderski, K. Experimental and numerical study of the rotating detonation engine in hydrogen-air mixtures. 2011, 2, 555–582. [Google Scholar] [CrossRef] [Green Version]
- Ashgriz, N. Handbook of Atomization and Sprays. Ashgriz, N., Ed.; Springer: Boston, MA, USA, 2011; ISBN 978-1-4419-7263-7. [Google Scholar]
- Sousa, J.; Paniagua, G.; Collado Morata, E. Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor. Appl. Energy 2017, 195, 247–256. [Google Scholar] [CrossRef]
- Frolov, S.M.; Aksenov, V.S.; Ivanov, V.S. Experimental proof of Zel’dovich cycle efficiency gain over cycle with constant pressure combustion for hydrogen-oxygen fuel mixture. Int. J. Hydrog. Energy 2015, 40, 6970–6975. [Google Scholar] [CrossRef]
Fuel | Brayton (%) | Humphrey (%) | Fickett-Jacobs (%) |
---|---|---|---|
Hydrogen— | 36.9 | 54.3 | 59.3 |
Methane— | 31.4 | 50.5 | 53.2 |
Acetylene— | 36.9 | 54.1 | 61.4 |
Deflagration | Detonation | |
---|---|---|
1 | Combustion velocity in the order of tens of m/s (large combustion chamber) | Detonation velocity in the order of km/s (short combustion zone: compact chamber) |
2 | Combustion at stoichiometric ratio (high temperature, high NOx emission, need to add extra air before turbine) | Combustion/detonation of lean mixture (rich, in rocket) (lower temperature and lower NOx emission, no need to mix extra air) |
3 | Pressure drops due to combustion | Pressure increases due to detonation |
4 | Complex design | Simple design |
Fuel | Density (kg/m3) | Boiling Point (K) | Limits | HHV (MJ/kg) | LHV (MJ/kg) | |
---|---|---|---|---|---|---|
Flammability in air (%) | Detonation in Air (%) | |||||
Hydrogen | 0.084 * | 20.27 | 4/75 | 18.3/59 [25] | 141.72 | 119.96 |
Kerosene | 775–840 | 413–553 | 0.7/5.0 | - | 45.99 | 43.69 |
Ethanol | 789 | 351 | 3.3/19 | 5.1/9.8 [26] | 29.67 | 26.80 |
Hexane | 655 | 342 | 1.2/7.4 | - | 48.67 | 45.10 |
Propane | 1.874 * | 231 | 2.1/9.5 | 2.57/7.37 [26] | 50.32 | 46.33 |
Fuel | Cell Size λ (mm) | Calculated Detonation Velocity (m/s) for Different φ | ||||
---|---|---|---|---|---|---|
0.5 | 0.75 | 1.0 | 1.25 | 1.5 | ||
Hydrogen | 9.2 [27] | 1606.2 | 1825.8 | 1965.5 | 2038.2 | 2081 |
Kerosene | 60.4 [28] | 1491.6 | 1684.3 | 1786.3 | 1822.5 | 1808.7 |
Ethanol | 36.6 [29] | 1500.1 | 1688.2 | 1789.3 | 1822.1 | 1808.5 |
Hexane | 51.1 [28] | 1494.3 | 1689 | 1793.8 | 1830.6 | 1817.7 |
Propane | 46 [30], 51.3 [28] | 1494.5 | 1690.4 | 1797 | 1833.7 | 1820.4 |
Fuel | LHV (MJ/kg) | Equivalence Ratio | ||||
---|---|---|---|---|---|---|
0.5 | 0.75 | 1.0 | 1.25 | 1.5 | ||
Hydrogen | 119.96 | 1.736 | 2.584 | 3.421 | 4.247 | 5.060 |
Kerosene | 43.69 | 1.394 | 2.056 | 2.698 | 3.319 | 3.921 |
Ethanol | 26.80 | 1.419 | 2.074 | 2.695 | 3.286 | 3.850 |
Hexane | 45.10 | 1.442 | 2.128 | 2.792 | 3.439 | 4.065 |
Propane | 46.33 | 1.441 | 2.129 | 2.796 | 3.443 | 4.071 |
Fuel | Reference Energy for φ = 1 (MJ) | Δ(%) 10% H2/90% fuel | Δ(%) 20% H2/80% fuel | Δ(%) 30% H2/70% fuel |
---|---|---|---|---|
Kerosene | 2.698 | +0.104 | +0.175 | +0.315 |
Ethanol | 2.695 | +0.456 | +1.009 | +1.683 |
Hexane | 2.792 | +0.187 | +0.352 | +0.554 |
Propane | 2.796 | +0.227 | +0.522 | +0.914 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kindracki, J.; Wacko, K.; Woźniak, P.; Siatkowski, S.; Mężyk, Ł. Influence of Gaseous Hydrogen Addition on Initiation of Rotating Detonation in Liquid Fuel–Air Mixtures. Energies 2020, 13, 5101. https://doi.org/10.3390/en13195101
Kindracki J, Wacko K, Woźniak P, Siatkowski S, Mężyk Ł. Influence of Gaseous Hydrogen Addition on Initiation of Rotating Detonation in Liquid Fuel–Air Mixtures. Energies. 2020; 13(19):5101. https://doi.org/10.3390/en13195101
Chicago/Turabian StyleKindracki, Jan, Krzysztof Wacko, Przemysław Woźniak, Stanisław Siatkowski, and Łukasz Mężyk. 2020. "Influence of Gaseous Hydrogen Addition on Initiation of Rotating Detonation in Liquid Fuel–Air Mixtures" Energies 13, no. 19: 5101. https://doi.org/10.3390/en13195101
APA StyleKindracki, J., Wacko, K., Woźniak, P., Siatkowski, S., & Mężyk, Ł. (2020). Influence of Gaseous Hydrogen Addition on Initiation of Rotating Detonation in Liquid Fuel–Air Mixtures. Energies, 13(19), 5101. https://doi.org/10.3390/en13195101