A Novel BIPV Reconfiguration Algorithm for Maximum Power Generation under Partial Shading
Abstract
:1. Introduction
1.1. Partial Shade Condition in BIPV Array
1.2. Building-Information Modelling (BIM) and Solar Irradiance Analysis
1.3. Optimising BIPV System Layout Using a Genetic Algorithm (GA)
1.4. Novel Approach
2. Case Study
3. Methods
3.1. BIPV Modelling Using Equations
PV Modules/Arrays Modelling
3.2. Modelling BIPV Modules to Generate Optimum Power
4. Results
4.1. Integration of BIPV on the Station Rooftop and Solar Feasibility Analysis
4.2. Optimise the Classified Areas of BIPV for Maximum Power Extraction Using Genetic Algorithms
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Martín-Pomares, L.; Martínez, D.; Polo, J.; Perez-Astudillo, D.; Bachour, D.; Sanfilippo, A. Analysis of the long-term solar potential for electricity generation in Qatar. Renew. Sustain. Energy Rev. 2017, 73, 1231–1246. [Google Scholar] [CrossRef]
- Razykov, T.M.; Ferekides, C.S.; Morel, D.; Stefanakos, E.; Ullal, H.S.; Upadhyaya, H.M. Solar photovoltaic electricity: Current status and future prospects. Sol. Energy 2011, 85, 1580–1608. [Google Scholar] [CrossRef]
- Kamal, A.; Al-Ghamdi, S.G.; Koc, M. Building Stock Inertia and Impacts on Energy Consumption and CO2 Emissions in Qatar. In Proceedings of the ASME 2019 13th International Conference Energy Sustainability, Bellevue, WA, USA, 14–17 July 2019. [Google Scholar] [CrossRef]
- Weber, A.S. Review of sustainable and renewable energy activities in the state of Qatar. In Proceedings of the 2013 International Renewable and Sustainable Energy Conference (IRSEC), Ouarzazate, Morocco, 7–9 March 2013; pp. 91–95. [Google Scholar]
- Touati, F.; Al-Hitmi, M.; Bouchech, H. Towards understanding the effects of climatic and environmental factors on solar PV performance in arid desert regions (Qatar) for various PV technologies. In Proceedings of the 2012 First International Conference on Renewable Energies and Vehicular Technology, Hammamet, Tunisia, 26–28 March 2012; pp. 78–83. [Google Scholar]
- Bachour, D.; Perez-Astudillo, D. Ground measurements of Global Horizontal Irradiation in Doha, Qatar. Renew. Energy 2014, 71, 32–36. [Google Scholar] [CrossRef]
- Touati, F.; Gonzales, A.S.P.; Qiblawey, Y.; Benhmed, K. A Customized PV Performance Monitoring System in Qatar’s Harsh Environment. In Proceedings of the 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), Rabat, Morocco, 5–8 December 2018; pp. 1–6. [Google Scholar]
- Government Communications Office (GCO). Qatar National Vision 2030; Government Communications Office: Doha, Qatar, 2008.
- Talavera, A.M.; Al-Ghamdi, S.G.; Koç, M. Sustainability in mega-events: Beyond qatar 2022. Sustainability 2019, 11, 6407. [Google Scholar] [CrossRef] [Green Version]
- Andrić, I.; Le Corre, O.; Lacarrière, B.; Ferrão, P.; Al-Ghamdi, S.G. Initial approximation of the implications for architecture due to climate change. Adv. Build. Energy Res. 2019, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Salimzadeh, N.; Vahdatikhaki, F.; Hammad, A. Parametric modeling and surface-specific sensitivity analysis of PV module layout on building skin using BIM. Energy Build. 2020, 216, 109953. [Google Scholar] [CrossRef]
- Husain, A.A.F.; Hasan, W.Z.W.; Shafie, S.; Hamidon, M.N.; Pandey, S.S. A review of transparent solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2018, 94, 779–791. [Google Scholar] [CrossRef]
- Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 1625–1636. [Google Scholar] [CrossRef]
- Touati, F.; Massoud, A.; Hamad, J.; Saeed, S.A. Effects of Environmental and Climatic Conditions on PV Efficiency in Qatar. Renew. Energy Power Qual. J. 2013, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Mühlbauer, M. Smart building-integrated photovoltaics (BIPV) for Qatar. QScience Connect 2017, 2017, 3. [Google Scholar] [CrossRef]
- Al-Janahi, S.A.; Ellabban, O.; Al-Ghamdi, S.G. Optimal Configuration for Building Integrated Photovoltaics System to Mitigate the Partial Shading on Complex Geometric Roofs. In Proceedings of the 2019 2nd International Conference on Smart Grid and Renewable Energy (SGRE), Doha, Qatar, 19–21 November 2019; pp. 1–6. [Google Scholar]
- Walker, L.; Hofer, J.; Schlueter, A. High-resolution, parametric BIPV and electrical systems modeling and design. Appl. Energy 2019, 238, 164–179. [Google Scholar] [CrossRef]
- Norton, B.; Eames, P.C.; Mallick, T.K.; Huang, M.J.; McCormack, S.J.; Mondol, J.D.; Yohanis, Y.G. Enhancing the performance of building integrated photovoltaics. Sol. Energy 2011, 85, 1629–1664. [Google Scholar] [CrossRef] [Green Version]
- Seyedmahmoudian, M.; Mekhilef, S.; Rahmani, R.; Yusof, R.; Renani, E. Analytical Modeling of Partially Shaded Photovoltaic Systems. Energies 2013, 6, 128–144. [Google Scholar] [CrossRef] [Green Version]
- Zomer, C.; Nobre, A.; Reindl, T.; Rüther, R. Shading analysis for rooftop BIPV embedded in a high-density environment: A case study in Singapore. Energy Build. 2016, 121, 159–164. [Google Scholar] [CrossRef]
- Gallardo-Saavedra, S.; Karlsson, B. Simulation, validation and analysis of shading effects on a PV system. Sol. Energy 2018, 170, 828–839. [Google Scholar] [CrossRef]
- Al-Ghamdi, S.G.; Bilec, M.M. Green Building Rating Systems and Environmental Impacts of Energy Consumption from an International Perspective. In Proceedings of the International Conference on Sustainable Infrastructure 2014, Long Beach, CA, USA, 6–8 November 2014; pp. 631–640. [Google Scholar] [CrossRef]
- Gui, N.; Qiu, Z.; Gui, W.; Deconinck, G. An integrated design platform for BIPV system considering building information. In Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28 November 2017; pp. 1–6. [Google Scholar]
- Gupta, A. Developing a BIM-Based Methodology to Support Renewable Energy Assessment of Buildings; Cardiff University: Cardiff, UK, 2013. [Google Scholar]
- Yang, R.J. Overcoming technical barriers and risks in the application of building integrated photovoltaics (BIPV): Hardware and software strategies. Autom. Constr. 2015, 51, 92–102. [Google Scholar] [CrossRef]
- Quintana, S.; Huang, P.; Saini, P.; Zhang, X. A preliminary techno-economic study of a building integrated photovoltaic (BIPV) system for a residential building cluster in Sweden by the integrated toolkit of BIM and PVSITES. Intell. Build. Int. 2020, 1–19. [Google Scholar] [CrossRef]
- Dixit, M.; Yan, W. BIPV Prototype for the Solar Insolation Calculation. In Proceedings of the 29th International Symposium on Automation and Robotics in Construction, Eindhoven, The Netherlands, 26–29 June 2012. [Google Scholar]
- Kuo, H.-J.; Hsieh, S.-H.; Guo, R.-C.; Chan, C.-C. A verification study for energy analysis of BIPV buildings with BIM. Energy Build. 2016, 130, 676–691. [Google Scholar] [CrossRef]
- Freitas, S. Maximizing the Solar Photovoltaic Yield in Different Building Facade Layouts. In Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 14–18 September 2015. [Google Scholar]
- Irwanto, M.; Badlishah, R.; Masri, M.; Irwan, Y.M.; Gomesh, N. Optimization of photovoltaic module electrical characteristics using genetic algorithm (a comparative study between simulation and data sheet of PV Module). In Proceedings of the 2014 IEEE 8th International Power Engineering and Optimization Conference (PEOCO2014), Langkawi, Malaysia, 24–25 March 2014; pp. 532–536. [Google Scholar]
- Sai Krishna, G.; Moger, T. Reconfiguration strategies for reducing partial shading effects in photovoltaic arrays: State of the art. Sol. Energy 2019, 182, 429–452. [Google Scholar] [CrossRef]
- Deshkar, S.N.; Dhale, S.B.; Mukherjee, J.S.; Babu, T.S.; Rajasekar, N. Solar PV array reconfiguration under partial shading conditions for maximum power extraction using genetic algorithm. Renew. Sustain. Energy Rev. 2015, 43, 102–110. [Google Scholar] [CrossRef]
- Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I. Characterization of PV panel and global optimization of its model parameters using genetic algorithm. Energy Convers. Manag. 2013, 73, 10–25. [Google Scholar] [CrossRef]
- Alonso Campos, J.C.; Jiménez-Bello, M.A.; Martínez Alzamora, F. Real-time energy optimization of irrigation scheduling by parallel multi-objective genetic algorithms. Agric. Water Manag. 2020, 227, 105857. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, N.; Gong, L.; Jiang, M. Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine. Energy 2020, 117894. [Google Scholar] [CrossRef]
- Rajan, N.A.; Shrikant, K.D.; Dhanalakshmi, B.; Rajasekar, N. Solar PV array reconfiguration using the concept of Standard deviation and Genetic Algorithm. Energy Procedia 2017, 117, 1062–1069. [Google Scholar] [CrossRef]
- Ning, G.; Kan, H.; Zhifeng, Q.; Weihua, G.; Geert, D. e-BIM: A BIM-centric design and analysis software for Building Integrated Photovoltaics. Autom. Constr. 2018, 87, 127–137. [Google Scholar] [CrossRef]
- Qatar Rail. Doha Metro Project. Available online: https://corp.qr.com.qa/ (accessed on 12 February 2020).
- Al-Thawadi, F.E.; Al-Ghamdi, S.G. Evaluation of sustainable urban mobility using comparative environmental life cycle assessment: A case study of Qatar. Transp. Res. Interdiscip. Perspect. 2019, 1, 100003. [Google Scholar] [CrossRef]
- NREL System Advisor Model. Available online: https://sam.nrel.gov (accessed on 25 February 2020).
- PV Module XRS18-146 Details. Available online: http://www.solarhub.com/product-catalog/pv-modules/25289-XRS18-146-Xunlight-Corporation (accessed on 26 February 2020).
- Said, S.; Massoud, A.; Benammar, M.; Ahmed, S. A matlab/simulink based photovoltaic array model employing simpowersystems toolbox. J. Energy Power Eng. 2012, 6, 1965–1975. [Google Scholar]
- Krismadinata; Rahim, N.A.; Ping, H.W.; Selvaraj, J. Photovoltaic Module Modeling using Simulink/Matlab. Procedia Environ. Sci. 2013, 17, 537–546. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, X.H.; Nguyen, M.P. Mathematical modeling of photovoltaic cell/module/arrays with tags in Matlab/Simulink. Environ. Syst. Res. 2015, 4, 24. [Google Scholar] [CrossRef]
- Kanters, J.; Davidsson, H. Mutual Shading of PV Modules on Flat Roofs: A Parametric Study. Energy Procedia 2014, 57, 1706–1715. [Google Scholar] [CrossRef] [Green Version]
- Mayer, M.J.; Gróf, G. Techno-economic optimization of grid-connected, ground-mounted photovoltaic power plants by genetic algorithm based on a comprehensive mathematical model. Sol. Energy 2020, 202, 210–226. [Google Scholar] [CrossRef]
- Louzazni, M.; Khouya, A.; Crăciunescu, A.; Amechnoue, K.; Mussetta, M. Modelling and Parameters Extraction of Flexible Amorphous Silicon Solar Cell a-Si:H. Appl. Sol. Energy 2020, 56, 1–12. [Google Scholar] [CrossRef]
Module Characteristics | Value |
---|---|
Maximum Power (Pmax) | 146 W |
Maximum Power Voltage (Vmp) | 29.1 V |
Maximum Power Current (Imp) | 5 A |
Open-Circuit Voltage (Voc) | 39.8 V |
Short Circuit Current (Isc) | 6.3 A |
Number of Cells (Ncell) | 23 |
Temperature Coefficient of Isc | 0.12101%/°C |
Temperature Coefficient of Voc | −0.38%/°C |
Temperature Coefficient of Pmax | −0.23%/°C |
Cell Type | Amorphous silicon (a-Si) |
Module Efficiency | 6.85% |
Module Length | 5.07 m |
Module Width | 0.419 m |
Module Area | 2.12 m2 |
Average Insolation Per Metre Square (Wh/m2) | Average Insolation for the Whole Area (Wh) | Cumulative Insolation Per Metre Square (Wh/m2) | Cumulative Insolation for the whole Area (Wh) | |
---|---|---|---|---|
The whole year 1 January 2019–31 December 2019 | 204 | 786,125 | 807,217 | 3,117,787,175 |
Name of Area (Figure 10) | Area Size (m2) | Average Annual Insolation Value (Wh/m2) | Number of BIPV Modules that Can Fit (Modules) | Annual Insolation Category |
---|---|---|---|---|
A1 | 104 | 371 | 39 | 4 |
A2 | 104 | 4.84 | 39 | 1 |
A3 | 103 | 386 | 39 | 4 |
A4 | 36 | 19 | 13 | 2 |
A5 | 40 | 412 | 15 | 5 |
A6 | 37 | 30 | 14 | 2 |
A7 | 72 | 21 | 27 | 2 |
A8 | 36 | 318 | 13 | 3 |
A9 | 40 | 398 | 15 | 4 |
A10 | 36 | 329 | 13 | 3 |
A11 | 103 | 370 | 39 | 4 |
A12 | 103 | 387 | 39 | 4 |
A13 | 104 | 4.22 | 39 | 1 |
A14 | 103 | 371 | 39 | 4 |
A15 | 117 | 10 | 44 | 2 |
A16 | 117 | 4.32 | 44 | 1 |
A17 | 103 | 410 | 39 | 5 |
A18 | 72 | 334 | 27 | 3 |
A19 | 104 | 416 | 39 | 5 |
A20 | 98 | 4.43 | 37 | 1 |
A21 | 55 | 403 | 20 | 5 |
A22 | 55 | 421 | 20 | 5 |
A23 | 102 | 421 | 38 | 5 |
A24 | 117 | 11 | 44 | 2 |
A25 | 103 | 7.68 | 39 | 1 |
A26 | 103 | 362 | 39 | 4 |
A27 | 102 | 9 | 38 | 1 |
A28 | 98 | 376 | 37 | 4 |
A29 | 55 | 10 | 20 | 2 |
A30 | 56 | 8.1 | 21 | 1 |
A31 | 98 | 369 | 37 | 4 |
A32 | 55 | 10 | 20 | 2 |
A33 | 55 | 8.07 | 20 | 1 |
A34 | 90 | 418 | 34 | 5 |
A35 | 90 | 7 | 34 | 1 |
A36 | 90 | 6.75 | 34 | 1 |
A37 | 90 | 13 | 34 | 2 |
A38 | 122 | 7.85 | 46 | 1 |
A39 | 86 | 402 | 32 | 5 |
A40 | 139 | 366 | 52 | 4 |
A41 | 122 | 366 | 46 | 4 |
A42 | 90 | 415 | 34 | 5 |
A43 | 89 | 6.92 | 33 | 1 |
A44 | 90 | 6.75 | 34 | 1 |
A45 | 90 | 13 | 34 | 2 |
Insolation Category: | Average Solar Insolation Value Range | Number of BIPV Modules: |
---|---|---|
Category 1 | 0 < x < 10 Wh/m2 | 458 |
Category 2 | 10 ≤ x < 300 Wh/m2 | 250 |
Category 3 | 300 ≤ x < 350 Wh/m2 | 53 |
Category 4 | 300 ≤ x < 350 Wh/m2 | 421 |
Category 5 | 400 Wh/m2 ≤ x | 271 |
Total Number of BIPV modules for all categories | 1453 |
9 × 5 BIPV Array | 5 × 9 BIPV Array | |
---|---|---|
Global Power Output | 169.6 × 103 W | 169.4 × 103 W |
Global Current | 19.77 A | 35.67 A |
Global Voltage | 8581 V | 4750 V |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Janahi, S.A.; Ellabban, O.; Al-Ghamdi, S.G. A Novel BIPV Reconfiguration Algorithm for Maximum Power Generation under Partial Shading. Energies 2020, 13, 4470. https://doi.org/10.3390/en13174470
Al-Janahi SA, Ellabban O, Al-Ghamdi SG. A Novel BIPV Reconfiguration Algorithm for Maximum Power Generation under Partial Shading. Energies. 2020; 13(17):4470. https://doi.org/10.3390/en13174470
Chicago/Turabian StyleAl-Janahi, Saoud A., Omar Ellabban, and Sami G. Al-Ghamdi. 2020. "A Novel BIPV Reconfiguration Algorithm for Maximum Power Generation under Partial Shading" Energies 13, no. 17: 4470. https://doi.org/10.3390/en13174470
APA StyleAl-Janahi, S. A., Ellabban, O., & Al-Ghamdi, S. G. (2020). A Novel BIPV Reconfiguration Algorithm for Maximum Power Generation under Partial Shading. Energies, 13(17), 4470. https://doi.org/10.3390/en13174470