RDF from Compost-Like-Output’s Produced in the MBT Installation in the Case of Marszów, Poland
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- organics from 51.7% to 87.5% (on average 71.1 ± 9.2%) and from 39.3% to 94.5% (on average 73.8 ± 19.8%), respectively;
- paper from 86.8% to 98.7% (93.4 ± 4.6% on average) and 88.1% to 98.4% (93.7 ± 3.7% on average), respectively;
- plastics from 53.3% to 94.7% (on average 76.7 ± 14.7%) and from 68.1% to 87.9% (on average 79.6 ± 7.3%), respectively.
- M-1 waste: 4NCV2Cl4Hg;
- M-2 waste: 4NCV1Cl4Hg;
- RDF: 3NCV3Cl3Hg.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Trulli, E.; Ferronato, N.; Torretta, V.; Piscitelli, M.; Masi, S.; Mancini, I. Sustainable mechanical biological treatment of solid waste in urbanized areas with low recycling rates. Waste Manag. 2018, 71, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Hornsby, K.; Benesova, L.; Zimová, M. A long-term challenge-Enabling the uptake of advanced MBT technologies in eastern european countries. J. Environ. Account. Manag. 2016, 4, 59–71. [Google Scholar] [CrossRef]
- Rada, E.C.; Ragazzi, M.; Badea, A. MSW Bio-drying: Design criteria from A 10 years research. UPB Sci. Bull. Ser. D Mech. Eng. 2012, 74, 209–216. [Google Scholar]
- Di Lonardo, M.C.; Lombardi, F.; Gavasci, R. Characterization of MBT plants input and outputs: A review. Rev. Environ. Sci. Biotechnol. 2012, 11, 353–363. [Google Scholar] [CrossRef]
- Ragazzi, M.; Rada, E.C. RDF/SRF evolution and MSW bio-drying. Wit Trans. Ecol. Environ. 2012, 163, 199–208. [Google Scholar]
- Bayard, R.; de Araújo Morais, J.; Ducom, G.; Achour, F.; Rouez, M.; Gourdon, R. Assessment of the effectiveness of an industrial unit of mechanical-biological treatment of municipal solid waste. J. Hazard. Mater. 2010, 175, 23–32. [Google Scholar] [CrossRef]
- The Market for Mechanical Biological Waste Treatment in Europe, 2nd ed.; Mai Ecoprog GmbH: Cologne, Germany, 2017; Available online: https://www.ecoprog.com/index.html (accessed on 14 October 2019).
- Połomka, J.; Jędrczak, A. Efficiency of waste processing in the MBT system. Waste Manag. 2019, 96, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Sarc, R.; Lorber, K.E.; Pomberger, R.; Rogetzer, M.; Sipple, E.M. Design, quality, and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry. Waste Manag. Res. 2014, 32, 565–585. [Google Scholar] [CrossRef] [PubMed]
- Rada, E.C.; Squazardo, L.; Ionescu, G.; Badea, A. Economic viability of srf co-combustion in cement factory. UPB Sci. Bull. Ser. D Mech. Eng. 2014, 76, 199–206. [Google Scholar]
- Vesanto, P.; Hiltunen, M.; Moilanen, A.; Laine-Ylijoki, J.; Kaartinen, T.; Sipilä, K.; Wilén, C. Solid recovered fuels, quality analyses and combustion experiences. Vtt Tied. -Valt. Tek. Tutk. 2007, 2416, 3–55. [Google Scholar]
- De Araújo Morais, J.; Ducom, G.; Achour, F.; Rouez, M.; Bayard, R. Mass balance to assess the efficiency of a mechanical-biological treatment. Waste Manag. 2008, 28, 1791–1800. [Google Scholar] [CrossRef] [PubMed]
- Gug, J.; Cacciola, D.; Sobkowicz, M.J. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics. Waste Manag. 2015, 35, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Jędrczak, A.; Den Boer, E. Final Report of the 3rd Stage of the Study to Carry out Waste Tests in 20 Plants for Mechanical and Biological Waste Treatment; University of Zielona Góra: Zielona Góra, Poland, 2015. Available online: http://sdr.gdos.gov.pl/Documents/GO/Ekspertyzy/Ekspertyza%20MBP_III%20etap_%2022-06-2015%20+%20za%C5%82aczniki.pdf (accessed on 2 May 2015).
- Edo-Alcón, N.; Gallardo, A.; Colomer-Mendoza, F.J. Characterization of SRF from MBT plants: Influence of the input waste and of the processing technologies. Fuel Process. Technol. 2016, 153, 19–27. [Google Scholar] [CrossRef]
- Guinan, B.; Milton, D.; Kirkman, R.; Kristiansen, T.; O’Sullivan, D. Critical Analysis of the Potential of Mechanical Biological Treatment for Irish Waste Management (2005-WRM-MS-35); Synthesis Report; Environmental Protection Agency: Washington, DC, USA, 2015. Available online: http://erc.epa.ie/safer/iso19115/displayISO19115.jsp?isoID=98 (accessed on 14 November 2018).
- Połomka, J.; Jędrczak, A.; Myszograj, S. Recovery of Stabilizer Glass in Innovative MBT Installation—An Analysis of New Technological Procedure. Materials 2020, 13, 1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawłowski, P.; Bałazińska, M.; Ignasiak, K.; Robak, J. Przygotowanie odpadów komunalnych do ich energetycznego wykorzystania-paliwo typu SRF. Piece Przemysłowe Kotły 2016, 4, 20–26. [Google Scholar]
- PN-EN 14346: 2011. Characterization of Waste-Calculation of Dry Matter by Determination of Dry Residue or Water Content, Characterization of Waste-Determination of Loss on Ignition in Waste, Sludge and Sediment; PKN: Warsaw, Poland, 2011.
- PN-Z-15006: 1993. Material Analysis of a Sample of Mixed Municipal Waste Sent to a Mechanical-Biological Processing Installation; PKN: Warsaw, Poland, 1993.
- Wasilewski, R. Conditions for the Use of Waste Fuels in the Power and Heating Plants. Logistyka Odzysku 2017, 3, 51–56. [Google Scholar]
Parameter | Unit | SRF Fuel |
---|---|---|
Calorific value | MJ/kg | 9.15–35.16 |
Total moisture content | % | 1.7–30.45 |
Ash content | % | 3.98–24.3 |
Chlorine content | % | 0.23–1.43 |
Mercury content | mg/kg | 0.03–0.45 |
Sulphur content | % | 0.10–0.95 |
Component | Value Range | Component | Value Range |
---|---|---|---|
<10 fraction | 9.3–22.4 | 14.6 | 4.5 |
10–20 mm fraction | 2.9–9.5 | 6.2 | 2.5 |
Organic waste | 6.7–24.1 | 18.7 | 5.4 |
Green | 0.4–9.1 | 3.9 | 2.8 |
Wood | 0.1–1.9 | 0.5 | 0.6 |
Paper and cardboard | 6.7–12.5 | 8.8 | 1.9 |
Plastics | 9.7–21.7 | 14.4 | 3.5 |
Glass | 7.0–13.1 | 10.9 | 2.1 |
Textiles | 0.4–3.3 | 1.6 | 1.1 |
Metals | 1.4–3.0 | 2.1 | 0.6 |
Multi-material waste | 0.4–3.4 | 1.3 | 1.0 |
Mineral waste | 0.1–16.4 | 5.8 | 5.7 |
Hazardous waste | 0.0–0.1 | 0.0 | 0.0 |
Other categories | 0.0–5.1 | 3.1 | 2.0 |
Bulky waste | 2.8–10.2 | 8.0 | 2.8 |
Total | - | 100.0 | - |
Waste Stream | Fraction Mass (Tonne) | Share of Component (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Glass | Organic | Paper | Plastics | Inert | Others | <10 mm | Metals | |||
Waste from Marszów | ||||||||||
CLO | 47.5 ± 26.9 | 17.4 ± 2.1 | 3.3 ± 0.7 | 8.8 ± 2.2 | 7.3 ± 1.4 | 9.1 ± 1.7 | 1.2 ± 0.4 | 51.4 ± 6.7 | 1.5 ± 0.4 | |
Fraction < 10 mm | 25.3 ± 17.8 | <1.0 | - | - | - | - | - | ~99.0 | - | |
Fraction 10–35 mm | 18.1 ± 8.3 | 42.9 ± 4.6 | 6.3 ± 1.0 | 18.5 ± 3.1 | 7.9 ± 1.5 | 18.7 ± 3.9 | 2.5 ± 0.5 | 0.5 ± 0.5 | 2.9 ± 0.7 | |
Zig-Zag | heavy fr. | 12.6 ± 7.2 | 58.7 ± 5.5 | 3.7 ± 1.3 | 2.1 ± 0.7 | 5.5 ± 2.1 | 22.5 ± 5.4 | 3.0 ± 0.8 | 0.7 ± 0.7 | 3.7 ± 1.0 |
light fr. (M-1) | 5.5 ± 1.8 | 9.0 ± 1.2 | 11.7 ± 2.6 | 53.9 ± 19.9 | 12.9 ± 4.6 | 10.3 ± 3.1 | 1.2 ± 0.5 | 0.0 | 1.0 ± 0.3 | |
Fraction 35–80 mm | 4.1 ± 1.3 | 2.6 ± 0.4 | 8.6 ± 0.5 | 15.4 ± 1.0 | 45.9 ± 2.6 | 19.8 ± 4.4 | 3.1 ± 2.6 | 0.0 ± 0.0 | 4.6 ± 0.9 | |
FE Separator | SM fr. | 4.1 ± 1.0 | 2.5 ± 0.5 | 8.8 ± 1.3 | 15.6 ± 1.1 | 46.7 ± 2.9 | 20.8 ± 4.8 | 2.8 ± 2.5 | 0.0 | 2.8 ± 0.2 |
Fe | 0.095 ± 0.035 | 5.7 ± 0.7 | 0.0 | 6.0 ± 3.4 | 9.3 ± 3.6 | 0.0 | 9.7 ± 2.8 | 0.0 | 69.4 ± 9.9 | |
Air separator | heavy fr. | 1.3 ± 0.5 | 8.1 ± 0.1 | 1.9 ± 0.3 | 2.4 ± 0.4 | 12.8 ± 1.9 | 66.4 ± 6.0 | 7.6 ± 8.8 | 0.0 | 0.7 ± 0.3 |
Fuel (M-2) | 2.7 ± 0.7 | 0.0 | 11.9 ± 1.5 | 21.6 ± 0.5 | 62.1 ± 1.3 | 0.0 | 0.7 ± 0.0 | 0.0 | 3.8 ± 0.1 | |
Entrusted Waste | ||||||||||
CLO | 17.5 ± 5.0 | 11.4 ± 2.4 | 3.1 ± 1.4 | 8.4 ± 2.4 | 7.9 ± 4.7 | 11.9 ± 5.8 | 1.2 ± 0.5 | 52.5 ± 13.3 | 3.6 ± 1.3 | |
Fraction < 10 mm | 9.2 ± 4.1 | <1.0 | - | - | - | - | - | ~99.0 | - | |
Fraction 10–35 mm | 5.9 ± 1.7 | 30.9 ± 7.4 | 5.9 ± 1.4 | 18.9 ± 3.3 | 7.4 ± 1.7 | 26.2 ± 6.7 | 2.7 ± 0.8 | 0.2 ± 0.5 | 7.9 ± 2.3 | |
Zig-Zag | heavy fr. | 4.0 ± 1.4 | 42.4 ± 12.0 | 2.9 ± 2.4 | 1.7 ± 1.3 | 4.5 ± 2.9 | 33.4 ± 7.4 | 3.4 ± 1.2 | 0.3 ± 0.8 | 11.3 ± 3.6 |
light fr. (M-1) | 1.9 ± 0.4 | 9.8 ± 1.3 | 11.7 ± 3.6 | 51.1 ± 13.9 | 11.8 ± 4.6 | 13.0 ± 3.4 | 1.5 ± 0.6 | 0.0 | 1.1 ± 0.2 | |
Fraction 35–80 mm | 2.4 ± 2.4 | 3.0 ± 0.5 | 7.9 ± 0.8 | 14.4 ± 1.2 | 42.9 ± 3.5 | 21.9 ± 3.3 | 2.3 ± 0.5 | 0.0 | 7.6 ± 3.2 | |
FE Separator | after SM fr. | 2.3 ± 2.3 | 2.9 ± 0.5 | 8.6 ± 0.6 | 15.1 ± 1.1 | 45.5 ± 2.7 | 23.7 ± 3.8 | 1.7 ± 0.2 | 0.0 | 2.5 ± 0.2 |
Fe | 0.12 ± 0.07 | 4.3 ± 0.6 | 0.0 | 6.2 ± 3.1 | 9.0 ± 3.8 | 0.0 | 9.3 ± 2.5 | 0.0 | 71.2 ± 11.2 | |
Air separator | heavy fr. | 0.8 ± 0.9 | 8.2 ± 0.1 | 3.6 ± 3.8 | 2.3 ± 0.6 | 12.4 ± 3.1 | 68.3 ± 1.8 | 4.0 ± 0.3 | 0.0 | 1.2 ± 1.4 |
Fuel (M-2) | 1.5 ± 1.4 | 0.2 ± 0.2 | 11.0 ± 2.5 | 21.7 ± 0.4 | 63.0 ± 2.0 | 0.5 ± 1.1 | 0.5 ± 0.2 | 0.0 | 3.2 ± 0.8 |
Feature | Statistical Measurement | Measurement Unit | M-1 | M-2 | RDF | |||
---|---|---|---|---|---|---|---|---|
Average Value | Stand Dev | Average Value | Stand Dev | Average Value | Stand Dev | |||
Caloric value of NCV | Average | MJ/kg t.q. | 12.60 | 1.30 | 14.90 | 1.50 | 16.70 | 1.70 |
Chlorine content (Cl) | Average | % s.s. | 0.343 | 0.120 | 0.168 | 0.059 | 0.618 | 0.155 |
Mercury content (Hg) | Median | mg/MJ t.q. | 0.13 | 0.05 | 0.11 | 0.03 | 0.065 | 0.015 |
Heat of combustion in a dry state | Average | MJ/kg | 16.30 | 1.60 | 18.80 | 1.90 | 18.60 | 1.80 |
Moisture | Average | % | 14.80 | 3.0 | 15.60 | 3.10 | 7.80 | 1.60 |
Total carbon | Average | % | 39.50 | 4.0 | 39.40 | 3.90 | 50.50 | 5.10 |
Ash | Average | % | 27.40 | 4.11 | 25.70 | 3.90 | 20.03 | 3.00 |
Sulfur | Average | % | 0.65 | 0.16 | 0.50 | 0.13 | 0.50 | 0.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Połomka, J.; Jędrczak, A. RDF from Compost-Like-Output’s Produced in the MBT Installation in the Case of Marszów, Poland. Energies 2020, 13, 4353. https://doi.org/10.3390/en13174353
Połomka J, Jędrczak A. RDF from Compost-Like-Output’s Produced in the MBT Installation in the Case of Marszów, Poland. Energies. 2020; 13(17):4353. https://doi.org/10.3390/en13174353
Chicago/Turabian StylePołomka, Jacek, and Andrzej Jędrczak. 2020. "RDF from Compost-Like-Output’s Produced in the MBT Installation in the Case of Marszów, Poland" Energies 13, no. 17: 4353. https://doi.org/10.3390/en13174353
APA StylePołomka, J., & Jędrczak, A. (2020). RDF from Compost-Like-Output’s Produced in the MBT Installation in the Case of Marszów, Poland. Energies, 13(17), 4353. https://doi.org/10.3390/en13174353