# Modelling Energy Distribution in Residential Areas: A Case Study Including Energy Storage Systems in Catania, Southern Italy

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

## 3. Case Study and Scenarios

- -
- simulations run on a $\mathrm{T}=24\text{}\mathrm{h}$ cycle, with a temporal time-step of 60 s;
- -
- -
- the electricity exchanges are permitted on the grounds of two different values of the $\mathrm{radius}$, i.e., $50\text{}\mathrm{m}$ and $200\text{}\mathrm{m}$ and when varying the installed solar capacity within the territory. In this case, and with respect to the territory and buildings’ characteristics, the maximum installed capacity of PV of the entire area has been estimated to be around $7708\text{}\mathrm{MW}/\mathrm{y}$, opportunely divided to consider specific days of simulation. Simulations have been conducted by varying the installed capacity at fixed steps; it is worth noting that the increased installed capacity within the territory also corresponds to the increase in the number of buildings that become producers due to the installation of PV panels. As said, the increase in PV panels satisfies the operating conditions previously commented on and related to shading, available area for cables and maintenance, and location of the cells relative to the sun;
- -
- the constraint on the usage of links for the exchange, i.e., the $\mathrm{limit}$, is posed at 0%, 5% and 10%. According to these values, links are counted if along them electricity is exchanged at least one time in the time interval (case 0%), or for 5% or 10% of the total simulation time (24 h), respectively.

## 4. Results and Discussion

## 5. Conclusions

#### Policy and Managerial Implications

## Author Contributions

## Funding

## Conflicts of Interest

## References

- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Berardi, U. Sustainability Assessment in the Construction Sector: Rating Systems and Rated Buildings. Sustain. Dev.
**2012**, 20, 411–424. [Google Scholar] [CrossRef] - Caprì, S.; Ignaccolo, M.; Inturri, G.; Le Pira, M. Green walking networks for climate change adaptation. Transp. Res. Part D
**2016**, 45, 84–95. [Google Scholar] [CrossRef] - Blarke, M.B.; Lund, H. The effectiveness of storage and relocation options in renewable energy systems. Renew. Energy
**2008**, 33, 1499–1507. [Google Scholar] [CrossRef] - Ma, X.; Wang, Y.; Qin, J. Generic model of a community-based microgrid integrating wind turbines, photovoltaics and CHP generations. App. Energy
**2013**, 112, 1475–1482. [Google Scholar] [CrossRef] - Witt, T.; Dumeier, M.; Geldermann, J. Combining scenario planning, energy system analysis, and multi-criteria analysis to develop and evaluate energy scenarios. J. Clean. Prod.
**2020**, 242, 118414. [Google Scholar] [CrossRef] - Roberts, M.B.; Bruce, A.; MacGill, I. A comparison of arrangements for increasing self-consumption and maximising the value of distributed photovoltaics on apartment buildings. Sol. Energy
**2019**, 193, 372–386. [Google Scholar] [CrossRef] - Fichera, A.; Frasca, M.; Palermo, V.; Volpe, R. Application of the complex network theory in urban environments. Energy Procedia
**2016**, 101, 345–351. [Google Scholar] [CrossRef] - Berardi, U. Chapter 15—Sustainability assessments of buildings, communities, and cities. In Assessing and Measuring Environmental Impact and Sustainability; Elsevier: Amsterdam, The Netherlands, 2015; pp. 497–545. [Google Scholar] [CrossRef]
- Mehleri, E.D.; Sarimveis, H.; Markatos, N.C.; Papageorgiou, L.G. A mathematical approach for optimal design of distributed energy systems at the neighbourhood level. Energy
**2012**, 44, 96–104. [Google Scholar] [CrossRef] - Zhou, Z.; Liu, P.; Li, Z.; Ni, W. An engineering approach to the optimal design of distributed energy systems in China. Appl. Therm. Eng.
**2013**, 53, 387–396. [Google Scholar] [CrossRef] - Orehouning, K.; Evins, R.; Dorer, V. Integration of decentralized energy systems in neighborhoods using the energy hub approach. Appl. Energy
**2015**, 154, 277–289. [Google Scholar] [CrossRef] - Fichera, A.; Marrasso, E.; Sasso, M.; Volpe, R. Energy, Environmental and Economic Performance of an Urban Community Hybrid Distributed Energy System. Energies
**2020**, 13, 2545. [Google Scholar] [CrossRef] - Sameti, M.; Haghighat, F. A two-level multi-objective optimization for simultaneous design and scheduling of a district energy system. Appl. Energy
**2017**, 208, 1053–1070. [Google Scholar] [CrossRef] - Falke, T.; Krengel, S.; Meinerzhagne, A.K.; Schnettler, A. Multi-objective optimization and simulation model for the design of distributed energy systems. Appl. Energy
**2016**, 184, 1508–1516. [Google Scholar] [CrossRef] - Morvaj, B.; Evins, R.; Carmeliet, J. Optimization framework for distributed energy systems with integrated electrical grid constraints. Appl. Energy
**2016**, 171, 296–313. [Google Scholar] [CrossRef] - Alvarado, D.C.; Acha, N.; Shah, N.; Markides, C.N. A Technology Selection and Operation (TSO) optimization model for distributed energy systems: Mathematical formulation and case study. Appl. Energy
**2016**, 180, 491–503. [Google Scholar] [CrossRef] - Dornenau, B.; Sidnell, T.; Clarke, F.; Mechleri, E.; Arellano-Garcia, H. A Mixed-Integer Linear Programming Model for the Optimal Operation and Design of Residential Neighbourhoods. IFAC-PapersOnline
**2019**, 52, 934–939. [Google Scholar] [CrossRef] - Daneshvar, M.; Pesaran, M.; Mohammadi-ivatloo, B. Transactive energy integration in future smart rural network electrification. J. Clean. Prod.
**2018**, 190, 645–654. [Google Scholar] [CrossRef] - Khan, M.W.; Wang, J.; Xiong, L.; Ma, M. Modelling and optimal management of distributed microgrid using multi-agent systems. Sustain. Cities Soc.
**2018**, 41, 154–169. [Google Scholar] [CrossRef] - Khan, M.W.; Wang, J.; Ma, M.; Xiong, L.; Penghan, L.; Wu, F. Optimal energy management and control aspects of distributed microgrid using multi-agent systems. Sustain. Cities Soc.
**2019**, 44, 855–870. [Google Scholar] [CrossRef] - Wang, Y.; Lin, H.; Liu, Y.; Sun, Q.; Wennersten, R. Management of household electricity consumption under price-based demand response scheme. J. Clean. Prod.
**2018**, 204, 926–938. [Google Scholar] [CrossRef] - Fichera, A.; Frasca, M.; Volpe, R. The centralized energy supply in a network of distributed energy systems: A cost-based mathematical approach. Int. J. Heat Technol.
**2017**, 35, S191–S195. [Google Scholar] [CrossRef] - Bellekom, S.; Arentsen, M.; van Gorkum, K. Prosumption and the distribution and supply of electricity. Energy Sustain. Soc.
**2016**, 6. [Google Scholar] [CrossRef] [Green Version] - Klein, M.; Ziade, A.; de Vries, L. Alignign prosumers with the electricity wholesale market—The impact of time-varying price signals and fixed network charges on solar self-consumption. Energy Policy
**2019**, 134, 110901. [Google Scholar] [CrossRef] - Marszal-Pomianowska, A.; Diaz de Cerio Mendaza, I.; Bak-Jensen, B.; Heiselberg, P. A performance evaluation of future low voltage grids in presence of prosumers modelled in high temporal resolution. Sustain. Cities Soc.
**2019**, 44, 702–714. [Google Scholar] [CrossRef] - Huamani Bellido, M.H.; Pinguelli Rosa, L.; Olimpio Pereira, A.; Mosqueira Falcao, D.; Kahn Ribeiro, S. Barriers, challenges and opportunities for microgrid implementation: The case of Federal University of Rio de Janeiro. J. Clean. Prod.
**2018**, 188, 203–216. [Google Scholar] [CrossRef] - Ibrahim, H.; Ilinca, A.; Perron, J. Energy storage systems—Characteristics and comparisons. Renew. Sustain. Energy Rev.
**2008**, 12, 1221–1250. [Google Scholar] [CrossRef] - Graditi, G.; Ippolito, M.G.; Telaretti, E.; Zizzo, G. Technical and economical assessment of distributed electrochemical storages for load shifting applications: An Italian case study. Renew. Sustain. Energy Rev.
**2016**, 57, 515–523. [Google Scholar] [CrossRef] - Hill, C.A.; Such, M.C.; Dongmei, C.; Gonzalez, J.; Grady, W.M. Battery energy storage for enabling integration of distributed solar power generation. IEEE Trans. Smart Grid
**2012**, 3, 850–857. [Google Scholar] [CrossRef] - Tran, T.T.D.; Smith, A.D. Thermoeconomic analysis of residential rooftop photovoltaic systems with integrated energy storage and resulting impacts on electrical distribution networks. Sustain. Energy Technol. Assess.
**2018**, 29, 92–105. [Google Scholar] [CrossRef] - Arghandeh, R.; Broadwater, R. Distributed energy storage control for optimal adoption of solar energy in residential networks. In Proceedings of the 2012 20th International Conference on Nuclear Engineering collocated with the ASME 2012 Power Conference ICONE20-POWER2012, Anaheim, CA, USA, 30 July–3 August 2012. [Google Scholar]
- Zeh, A.; Mueller, M.; Naumann, M.; Hesse, H.C.; Jossen, A.; Witzmann, R. Fundamentals of using battery energy storage systems to provide primary control reserves in Germany. Batteries
**2016**, 2–29. [Google Scholar] [CrossRef] [Green Version] - Comodi, G.; Giantomassi, A.; Severini, M.; Squartini, S.; Ferracuti, F.; Fonti, A.; Nardi Cesarini, D.; Morodo, M.; Polonara, F. Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies. Appl. Energy
**2015**, 137, 854–866. [Google Scholar] [CrossRef] - Gagliano, A.; Nocera, F.; Tina, G. Performances and economic analysis of small photovoltaic-electricity energy storage system for residential applications. Energy Environ.
**2020**, in press. [Google Scholar] [CrossRef] - Erdinc, O.; Paterakis, N.G.; Nappi, I.N.; Bakirtzis, A.G.; Catalao, J.P.S. A new perspective for sizing of distributed generation and energy storage for smart households under demand response. Appl. Energy
**2015**, 143, 26–37. [Google Scholar] [CrossRef] - Robert, F.C.; Sisodia, G.S.; Gopalan, S. A critical review on the utilization of storage and demand response for the implementation of renewable energy microgrids. Sustain. Cities Soc.
**2018**, 40, 735–745. [Google Scholar] [CrossRef] - Lyden, A.; Pepper, R.; Tuohy, P.G. A modelling tool selection process for planning of community scale energy systems including storage and demand side management. Sustain. Cities Soc.
**2018**, 30, 674–688. [Google Scholar] [CrossRef] - Zheng, M.; Meinrenken, C.J.; Lackner, K.S. Smart househols: Dispatch strategies and economic analysis of distributed energy storage for residential peak shaving. Appl. Energy
**2015**, 147, 246–257. [Google Scholar] [CrossRef] [Green Version] - Leadbetter, J. and Swan, L. Battery storage system for residential electricity peak demand shaving. Energy Build.
**2012**, 55, 685–692. [Google Scholar] [CrossRef] - Hoang, K.D.; Lee, H.H. Accurate power sharing with balanced battery state of charge in distributed DC microgrid. IEEE Trans. Ind. Electron.
**2019**, 66, 1883–1893. [Google Scholar] [CrossRef] - Kabir, M.N.; Mishra, Y.; Ledwich, G.; Xu, Z.; Bansal, R.C. Improving voltage profile of residential distribution systems using rooftop PVs and Battery Energy Storage systems. Appl. Energy
**2014**, 134, 290–300. [Google Scholar] [CrossRef] - Boudoudouh, S.; Maâroufi, M. Multi agent system solution to microgrid implementation. Sustain. Cities Soc.
**2018**, 39, 252–261. [Google Scholar] [CrossRef] - Fossati, J.P.; Galarza, A.; Martìn-Villate, A.; Fontàn, L. A method for optimal sizing energy storage systems for microgrids. Renew. Energy
**2015**, 77, 539–549. [Google Scholar] [CrossRef] - Pandžić, H.; Wang, Y.; Qiu, T.; Dvorkin, Y.; Kirschen, D.S. Near-optimal method for siting and sizing of distributed storage om a transmission network. IEEE Trans. Power Syst.
**2015**, 30, 2288–2300. [Google Scholar] [CrossRef] - Goncalves, J.; Martins, A.; Neves, L. A methodology for real impact assessment of the best location of distributed electric energy storage. Sustain. Cities Soc.
**2016**, 26, 531–542. [Google Scholar] [CrossRef] [Green Version] - Klaimi, J.; Rahim-Amoud, R.; Merghem-Boulahia, L.; Jrad, A. A novel loss-based energy management approach for smart grids using multi-agent systems and intelligent storage systems. Sustain. Cities Soc.
**2018**, 39, 344–357. [Google Scholar] [CrossRef] - Lokeshgupta, B.; Sivasubramani, S. Multi-objective home energy management with battery energy storage systems. Sustain. Cities Soc.
**2019**, 47, 101458. [Google Scholar] [CrossRef] - Shen, X.; Shahidehpour, M.; Han, Y.; Zhu, S.; Zheng, J. Expansion planning of active distribution networks with centralized and distributed energy storage systems. IEEE Trans. Sustain. Energy
**2017**, 8, 126–134. [Google Scholar] [CrossRef] - Speidel, S.; Braeunl, T. Leaving the grid-The effect of combining home energy storage with renewable energy generation. Renew. Sustain. Energy Rev.
**2016**, 60, 1212–1224. [Google Scholar] [CrossRef] - Yang, Y.; Zhang, S.; Xiao, Y. Optimal design of distributed energy resource systems coupled with energy distribution networks. Energy
**2015**, 85, 433–448. [Google Scholar] [CrossRef] - Hafiz, F.; de Queiroz, A.R.; Fajri, P.; Husain, I. Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach. Appl. Energy
**2019**, 236, 42–54. [Google Scholar] [CrossRef] - Barbour, E.; Parra, D.; Awwad, Z.; Gonzàlez, M.C. Community energy storage. A smart choice for the smart grid? Appl. Energy
**2018**, 212, 489–497. [Google Scholar] [CrossRef] - Taşcıkaraoğlu, A. Economic and operational benefits of energy storage sharing for a neighbourhood of prosumers in a dynamic pricing environment. Sustain. Cities Soc.
**2018**, 38, 219–229. [Google Scholar] [CrossRef] - Monfaredzadeh, T.; Berardi, U. Beneath the smart city: Dichotomy between sustainability and competitiveness. Int. J. Sustain. Build. Technol. Urban Dev.
**2015**, 6, 140–156. [Google Scholar] [CrossRef] - Mohseni, S.; Moghaddas-Tafreshi, S.M. A multi-agent system for optimal sizing of a cooperative self-sustainable multi-carrier microgrid. Sustain. Cities Soc.
**2018**, 38, 452–465. [Google Scholar] [CrossRef] - Namany, S.; Al-Ansari, T.; Govindan, R. Sustainable energy, water and food nexus systems: A focused review of decision-making tools for efficient resource management and governance. J. Clean. Prod.
**2019**, 225, 610–626. [Google Scholar] [CrossRef] - Inturri, G.; Le Pira, M.; Giuffrida, N.; Ignaccolo, M.; Pluchino, A.; Rapisarda, A.; D’Angelo, R. Multi-agent simulation for planning and designing new shared mobility services. Res. Transp. Econ.
**2019**, 73, 34–44. [Google Scholar] [CrossRef] - Tian, S.; Chang, S. An agent-based model for household energy consumption. J. Clean. Prod.
**2020**, 242, 118378. [Google Scholar] [CrossRef] - Le Pira, M.; Inturri, G.; Ignaccolo, M.; Pluchino, A.; Rapisarda, A. Simulating opinion dynamics on stakeholders’ networks thorugh agent-based modeling for collective transport decisions. Procedia Comput. Sci.
**2015**, 52, 884–889. [Google Scholar] [CrossRef] [Green Version] - Gomes, L.; Spinola, J.; Vale, Z.; Corchado, J.M. Agent-based architecture for demand side management using real-time resources’ priorities and a deterministic optimization algorithm. J. Clean. Prod.
**2019**, 24, 118154. [Google Scholar] [CrossRef] - Fichera, A.; Fortuna, L.; Frasca, M.; Volpe, R. Integration of complex networks for urban energy mapping. Int. J. Heat Technol.
**2015**, 33, 181–184. [Google Scholar] [CrossRef] - Wilensky, U. NetLogo: Center for Connected Learning and Computer-Based Modeling; Northwestern University: Evanston, IL, USA, 1999; Available online: http://ccl.northwestern.edu/netlogo (accessed on 31 July 2019).
- Nair, N.-K.C.; Garimella, N. Battery energy storage systems: Assessment for small-scale renewable energy integration. Energy Build.
**2010**, 42, 2124–2130. [Google Scholar] [CrossRef] - Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci.
**2009**, 19, 291–312. [Google Scholar] [CrossRef] - Qureshi, W.A.; Nair, N.C.; Farid, M.M. Impact of energy storage in buildings on electricity demand side management. Energy Convers. Manag.
**2011**, 52, 2110–2120. [Google Scholar] [CrossRef] - Directive (EU) 2019/944 of the European Parliament and of the Council of 5 June 2019 on Common Rules for the Internal Market for Electricity and Amending DIRECTIVE 2012/27/EU. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019L0944 (accessed on 4 July 2020).

**Figure 1.**(

**a**) Distribution patterns established on the grounds of the value of the $surplu{s}_{it}$; (

**b**) Direction of the energy exchange in accordance with the sign of the $surplu{s}_{it}$.

**Figure 5.**Case study area for (

**a**) nodes connected with $\mathrm{radius}=50\text{}\mathrm{m}$, (

**b**) nodes connected with $\mathrm{radius}=200\text{}\mathrm{m}$.

**Figure 8.**The $utilization\text{}rate$ in both scenarios at different $\mathrm{radius}$ and when varying the installed capacity on the urban territory when (

**a**) $\mathrm{limit}=0\%$; (

**b**) $\mathrm{limit}=5\%$ and (

**c**) $\mathrm{limit}=10\%$.

**Figure 9.**The $excess$ and the $central\text{}supply$ in both scenarios at different $\mathrm{radius}$ and when varying the installed capacity on the urban territory when (

**a**) $\mathrm{limit}=0\%$; (

**b**) $\mathrm{limit}=5\%$ and (

**c**) $\mathrm{limit}=10\%$.

**Figure 10.**Combined effect of the $excess$ and $central\text{}supply$ for $\mathrm{limit}=5\%$ under the two scenarios.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Fichera, A.; Pluchino, A.; Volpe, R.
Modelling Energy Distribution in Residential Areas: A Case Study Including Energy Storage Systems in Catania, Southern Italy. *Energies* **2020**, *13*, 3715.
https://doi.org/10.3390/en13143715

**AMA Style**

Fichera A, Pluchino A, Volpe R.
Modelling Energy Distribution in Residential Areas: A Case Study Including Energy Storage Systems in Catania, Southern Italy. *Energies*. 2020; 13(14):3715.
https://doi.org/10.3390/en13143715

**Chicago/Turabian Style**

Fichera, Alberto, Alessandro Pluchino, and Rosaria Volpe.
2020. "Modelling Energy Distribution in Residential Areas: A Case Study Including Energy Storage Systems in Catania, Southern Italy" *Energies* 13, no. 14: 3715.
https://doi.org/10.3390/en13143715