Highly Renewable District Heat for Espoo Utilizing Waste Heat Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. External Conditions
2.2. Heat Pumps
2.3. Buy-In Heat
2.4. Assumptions
2.5. Investment Analysis
3. Results
3.1. Operation Strategy Based on Marginal Costs
3.2. Operation Strategy Prioritizing Waste Heat
3.3. Fuel Consumption
3.4. Investment Analysis
4. Discussion
4.1. The Goal of 95% of Renewable Production Can Be Achieved
4.2. The Costs of Waste Heat Utilization are Highly Dependent on the Electricity Price
4.3. Waste Heat Cannot Replace Winter Peak Production in Espoo
4.4. A Mutually Beneficial Operating Contract is Essential
4.5. Liquid Cooling and LTDH Would Improve Utilization of Waste Heat
4.6. Employment Shifts to IT Sector
4.7. Future Electricity Price and CO2 Price Determine the Profitability of New Investments
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Finnish Energy, District Heating in Finland 2016. Available online: https://energia.fi/files/2144/District_heating_in_Finland_2016.pdf (accessed on 15 January 2020).
- Fortum, Espoo Clean Heat. Available online: https://www.fortum.com/espoo (accessed on 7 January 2020).
- Volkova, A.; Latõšov, E.; Lepiksaar, K.; Siirde, A. Planning of district heating regions in Estonia. Int. J. Sustain. Energy Plan. Manag. 2020, 27, 5–16. [Google Scholar] [CrossRef]
- Pieper, H.; Mašatin, V.; Volkova, A.; Ommen, T.; Elmegaard, B.; Markussen, W.B. Modelling framework for integration of large-scale heat pumps in district heating using low-temperature heat sources: A case study of Tallinn, Estonia. Int. J. Sustain. Energy Plan. Manag. 2020, 20, 67–86. [Google Scholar] [CrossRef]
- Persson, U. Quantifying the Excess Heat Available for District Heating in Europe. Heat Roadmap Europe, Project No: IEE/13/650, Work Package 2, Background Report 7. 2015. Available online: https://heatroadmap.eu/wp-content/uploads/2018/09/STRATEGO-WP2-Background-Report-7-Potenital-for-Excess-Heat.pdf (accessed on 15 June 2020).
- Fortum. Avoin Kaukolämpö, Ostohinnat (Website in Finnish: Open District Heating, Buy-in Prices). Available online: https://www.fortum.fi/yrityksille-ja-yhteisoille/lammitys/kaukolampo-0/avoin-kaukolampo/avoin-kaukolampo-ostohinnat (accessed on 9 January 2020).
- Larmio, R.; Fortum Power and Heat Oy. Waste Heat Utilization in Espoo’s District Heating Network. Building Energy Exergy: From Analysis to Applications Aalto University. Espoo, Finland, 9.3.2020. Available online: https://www.aalto.fi/sites/g/files/flghsv161/files/2020-03/Risto%20-%20Fortum_WasteHeatEspoo%20Distrib.pdf (accessed on 8 April 2020).
- Fortum. New Heat Pump Unit for Fortum at Suomenoja—The Share of Carbon-Neutral will Increase to over 50 Percent in 2022. Fortum, 27.5.2019. Available online: https://www.fortum.com/media/2019/05/new-heat-pump-unit-fortum-suomenoja-share-carbon-neutral-district-heating-production-will-increase-over-50-cent-2022 (accessed on 8 April 2020).
- Helsingin Sanomat. Fortumin Kiistelty Datakeskus Hanke sai Suunnitteluluvan Espoossa: Latuverkkoon ei Kosketa, Kaupunki Vakuuttaa (News Article in Finnish: Fortum’s Data Center Project Received a Planning Permission). Helsingin Sanomat, 17.9.2019. Available online: https://www.hs.fi/kaupunki/espoo/art-2000006241463.html (accessed on 14 January 2020).
- Ministry of Finance. Työryhmä Selvittämään Energiaverotuksen Uudistamista 13.11.2019 (Statement in Finnish: Working Committee Examine Renewing of Energy Taxation). Available online: https://valtioneuvosto.fi/artikkeli/-/asset_publisher/10623/tyoryhma-selvittamaan-energiaverotuksen-uudistamista (accessed on 8 April 2020).
- Lund, R.; Persson, U. Mapping of potential heat sources for heat pumps for district heating in Denmark. Energy 2016, 110, 129–138. [Google Scholar] [CrossRef]
- Huang, P.; Copertaro, B.; Zhang, X.; Shen, J.; Löfgren, I.; Rönnelid, M.; Fahlen, J.; Andersson, D.; Svanfeldt, M. A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating. Appl. Energy 2020, 258, 1–20. [Google Scholar] [CrossRef]
- Lu, T.; Xiaoshu, L.; Remes, M.; Viljanen, M. Investigation of air management and energy performance in a data center in Finland: Case study. Energy Build. 2011, 43, 3360–3372. [Google Scholar] [CrossRef]
- Wahlroos, M.; Pärssinen, M.; Manner, J.; Syri, S. Utilizing data center waste heat in district heating—Impacts on energy efficiency and prospects for low-temperature district heating network. Energy 2017, 140, 1228–1238. [Google Scholar] [CrossRef]
- Davies, G.G.; Maidment, G.G.; Tozer, R.M. Using data centres for combined heating and cooling: An investigation for London. Appl. Therm. Eng. 2016, 94, 296–304. [Google Scholar] [CrossRef]
- Energiateollisuus, R.Y. Kaukolämmön Käsikirja (Book in Finnish: Handbook of District Heating); Kirjapaino Libris Oy: Helsinki, Finland, 2006; pp. 336–337. [Google Scholar]
- Fredriksen, S.; Svendsen, S. District Heating and Cooling; Studentliteratur: Lund, Sweden, 2013; pp. 462–468. [Google Scholar]
- Wahlroos, M.; Pärsinnen, M.; Rinne, S.; Syri, S.; Manner, J. Future views on waste heat utilization—Case of data centers in Northern Europe. Renew. Sustain. Energy Rev. 2018, 82, 1749–1764. [Google Scholar] [CrossRef]
- Pärssinen, M.; Wahlroos, M.; Manner, J.; Syri, S. Waste heat from data centers: An investment analysis. Sustain. Cities Soc. 2019, 44, 428–444. [Google Scholar] [CrossRef]
- Oró, E.; Taddeo, P.; Salom, J. Waste heat recovery from urban air cooled data centres to increase efficiency of district heating networks. Sustain. Cities Soc. 2019, 45, 522–542. [Google Scholar] [CrossRef]
- He, Z.; Ding, T.; Liu, Y.; Li, Z. Analysis of a district heating system using waste heat in a distributed cooling data center. Appl. Therm. Eng. 2018, 141, 1131–1140. [Google Scholar] [CrossRef]
- Schmidt, D.; Kallert, A.; Blesl, M.; Svendsen, S.; Li, H.; Sipilä, K. Low Temperature District Heating for Future Energy Systems. Energy Procedia 2017, 116, 26–38. [Google Scholar] [CrossRef]
- Brand, M.; Svendsen, S. Renewable-based low-temperature district heating for existing buildings in various stages of refurbishmen. Energy 2013, 62, 311–319. [Google Scholar] [CrossRef]
- Volkova, A.; Mašatin, V.; Siirde, A. Methodology for evaluating the transition process dynamics towards 4th generation district heating networks. Energy 2018, 150, 253–261. [Google Scholar] [CrossRef]
- EMD International A/S. EnergyPRO. Available online: https://www.emd.dk/energypro/ (accessed on 17 January 2020).
- Helen Oy. Open Data. Available online: https://www.helen.fi/yritys/vastuullisuus/ajankohtaista/avoindata (accessed on 17 January 2020).
- Finnish Meteorological Institute. Open Data. Available online: https://en.ilmatieteenlaitos.fi/download-observations#!/ (accessed on 17 January 2020).
- VALOR Partners Oy. Large Heat Pumps in District Heating Systems (In Finnish). Energiateollisuus Oy, 29.8.2016. Available online: https://energia.fi/files/993/Suuret_lampopumput_kaukolampojarjestelmassa_Loppuraportti_290816_paivitetty.pdf (accessed on 10 February 2020).
- Frioterm, A.G. Fortum—Utilizing waste heat with 2 Unitop 50 FY heat pumps. 2015. Available online: https://www.friotherm.com/wp-content/uploads/2017/11/E10-15_Suomenoja (accessed on 30 January 2020).
- Khosravi, A.; Olkkonen, V.; Farsaei, A.; Syri, S. Replacing Hard Coal with Wind and Nuclear Power in Finland—Impacts on Electricity and District Heating Markets. Energy 2020, 203. [Google Scholar] [CrossRef]
- Hast, A.; Syri, S.; Welsch, J.; Korkmaz, P.; Balyk, O. Transition to Carbon Neutral Energy Systems—Implications to District Heating in Cities. In Proceedings of the 2018 15th Internarnational Conference on the European Energy Market. (EEM), Lodz, Poland, 27–29 June 2018; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Helistö, N.; Kiviluoma, J.; Holttinen, H. Sensitivity of electricity prices in energy-only markets with large amounts of zero marginal cost generation. In Proceedings of the 2017 14th International Conference on the European Energy Market. (EEM), Dresden, Germany, 6–9 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Nordpool. Historical Market Data, Elspot prices_2016_Hourly_EUR. Available online: https://www.nordpoolgroup.com/historical-market-data/ (accessed on 17 January 2020).
- Caruna. Electricity Distribution Rates, Price List for High Voltage Network, 1.1.2020. Available online: https://www.caruna.fi/en/our-services/products-and-rates/electricity-distribution-rates (accessed on 15 April 2020).
- Fingrid. Sähköntuotannon CO2-Päästöarvio (Website in Finnish: CO2 Emissions Estimation of Electricity Production). Available online: https://www.caruna.fi/en/our-services/products-and-rates/electricity-distribution-rates (accessed on 22 January 2020).
- Tilastokeskus. Fuel Classification. Available online: http://www.stat.fi/tup/khkinv/khkaasut_polttoaineluokitus.html (accessed on 22 January 2020).
- Fortum Power and Heat Oy. Environmental Permisson Application (In Finnish). Aluehallintovirasto, Lupa-tietopalvelu. Espoo. 31.12.2018. Available online: https://tietopalvelu.ahtp.fi/Lupa/Lisatiedot.aspx?Asia_ID=1568523 (accessed on 26 June 2020).
- ÅF-Consult Oy. Kivenlahden Lämpökeskuksen Toiminnan Muuttaminen, Ympäristöluvan Tarkistaminen Sekä Toiminnan Aloittamislupa (Permission in Finnish). Espoo. 29.9.2017. Available online: https://tietopalvelu.ahtp.fi/Lupa/Lisatiedot.aspx?Asia_ID=1420804 (accessed on 8 January 2020).
- Ramboll Oy. Ämmänsuon Lämpölaitoksen Ympäristölupa ja Toiminnan Aloituslupa (Evironmental Permission in Finnish). Espoo. 15.8.2018. Available online: https://tietopalvelu.ahtp.fi/Lupa/Lisatiedot.aspx?Asia_ID=1518935 (accessed on 15 August 2018).
- Hast, A.; Syri, S.; Lekavičius, V.; Galinis, A. District heating in cities as a part of low-carbon energy system. Energy 2018, 152, 627–639. [Google Scholar] [CrossRef]
- Fortum. Vermon BioöljyLaitos Vihittiin Käyttöön—BioölJyllä Korvataan FossiiLisia PolttoaiNeita LämmöntuotanNossa (In Finnish: Vermo Bio Oil Heat Plant was Commissioned—Bio Oil Replaces Fossil Fuels in Heat Production). Fortum. 9.10.2017. Available online: https://www.fortum.fi/media/2017/10/vermon-biooljylaitos-vihittiin-kayttoon-biooljylla-korvataan-fossiilisia-polttoaineita-lammontuotannossa (accessed on 14 January 2020).
- Danish Energy Agency. Technology Data Catalogue for Electricity and District Heating Production—Updated April 2020. Available online: https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-generation-electricity-and (accessed on 15 May 2020).
- Bhandari, S.B. Discounted payback period—Some extensions. Proc. ASBBS 2009, 16. Available online: https://www.researchgate.net/publication/228645884_DISCOUNTED_PAYBACK_PERIOD-SOME_EXTENSIONS (accessed on 22 May 2020).
- Rämä, M.; Wahlroos, M. Introduction of new decentralised renewable heat supply in an existing district heating system. Energy 2018, 154, 68–79. [Google Scholar] [CrossRef]
- Finnish Energy, District Heating in Finland 2018. Available online: https://energia.fi/files/4092/District_heating_in_Finland_2018.pdf (accessed on 22 May 2020).
- Helsinki Region Environmental Services Authority. Pääkaupunkiseudun Ilmastoraportti, Päästöjen Kehitys 2012; (In Finnish: Climate Report of the Capital Area); Edita Prima Oy: Helsinki, Finland, 2013; pp. 49–50. Available online: https://vanha.hsy.fi/sites/EsitteetKatalogi/Julkaisusarja/10_2013_pks_ilmastoraportti_2012.pdf (accessed on 27 May 2020).
- Tillaeus, J.; Lönnblad, K. Mitä Googlen Jätti-Investointi Merkitsee Suomelle? Kokosimme Vastaukset Viiteen Kysymykseen (News Article in Finnish: What Does Google’s Investment Mean to Finland? We Collected the Answers for Five Questions). Yle. 24.9.2019. Available online: https://yle.fi/uutiset/3-10984672 (accessed on 26 June 2020).
- Helen. Hiilineutraali Energia (In Finnish: Carbon-Neutral Energy). Helen. 25.3.2020. Available online: https://www.helen.fi/helen-oy/vastuullisuus/vastuullisuusraportti/hiilineutraali-tulevaisuus/energiantuotanto (accessed on 26 June 2020).
Type | COP | Source, Hot (°C) | Source, Cold (°C) | DH, Return (°C) | DH, Supply (°C) |
---|---|---|---|---|---|
Design | 3.7 | 14 | 7 | 50 | 65 |
WWHP | Calculated | 14/10 * | 7/3 * | 50 | Figure 2 |
DCHP | Calculated | 15 | 10 | 50 | Figure 2 |
Outdoor Temperature (°C) | −20 | −16 | −12 | −10 | −8 | −6 | −4 | −2 | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 16 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Supply (€/MWh) | 50 | 50 | 50 | 50 | 50 | 45 | 45 | 40 | 30 | 30 | 30 | 25 | 20 | 20 | 20 | 20 | 15 |
Return (€/MWh) | 35 | 35 | 35 | 35 | 35 | 32 | 32 | 28 | 21 | 21 | 21 | 18 | 14 | 10 | 10 | 10 | 8 |
Electricity Distribution | €/MWh |
---|---|
Consumption fee | 3.29 (9.91) * |
Load fee, intake from network | 1.81 |
Load fee, output to network | 0.72 |
Security of supply fee | 0.13 |
Electricity tax | 6.90 |
Average electricity price **: | |
Scenario A [30] | 29.36 |
Scenario B [32] | 54 |
Scenario C [31] | 77 |
Fuel | Price (€/MWh) | Tax HOB (€/MWh) | Tax CHP (€/MWh) | Emissions (tCO2/MWh) |
---|---|---|---|---|
Natural gas | 32.4 | 18.6 | 12.9 | 0.199 |
Wood chips | 32 | - | - | - |
Wood pellets | 38 | - | - | - |
Oil | 61 | 22.9 | - | 0.267 |
Bio-oil | 67 | - | - | - |
Unit | Fuel | Fuel Capacity (MW) | Thermal Capacity (MW) | Electric Capacity (MW) | Minimum Load | Min. Operation/Non-Operation Time | O&M Costs |
---|---|---|---|---|---|---|---|
CCGT * | NG | 498 | 214 | 234 | 40% | 24 h | 4.5 €/MWhel |
OCGT * | NG | 132 | 75 | 45 | 40% | 4 h | 4.5 €/MWhel |
HOB 1 | NG | 525 | 473 | - | - | - | 2 €/MWhfuel |
HOB 2 | Oil | 94 | 85 | - | - | - | 2 €/MWhfuel |
HOB 3 | Bio-oil | 49 | 45 | - | - | - | 2 €/MWhfuel |
HOB 4 | W. pellets | 90 | 80 | - | - | - | 2 €/MWhfuel |
HOB 5 | W. chips | 147 | 133 | - | - | - | 2 €/MWhfuel |
Geothermal | - | - | 40 | - | - | - | - |
WWHP | - | - | 70.5 | - | - | - | 3 €/MWhheat |
DCHP | - | - | - | - | - | - | 3 €/MWhheat |
DCHP Capacity | Emissions (ktCO2) | RES % | Costs (€/MWh) | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | A | B | C | |
Reference | 130 | 136 | 205 | 80.3% | 79.3% | 67.0% | 37.34 | 37.02 | 32.26 |
0 MW | 130 | 131 | 131 | 80.4% | 80.3% | 80.2% | 37.59 | 39.37 | 40.98 |
10 MW | 124 | 124 | 124 | 81.9% | 81.8% | 81.6% | 36.87 | 38.84 | 40.61 |
140 MW | 68.5 | 69.0 | 70.6 | 94.9% | 94.4% | 93.5% | 30.71 | 34.51 | 37.59 |
150 MW | 67.6 | 68.0 | 69.2 | 95.3% | 94.8% | 93.8% | 30.42 | 34.34 | 37.49 |
160 MW | 66.9 | 67.1 | 68.1 | 95.7% | 95.1% | 94.1% | 30.15 | 34.19 | 37.39 |
200 MW | 65.5 | 64.8 | 65.2 | 96.8% | 96.1% | 95.0% | 29.24 | 33.69 | 37.09 |
DCHP Capacity | Emissions (ktCO2) | RES % | Costs (€/MWh) | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | A | B | C | |
Reference | 130 | 136 | 205 | 80.3% | 79.3% | 67.0% | 37.34 | 37.02 | 32.26 |
10 MW | 124 | 124 | 124 | 81.9% | 81.8% | 81.7% | 36.89 | 38.87 | 40.67 |
80 MW | 86.4 | 85.2 | 84.9 | 90.7% | 90.7% | 90.5% | 33.32 | 36.62 | 39.57 |
140 MW | 70.8 | 71.0 | 70.7 | 95.0% | 94.9% | 94.8% | 31.50 | 35.90 | 39.91 |
150 MW | 69.8 | 70.0 | 69.7 | 95.4% | 95.4% | 95.2% | 31.24 | 35.79 | 39.94 |
160 MW | 69.0 | 69.3 | 69.0 | 95.8% | 95.7% | 95.6% | 30.99 | 35.70 | 39.99 |
200 MW | 67.7 | 67.9 | 67.3 | 97.0% | 96.9% | 96.8% | 30.17 | 35.44 | 40.25 |
Heat Source | A Ref. | A OS1 | A OS2 | B Ref. | B OS1 | B OS2 | C Ref. | C OS1 | C OS2 |
---|---|---|---|---|---|---|---|---|---|
DCHP capacity (MW) | 0 | 150 | 140 | 0 | 160 | 150 | 0 | 200 | 160 |
CCGT NG (GWh) | 36 | 0 | 0 | 162 | 0 | 0 | 576 | 0 | 0 |
OCGT NG (GWh) | 25 | 0 | 0 | 171 | 0 | 0 | 263 | 0 | 0 |
HOB NG (GWh) | 506 | 136 | 144 | 265 | 142 | 134 | 116 | 145 | 138 |
Oil (GWh) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Bio-oil (GWh) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
Pellets (GWh) | 425 | 170 | 191 | 410 | 170 | 170 | 249 | 221 | 175 |
Chips (GWh) | 831 | 592 | 613 | 825 | 620 | 592 | 729 | 670 | 612 |
Fuels total | 1824 | 898 | 947 | 1833 | 932 | 896 | 1933 | 1036 | 925 |
Geothermal (GWh) | 348 | 323 | 202 | 350 | 351 | 207 | 344 | 351 | 218 |
WW heat (GWh) | 420 | 418 | 260 | 412 | 387 | 248 | 356 | 362 | 222 |
DC heat (GWh) | 0 | 605 | 821 | 0 | 596 | 863 | 0 | 554 | 863 |
Electricity (GWh) | 192 | 445 | 464 | 189 | 428 | 476 | 163 | 400 | 464 |
Total energy input | 2784 | 2690 | 2696 | 2784 | 2694 | 2690 | 2796 | 2704 | 2693 |
Electricity production | 49 | 0 | 0 | 252 | 0 | 0 | 710 | 0 | 0 |
DCHP Capacity | Investment (M€) | Scenario A Cash Flow (M€) | Scenario B Cash Flow (M€) | Scenario C Cash Flow (M€) | |||
---|---|---|---|---|---|---|---|
OS 1 | OS2 | OS1 | OS2 | OS1 | OS2 | ||
50 MW | 30 | 7.8 | 7.4 | 5.7 | 4.9 | 3.9 | 2.8 |
100 MW | 60 | 13.9 | 12.4 | 10.0 | 7.4 | 6.9 | 2.9 |
150 MW | 90 | 18.1 | 16.0 | 12.5 | 8.8 | 8.6 | 2.2 |
200 MW | 120 | 21.1 | 18.7 | 14.1 | 9.6 | 9.5 | 1.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiltunen, P.; Syri, S. Highly Renewable District Heat for Espoo Utilizing Waste Heat Sources. Energies 2020, 13, 3551. https://doi.org/10.3390/en13143551
Hiltunen P, Syri S. Highly Renewable District Heat for Espoo Utilizing Waste Heat Sources. Energies. 2020; 13(14):3551. https://doi.org/10.3390/en13143551
Chicago/Turabian StyleHiltunen, Pauli, and Sanna Syri. 2020. "Highly Renewable District Heat for Espoo Utilizing Waste Heat Sources" Energies 13, no. 14: 3551. https://doi.org/10.3390/en13143551
APA StyleHiltunen, P., & Syri, S. (2020). Highly Renewable District Heat for Espoo Utilizing Waste Heat Sources. Energies, 13(14), 3551. https://doi.org/10.3390/en13143551