Hydrogen Storage Properties of Mg-Ni Alloys Processed by Fast Forging
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Pure Magnesium Sample
3.2. Mg-Ni Eutectic Composition Forged at Room Temperature
3.3. Mg-Ni Eutectic Composition Forged at Higher Temperatures
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yartys, V.A. Magnesium based materials for hydrogen based energy storage: Past, present and future. Int. J. Hydrogen Energy 2019, 44, 7809–7859. [Google Scholar] [CrossRef]
- Liang, G.; Huot, J.; Boily, S.; Van Neste, A.; Schulz, R. Hydrogen storage properties of the mechanically milled MgH2-V nanocomposite. J. Alloy. Comp. 1999, 291, 295–299. [Google Scholar] [CrossRef]
- Oelerich, W.; Klassen, T.; Bowmann, R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J. Alloy. Comp. 2001, 315, 237–279. [Google Scholar] [CrossRef]
- Miraglia, S.; de Rango, P.; Rivoirard, S.; Fruchart, D.; Charbonnier, J.; Skryabina, N. Hydrogen sorption properties of compounds based on bcc Ti1-xV1-yCr1+x+y alloys. J. Alloy. Comp. 2016, 536, 1–6. [Google Scholar] [CrossRef]
- Gerar, N.; Ono, S. Hydride formation and decomposition kinetics. In Hydrogen in Intermetallic Compounds; Schlapbach, L., Ed.; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Skripnyuk, V.M.; Rabkin, E.; Estrin, Y.; Lapovok, R. Improving hydrogen storage properties of magnesium based alloys by equal channel angular. Int. J. Hydrogen Energy 2009, 34, 6320–6324. [Google Scholar] [CrossRef]
- Huot, J.; Fruchart, D.; Skryabina, N. Application of Severe Plastic Deformation Technics to Magnesium for Enhanced Hydrogen Sorption Properties. Metals 2012, 2, 329–343. [Google Scholar] [CrossRef] [Green Version]
- Jorge, A.M., Jr.; Prokofiev, E.; de Lima, G.F.; Rauch, E.; Veron, M.; Botta, W.J.; Kawasaki, M.; Langdon, T.G. An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing. Int. J. Hydrogen Energy 2013, 38, 8306–8312. [Google Scholar] [CrossRef]
- Skryabina, N.; Medvedeva, N.; Gabov, A.; Fruchart, D.; Nachev, S.; de Rango, P. Impact of Severe Plastic Deformation on the stability of MgH2. J. Alloy. Comp. 2015, 645, S14–S17. [Google Scholar] [CrossRef]
- Skryabina, N.; Aptukov, V.; Romanov, P.; Fruchart, D.; de Rango, P.; Girard, G.; Grandini, C.; Sandim, H.; Huot, J.; Lang, J.; et al. Microstructure optimisation of Mg-Alloys by the ECAP process including numerical simulation, SPD treatments, characterization and hydrogen sorption properties. Molecules 2018, 24, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huot, J.; Amira, S.; Lang, J.; Skryabina, N.; Fruchart, D. Improvement of hydrogen properties of magnesium alloys by cold rolling and forging. Mater. Sci. Eng. 2014, 63, 012114. [Google Scholar] [CrossRef] [Green Version]
- Edalati, K.; Yamamoto, A.; Horita, Z.; Ishihara, T. High pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain. Scr. Mater. 2011, 64, 880–883. [Google Scholar] [CrossRef]
- Panda, S.; Fundenberger, J.J.; Zhao, Y.Z.; Toth, L.; Grosdidier, T. Effect of initial powder type on the hydrogen storage properties of high-pressure torsion consolidated Mg. Int. J. Hydrogen Energy 2017, 42, 22438–22448. [Google Scholar] [CrossRef]
- Jorge, A.M., Jr.; de Lima, G.F.; Triques, M.R.M.; Botta, W.J.; Kiminami, C.S.; Noguiera, R.P.; Yavari, A.R.; Langdon, T.G. Correlation between hydrogen storage properties and texture induced in magnesium through ECAP and cold rolling. Int. J. Hydrogen Energy 2014, 39, 3810–3821. [Google Scholar] [CrossRef]
- Jorge, A.M., Jr.; Prokofiev, E.; Triques, M.R.M.; Roche, V.; Botta, W.B.; Kiminami, C.S.; Raab, G.I.; Valiev, R.Z.; Langdon, T.G. Effect of cold rolling on the structure and hydrogen properties of AZ91 and AM60D magnesium alloys processed by ECAP. Int. J. Hydrogen Energy 2017, 42, 21822–21831. [Google Scholar] [CrossRef] [Green Version]
- Asselli, A.C.; Leiva, D.R.; Huot, J.; Kawasaki, M.; Langdon, T.G.; Botta, W.J. Effects of equal-channel angular pressing and accumulative roll-bonding on hydrogen storage properties of a commercial ZK60 magnesium alloy. Int. J. Hydrogen Energy 2015, 40, 16971–16976. [Google Scholar] [CrossRef]
- Asselli, A.A.C.; Hébert, N.B.; Huot, J. The role and morphology and severe plastic deformation on the hydrogen storage properties of magnesium. Int. J. Hydrogen Energy 2014, 39, 12778–12783. [Google Scholar] [CrossRef]
- Zou, J.; Sun, H.; Zeng, X.; Ding, W. Preparation and hydrogenation storage properties of Mg-rich Mg-Ni ultrafine particles, Hindawi Publishing Corporation. J. Nanomater. 2012, 2012, 1–8. [Google Scholar]
- Skripnyuk, V.M.; Buchman, E.; Rabkin, E.; Estrin, Y.; Popov, M.; Jorgensen, S. The effect of equal channel angular pressing on hydrogen storage properties of a eutectic Mg-Ni alloy. J. Alloy. Comp. 2007, 436, 99–106. [Google Scholar] [CrossRef]
- Popilevsky, L.; Skripnyuk, V.M.; Estrin, Y.; Dahle, A.; Mirabile Gattia, D.; Montone, A.; Rabkin, E. Hydrogen-induced microstructure evolution in as cast and severely deformed Mg-10 wt.% Ni alloy. Int. J. Hydrogen Energy 2013, 38, 12103–12114. [Google Scholar] [CrossRef]
- Révész, A.; Gajdics, M.; Varga, L.K.; Krallics, G.; Péter, L.; Spassov, T. Hydrogen storage of nanocrystalline Mg-Ni alloy processed by equal-channel angular pressing and cold rolling. Int. J. Hydrogen Energy 2014, 39, 9911–9917. [Google Scholar] [CrossRef] [Green Version]
- Hongo, T.; Edalati, K.; Arita, M.; Matsuda, J.; Akiba, E.; Horita, Z. Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion. Acta Mater. 2015, 92, 46–54. [Google Scholar] [CrossRef]
- Leiva, D.R.; Floriano, R.; Huot, J.; Jorge Jr, A.M.; Bolfarini, C.; Kiminami, C.S.; Ishikawa, T.T.; Botta, W.J. Nanostructured MgH2 prepared by cold rolling and cold forging. J. Alloy. Comp. 2011, 509S, S444–S448. [Google Scholar] [CrossRef]
- Asselli, A.A.C.; Leiva, D.R.; Cozentino, G.H.; Floriano, R.; Huot, J.; Ishikawa, T.T.; Botta, W.J. Hydrogen storage properties of MgH2 processed by cold forging. J. Alloy. Comp. 2014, 615, S719–S724. [Google Scholar] [CrossRef]
- Leiva, D.R.; Jorge, A.M., Jr.; Ishikawa, T.T.; Huot, J.; Fruchart, D.; Miraglia, S.; Kiminami, C.S.; Botta, W.J. Nanoscale grain refinement and H-sorption properties of MgH2 processed by High-Pressure torsion and other mechanical routes. Adv. Eng. Mater. 2010, 12, 8. [Google Scholar] [CrossRef]
- De Rango, P.; Fruchart, D.; Aptukov, V.; Skryabina, N. Fast forging: A new method to synthesize Mg-based alloys for hydrogen storage. Int. J. Hydrogen Energy 2020, 45, 7912–7916. [Google Scholar] [CrossRef]
- Skryabina, N.; Aptukov, V.; de Rango, P.; Fruchart, D. Effect of temperature on fast forging process of Mg-Ni samples for fast formation of Mg2Ni for hydrogen storage. Int. J. Hydrogen Energy 2020, 45, 3008–3015. [Google Scholar] [CrossRef]
- Popa, I.; de Rango, P.; Fruchart, D.; Rivoirard, S. High-speed NdFe12-xVx compounds for bonded magnets. J. Mag. Mater. 2002, 242–245, 1388–1390. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. Recent Developments of the Program FULLPROF. Comm. Powder Diffr. Newsl. 2001, 26, 12–19. [Google Scholar]
- Garrier, S.; Chaise, A.; de Rango, P.; Marty, P.; Delhomme, B.; Fruchart, D.; Miraglia, S. MgH2 intermediate scale tank test under various experimental conditions. Int. J. Hydrogen Energy 2011, 36, 9719–9726. [Google Scholar] [CrossRef]
- Al-Salmman, T.; Gottstein, G. Dynamic recrystallization during high temperature deformation of magnesium. Mater. Sci. Eng. A 2008, 490, 411–420. [Google Scholar] [CrossRef]
Mg | Ni | Mg2Ni | Mg2NiH0.3 | MgH2 | Mg2NiH4 | |
---|---|---|---|---|---|---|
As forged | 80.3 | 19.7 | <1 | - | - | - |
1st absorption | 6.5 | 28.5 | - | - | 63 | 2 |
1st desorption | 66 | 3 | - | 26 | 5 | - |
3rd desorption | 65 | 1 | - | 34 | - | - |
4th abs. 3 min | 40 | - | - | 2 | 16 | 41 |
Forging T (°C) | Thickness (mm) | Reduction Ratio (%) | Mg | Ni | Mg2Ni | |||
---|---|---|---|---|---|---|---|---|
wt.% | Strain (%) | wt.% | Strain (%) | wt.% | Strain (%) | |||
210 °C | 3.94 | 80.3 | 76.2 | 0.17 | 23.8 | 0.21 | - | - |
390 °C | 2.49 | 87.6 | 75.9 | 0.14 | 19.8 | 0.19 | 4.3 | 0.32 |
480 °C | 1.97 | 90.1 | 62.5 | 0.14 | 2.2 | 0.09 | 35.5 | 0.16 |
530 °C | 1.77 | 91.1 | 58.0 | 0.14 | - | - | 42 | 0.15 |
Forging T (°C) | Magnesium | Nickel | Mg2Ni | |||
---|---|---|---|---|---|---|
Mg | Ni | Mg | Ni | Mg | Ni | |
210 °C | 99.6 | 0.4 | 2.3 | 97.7 | - | - |
390 °C | 99.6 | 0.4 | 3.2 | 96.8 | - | - |
480 °C | 99.6 | 0.4 | 2.8 | 97.1 | 66.7 | 33.3 |
530 °C | 99.7 | 0.3 | - | - | 66.9 | 33.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Rango, P.; Wen, J.; Skryabina, N.; Laversenne, L.; Fruchart, D.; Borges, M. Hydrogen Storage Properties of Mg-Ni Alloys Processed by Fast Forging. Energies 2020, 13, 3509. https://doi.org/10.3390/en13133509
de Rango P, Wen J, Skryabina N, Laversenne L, Fruchart D, Borges M. Hydrogen Storage Properties of Mg-Ni Alloys Processed by Fast Forging. Energies. 2020; 13(13):3509. https://doi.org/10.3390/en13133509
Chicago/Turabian Stylede Rango, Patricia, Jing Wen, Nataliya Skryabina, Laetitia Laversenne, Daniel Fruchart, and Marielle Borges. 2020. "Hydrogen Storage Properties of Mg-Ni Alloys Processed by Fast Forging" Energies 13, no. 13: 3509. https://doi.org/10.3390/en13133509
APA Stylede Rango, P., Wen, J., Skryabina, N., Laversenne, L., Fruchart, D., & Borges, M. (2020). Hydrogen Storage Properties of Mg-Ni Alloys Processed by Fast Forging. Energies, 13(13), 3509. https://doi.org/10.3390/en13133509