An Innovative Adaptive Droop Control Based on Available Energy for DC Micro Distribution Grids †
Abstract
:1. Introduction
2. DC Distribution Microgrid
2.1. Conventional Droop Control Method
2.2. Model of the Battery Energy Storage System (BESS)
3. Innovative Adaptive Droop Method
3.1. Concept of Adaptive Coordinate Droop Control
3.2. Effect of the Proposed Method on Stabilizing the DC voltage
3.3. Effect of the Proposed Method on the State of Charge Balance
4. Limitation and Impact of the Exponent Coefficient
5. Small Signal Analysis
6. Simulation Results and Discussion
6.1. Performance of the Proposed Control Method in Long-Term Operation
6.2. Validation of the Proposed Control Method on DC Voltage Stabilization during Dynamics
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Notation | Value | Notation | Value | Notation | Value |
---|---|---|---|---|---|
Parameters of DL block | |||||
R12 | 0.064 Ω | L12 | 0.255 mH | C12 | 10.7 nF |
R23 | 0.064 Ω | L23 | 0.255 mH | C23 | 10.7 nF |
R34 | 0.064 Ω | L34 | 0.255 mH | C34 | 10.7 nF |
R41 | 0.064 Ω | L41 | 0.255 mH | C42 | 10.7 nF |
Parameters of PV block | |||||
LddPV | 1mH | CdcPV | 5mF | KPV | 0.01/V |
Vdcref | 380V | ||||
Parameters of WT block | |||||
Rt | 5 m/s | ρ | 1.205 kg/m3 | Vwrated | 12 m/s |
Kpopt | 7.87 W/(rad/s)3 | Cpmax | 0.4412 | Pgenrated | 36 kW |
ωrrated | 16.6 rad/s | P | 2 | H | 0.05 s |
Ψf | 90 Wb | Lmd | 0.334 H | Lmq | 0.217 H |
Lls | 0.0344 H | Rs | 0.08 Ω | Kp1 | 1.01/A |
Ki1 | 2.21/A.s | Kp2a | 5 A/rad | Ki2a | 150 A/rad.s |
Kp2b | 1.01/A | Ki2b | 2.21/A.s | Kp3 | 2 deg/rad |
Ki3 | 4 deg/rad.s | CdcWT | 5mF | ||
Parameters of BT + SC block | |||||
LddBT | 120 mH | CdcBT | 5 mH | R1BT | 0.1 Ω |
R2BT | 0.075 Ω | RpBT | 25 × 106 Ω | C1BT | 500 F |
CbBT | 300 (F) | Kp4aBT | 1 A/V | Ki4aBT | 5 A/V.s |
Kp4bBT | 0.3/A | Ki4bBT | 2/A.s | Vdcref | 380 V |
EBT | 1000 kWh | PrateBT | 400 kW | PrateSc | 200 kW |
References
- Natori, K. Overview and perspective of dispersed generation systems. IEEE J. Trans. Power Energy 2000, 120, 787–790. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, A. Trends and forecasts for novel electric network system. IEEE Trans. Jpn. 2005, 125, 145–148. [Google Scholar]
- Boroyevich, D.; Cvetkovic, I.; Dong, N.; Burgos, R.; Wang, F.; Lee, F. Future electronic power distribution systems a contemplative view. In Proceedings of the 2010 12th International Conference on Optimization of Electrical and Electronic Equipment, Brasov, Romania, 20–22 May 2010; pp. 1369–1380. [Google Scholar]
- Chiba, Y.; Marif, Y.; Boukaoud, A.; Meredef, L.; Kaidi, Y. Impact of green buildings on HVAC system located in Algeria. In Proceedings of the 2018 International Conference on Applied Smart Systems (ICASS), Medea, Algeria, 24–25 November 2018; pp. 1–4. [Google Scholar]
- Cai, W.; Wu, Z.; Wang, H. Effect of green roof on urban human settlement and indoor environment for green buildings. In Proceedings of the 2011 International Conference on Electric Technology and Civil Engineering (ICETCE), Lushan, China, 22–24 April 2011; pp. 3102–3105. [Google Scholar]
- Amran, M.E.; Muhtazaruddin, M.N.; Kamaruddin, S.A.; Muhammad-Sukki, F.; Abu-Bakar, S.H.; Ayub, A.S.; Bani, N.A.; Saudi, A.S.M.; Ardila-Rey, J.A. Renewable energy performance of the green buildings: Key-enabler on useful consumption yield. IEEE Access 2020, 8, 95747–95767. [Google Scholar] [CrossRef]
- Giraud, F.; Salameh, Z. Steady-state performance of a grid-connected rooftop hybrid wind-photovoltaic power system with battery storage. IEEE Trans. Energy Convers. 2001, 16, 1–7. [Google Scholar] [CrossRef]
- Borowy, B.; Salameh, Z. Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system. IEEE Trans. Energy Convers. 1996, 11, 367–375. [Google Scholar] [CrossRef]
- Ito, Y.; Sugita, T.; Yang, Z. DC-bus-connected distribution power system. PE SOC. Annu. Conf. 2002, 1, 311–612. [Google Scholar]
- Daniel, N.; Ambra, S. Efficiency analysis of low-and medium-voltage dc distribution systems. In Proceedings of the IEEE Power Engineering Society General Meeting, Denver, CO, USA, 6–10 June 2004. [Google Scholar]
- Brenna, M.; Tironi, E.; Ubezio, G. Proposal of a local DC distribution network with distributed energy resources. In Proceedings of the 2004 11th International Conference on Harmonics and Quality of Power (IEEE Cat. No.04EX951), Lake Placid, NY, USA, 12–15 September 2005; pp. 397–402. [Google Scholar]
- Srivastava, A.K.; Bastos, J.L.; Schulz, N.; Ginn, H.L. AC/DC power system modeling and analysis for shipboard applications. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 23 July 2007; pp. 1–5. [Google Scholar]
- El-Samahy, I.; El-Saadany, E. The effect of DG on power quality in a deregulated environment. IEEE Power Eng. SOC. Gen. Meet. 2005, 3, 714–721. [Google Scholar] [CrossRef]
- Khatri, P.R.; Jape, V.S.; Lokhande, N.M.; Motling, B.S. Improving power quality by distributed generation. In Proceedings of the Power Engineering Conference, IPEC’05, Singapore, 29 November–2 December 2005; pp. 675–678. [Google Scholar]
- Guerrero, J.M.; Vasquez, J.C.; Matas, J.; de Vicuña, G.G.; Castilla, M. Hierarchical control of droop-controlled AC and DC microgrids—A general approach toward standardization. IEEE Trans. Ind. Electron. 2011, 58, 158–172. [Google Scholar] [CrossRef]
- Lu, X.; Guerrero, J.M.; Sun, K.; Vasquez, J.C.; Teodorescu, R.; Huang, L. Hierarchical control of parallel AC-DC converter interfaces for hybrid microgrids. IEEE Trans. Smart Grid 2013, 5, 683–692. [Google Scholar] [CrossRef] [Green Version]
- Dong, D.; Cvetkovic, I.; Boroyevich, D.; Zhang, W.; Wang, R.; Mattavelli, P. Grid-interface bi-directional converter for residential DC distribution systems—Part one: High-density two-stage topology. IEEE Trans. Power Electron. 2013, 28, 1655–1666. [Google Scholar] [CrossRef]
- Kakigano, H.; Miura, Y.; Ise, T. Distribution voltage control for DC microgrids using fuzzy control and gain-scheduling technique. IEEE Trans. Power Electron. 2012, 28, 2246–2258. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Loh, P.C.; Lee, T.-L.; Chandorkar, M. Advanced control architectures for intelligent microgrids—Part II: Power quality, energy storage, and AC/DC microgrids. IEEE Trans. Ind. Electron. 2013, 60, 1263–1270. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Choi, H.S.; Cho, B.H. A novel droop method for the converter parallel operation. In Proceedings of the 16th Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 4–8 March 2001. [Google Scholar]
- Lu, X.; Sun, K.; Guerrero, J.M.; Huang, L. SOC-based dynamic power sharing method with AC-bus voltage restoration for microgrid applications. In Proceedings of the IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 25–28 October 2012; pp. 5677–5682. [Google Scholar]
- Gkavanoudis, S.I.; Oureilidis, K.; Demoulias, C.S. An adaptive droop control method for balancing the SOC of distributed batteries in AC microgrids. In Proceedings of the 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), Trondheim, Norway, 27–30 June 2016; pp. 1–6. [Google Scholar]
- Urtasun, A.; Sanchis, P.; Marroyo, L. Stand-alone AC supply systems with distributed energy storage. Energy Convers. Manag. 2015, 106, 709–720. [Google Scholar] [CrossRef] [Green Version]
- Kakigano, H.; Nishino, A.; Ise, T. Distribution voltage control for DC microgrid with fuzzy control and gain-scheduling control. In Proceedings of the 8th International Conference on Power Electronics-ECCE Asia, Jeju, Korea, 29 May–2 June 2011; pp. 256–263. [Google Scholar]
- Ye, Z.; Boroyevich, D.; Xing, K.; Lee, F.C. Design of parallel sources in DC distributed power systems by using gain-scheduling technique. In Proceedings of the 30th Annual IEEE Power Electronics Specialists Conference. Record. (Cat. No.99CH36321), Charleston, SC, USA, 1 July 1999; Volume 1, pp. 161–165. [Google Scholar]
- Tsikalakis, A.G.; Hatziargyriou, N.D. Centralized control for optimizing microgrids operation. IEEE Trans. Energy Convers. 2008, 23, 241–248. [Google Scholar] [CrossRef]
- Chaudhuri, N.R.; Chaudhuri, B. Adaptive droop control for effective power sharing in multi-terminal DC (MTDC) grids. IEEE Trans. Power Syst. 2013, 28, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, P.; Svensson, J. DC bus voltage control for a distributed power system. IEEE Trans. Power Electron. 2003, 18, 1405–1412. [Google Scholar] [CrossRef] [Green Version]
- Kurohane, K.; Senjyu, T.; Yona, A.; Urasaki, N.; Muhando, B.E.; Funabashi, T. A high quality power supply system with DC smart grid. In Proceedings of the 2010 IEEE PES Transmission and Distribution Conference and Exposition: Smart Solutions for a Changing World, New Orleans, LA, USA, 19–22 April 2010; pp. 1–6. [Google Scholar]
- Louie, H.; Strunz, K. Superconducting magnetic energy storage (SMES) for energy cache control in modular distributed hydrogen-electric energy systems. IEEE Trans. Appl. Supercond. 2007, 17, 2361–2364. [Google Scholar] [CrossRef]
- Salameh, Z.M.; Casacca, M.A.; Lynch, A. A mathematical model for lead-acid batteries. IEEE Trans. Energy Convers. 1992, 7, 93–98. [Google Scholar] [CrossRef]
- Strunz, K.; Abbasi, E.; Huu, D.N. DC microgrid for wind and solar power integration. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 115–126. [Google Scholar] [CrossRef]
- He, H.; Xiong, R.; Zhang, X.; Sun, F.; Fan, J. State-of-charge estimation of the lithium-ion battery using an adaptive extended kalman filter based on an improved thevenin model. IEEE Trans. Veh. Technol. 2011, 60, 1461–1469. [Google Scholar] [CrossRef]
- Strunz, K.; Louie, H. Cache energy control for storage: Power system integration and education based on analogies derived from computer engineering. IEEE Trans. Power Syst. 2008, 24, 12–19. [Google Scholar] [CrossRef]
- Duc, N.H. An adaptive control of hybrid battery-supercapacitor storage for integration of wind and solar. In Proceedings of the 2016 IEEE International Conference on Sustainable Energy Technologies (ICSET), Hanoi, Vietnam, 14–16 November 2016. [Google Scholar]
- Duc, N.H.; Hung, T.N. Adaptive coordinated droop control for multi-battery storage. In Proceedings of the IEEE Eurocon 2015—International Conference on Computer as a Tool (EUROCON), Salamanca, Spain, 8–11 September 2015. [Google Scholar]
- Duc, N.H.; Hung, T.N. DC microgrid for buildings integrated renewable energy sources. Int. J. Emerg. Res. Manag. Technol. 2016, 5, 12. [Google Scholar]
- Duc, N.H. State-Space Modelling and Voltage Control of AC-DC Networks. Ph.D. Thesis, Technical University of Berlin, Berlin, Germany, 2014. [Google Scholar]
- EMTDC Transient Analysis for PSCAD Power System Simulation Version 4.2.0; Manitoba HVDC Research Centre: Winnipeg, MB, Canada, 2005.
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen Huu, D. An Innovative Adaptive Droop Control Based on Available Energy for DC Micro Distribution Grids. Energies 2020, 13, 2983. https://doi.org/10.3390/en13112983
Nguyen Huu D. An Innovative Adaptive Droop Control Based on Available Energy for DC Micro Distribution Grids. Energies. 2020; 13(11):2983. https://doi.org/10.3390/en13112983
Chicago/Turabian StyleNguyen Huu, Duc. 2020. "An Innovative Adaptive Droop Control Based on Available Energy for DC Micro Distribution Grids" Energies 13, no. 11: 2983. https://doi.org/10.3390/en13112983
APA StyleNguyen Huu, D. (2020). An Innovative Adaptive Droop Control Based on Available Energy for DC Micro Distribution Grids. Energies, 13(11), 2983. https://doi.org/10.3390/en13112983