A Comprehensive Review on IoT Protocols’ Features in Smart Grid Communication
Abstract
:1. Introduction
1.1. Related Works
1.2. Contribution
- Determination of the smart grid communication specification requirements;
- Study the smart grid protocols and standards;
- Performance evaluation of IoT protocols in the smart grid environments through literature review;
- Investigation of attaining roadmap for application of IoT protocols according to future trends in the smart grid control structures.
2. Smart Grid Application Communication Requirements in the IoT Environment
2.1. Smart Grid Structure
2.2. Smart Grid Communication Requirements
3. Smart Grid Communication Protocols and Standards
4. Classification of IoT Protocols Based on Smart Grid Application
4.1. IoT Protocols Architecture and Specification
4.1.1. AMQP
4.1.2. CORBA
4.1.3. CoAP
4.1.4. DDS
4.1.5. MQTT
4.1.6. OPC UA
4.1.7. XMPP
4.1.8. ZeroMQ
4.2. IoT Protocol Application in Smart Grid
5. IoT Protocols Application Roadmap and Future Trends for Smart Grid
6. Future Work
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AC | Alarms and Conditions |
AMI | Advanced Metering Interface |
AMQP | Advanced Message Queue Telemetry Transport |
AS | Ancillary Services |
BEMS | Building Energy Management System |
CEMS | Community Energy Management System |
CIM | Common Information Model |
CoAP | Constraint Application Protocols |
CORBA | Common Object Request Broker Architecture |
CoRE | Constrained Resource Environments |
DA | Data Access |
DCPS | Data Centric Publisher Subscriber |
DDS | Data Distribution Services |
DEMS | Data center Energy Management System |
DER | Distributed Energy Resources |
DII | Dynamic Invocation Interface |
DLC | Direct Load Control |
DMS | Distribution Management System |
DNO | Distribution Network Operator |
DNP3 | Distributed Network Protocol 3 |
DR | Demand Response |
DSI | Dynamic Skeleton Interface |
DSO | Distribution System Operator |
DSTATCOM | Distribution Static Compensator |
DTLS | Datagram Transport Layer Security |
EMS | Energy Management System |
ESS | Energy Storage System |
EV | Electric Vehicles |
FIPA | Foundation for Intelligent Physical Agents Society |
FIPA-SL | FIPA-Semantic Language |
GOOSE | Generic Object Oriented Substation Event |
GPS | Geographical Position System |
FAN | Field Area Network |
HA | Historical data Access |
HAN | Home Area Network |
HEMS | Home Energy Management System |
HES | Home Electronic System |
IDL | Interface Definition Language |
IED | Intelligent Electronic Devices |
IETF | Internet Engineering Task Force |
IoT | Internet of Things |
ISA | International Society of Automation |
JID | Jabber Identification |
LAN | Local Area Network |
LPWAN | Low Power WAN |
MAS | Multi-Agent System |
MMQT | Message Queue Telemetry Transport |
MMS | Manufacturing Message Specification |
NIST | National Institute of Standards and Technology |
OASIS | Organization for the Advancement of Structured Information Standards |
OMG | Object Management Group |
OPC UA | Open Platform Communications United Architecture |
ORB | Object Request Broker |
OSI | Open System Interaction |
PLC | Power Line Carrier |
PMU | Phasor Measurements Units |
PRG | Program |
QoS | Quality of Service |
RES | Renewable Energy Sources |
REST | REpresentational State Transfer |
RFID | Radio Frequency Identification |
RTPS | Real-Time Publisher Subscriber |
SAS | Substation Automation Systems |
SASL | Simple Authentication and Security Layer |
SCADA | Supervisory Control and Data Acquisition |
SOAP | Simple Object Access Protocol |
SV | Sampled Value |
TCP | Transmission Control Protocol |
TLS | Transport Layer Security |
TSO | Transmission System Operator |
UCA2.0 | Utility Communication Architecture 2.0 |
UDP | User Datagram Protocol |
VPP | Virtual Power Plant |
V2G | Vehicle-to-Grid |
WAN | Wide Area Network |
WASA | Wide-Area Situational Awareness |
XML | eXtensible Markup Language |
XMPP | eXtensible Messaging and Presence Protocol |
ZeroMQ | Zero Message Queue |
References
- Bagdadee, A.H.; Zhang, L. Smart Grid: A Brief Assessment of the Smart Grid Technologies for Modern Power System. J. Eng. Technol. 2019, 8, 122–142. [Google Scholar]
- Heirman, D. What makes Smart Grid-Smart—In addition, who is in the “game”? IEEE Electromagn. Compat. Mag. 2012, 1, 95–99. [Google Scholar]
- Sakthivel, P.; Ganeshkumaran, S. Design of automatic power consumption control system using smart grid—A review. In World Conference on Futuristic Trends in Research and Innovation for Social Welfare (Startup Conclave); IEEE: Los Alamitos, CA, USA, 2016; pp. 1–4. [Google Scholar]
- Dai, J.; Dong, M.; Ye, R.; Ma, A.; Yang, W. A review on electric vehicles and renewable energy synergies in smart grid. In Proceedings of the China International Conference on Electricity Distribution (CICED), Xi’an, China, 10–13 August 2016; pp. 1–4. [Google Scholar]
- Qazi, A.; Hussain, F.; Rahim, N.A.; Hardaker, G.; Alghazzawi, D.; Shaban, K.; Haruna, K. Towards Sustainable Energy: A Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions. IEEE Access 2019, 7, 63837–63851. [Google Scholar] [CrossRef]
- Almehizia, A.A.; Al-Masri, H.M.K.; Ehsani, M. Integration of Renewable Energy Sources by Load Shifting and Utilizing Value Storage. IEEE Trans. Smart Grid 2019, 10, 4974–4984. [Google Scholar] [CrossRef]
- Zafar, R.; Mahmood, A.; Razzaq, S.; Ali, W.; Naeem, U.; Shehzad, K. Prosumer based energy management and sharing in smart grid. Renew. Sustain. Energy Rev. 2018, 82, 1675–1684. [Google Scholar] [CrossRef]
- Rehmani, M.H.; Reisslein, M.; Rachedi, A.; Erol-Kantarci, M.; Radenkovic, M. Integrating Renewable Energy Resources Into the Smart Grid: Recent Developments in Information and Communication Technologies. IEEE Trans. Ind. Inform. 2018, 14, 2814–2825. [Google Scholar] [CrossRef]
- Ghorbanian, M.; Dolatabadi, S.H.; Masjedi, M.; Siano, P. Communication in Smart Grids: A Comprehensive Review on the Existing and Future Communication and Information Infrastructures. IEEE Syst. J. 2019, 13, 4001–4014. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Mu, X.L.; Lei, X.H.; Li, F.; Zhou, J.; Xu, L.; Gao, Y.X.; Liu, X.Z. Development of IEC 61850 and Its Application. In Proceedings of the International Conference on Computer, Network Security and Communication Engineering (CNSCE), Bangkok, Thailand, 26–27 March 2017. [Google Scholar]
- Englert, H.; Dawidczak, H. IEC 61850 substation to control center communication—Status and practical experiences from projects. In Proceedings of the 2009 IEEE Bucharest PowerTech, Bucharest, Romania, 28 June–2 July 2009; pp. 1–6. [Google Scholar]
- Horalek, J.; Matyska, J.; Sobeslav, V. Communication protocols in substation automation and IEC 61850 based proposal. In Proceedings of the IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 19–21 November 2013; pp. 321–326. [Google Scholar]
- Gupta, S. Communication in substation automation systems. Int. J. Res. Adv. Eng. Technol. 2016, 2, 54–58. [Google Scholar]
- Ozansoy, C.; Zayegh, A.; Kalam, A. Communications for substation automation and integration. In Proceedings of the Australasian Universities Power Engineering Conference, Melborn, Australia, 29 September–2 October 2002. [Google Scholar]
- Communication Networks and Systems for Power Utility Automation—Part 8-1: Specific Communication Service Mapping (SCSM)—Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3, 2nd ed.; document IEC 61850-8-1; IEC: Geneva, Switzerland, 2011.
- Communication Networks and Systems for Power Utility Automation—Part 7-420: Basic Communication Structure—Distributed Energy Resources Logical Nodes, 1st ed.; document IEC 61850-7-420; IEC: Geneva, Switzerland, 2009.
- Communication Networks and Systems for Power Utility Automation—Part 90-7: Object Models for Power Converters in Distributed Energy Resources (DER) Systems, 1st ed.; document IEC 61850-90-7; IEC: Geneva, Switzerland, 2013.
- Zaballos, A.; Vallejo, A.; Selga, J.M. Heterogeneous communication architecture for the smart grid. IEEE Netw. 2011, 25, 30–37. [Google Scholar] [CrossRef]
- Eriksson, M.; Armendariz, M.; Vasilenko, O.O.; Saleem, A.; Nordström, L. Multiagent-Based Distribution Automation Solution for Self-Healing Grids. IEEE Trans. Ind. Electron. 2015, 62, 2620–2628. [Google Scholar] [CrossRef]
- Saleem, Y.; Crespi, N.; Rehmani, M.H.; Copeland, R. Internet of Things-Aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions. IEEE Access 2019, 7, 62962–63003. [Google Scholar] [CrossRef]
- Communication Networks and Systems for Power Utility Automation—Part 8-2: Specific Communication Service Mapping (SCSM)—Mapping to Extensible Messaging Presence Protocol (XMPP), 1st ed.; document IEC 61850-8-2; IEC: Geneva, Switzerland, 2018.
- Al-Ali, A. Role of internet of things in the smart grid technology. J. Comput. Commun. 2015, 3, 229. [Google Scholar] [CrossRef] [Green Version]
- Kaur, M.; Kalra, S. A review on IOT based smart grid. Int. J. Energy Inf. Commun. 2016, 7, 11–22. [Google Scholar] [CrossRef]
- Viswanath, S.K.; Yuen, C.; Tushar, W.; Li, W.; Wen, C.; Hu, K.; Chen, C.; Liu, X. System design of the internet of things for residential smart grid. IEEE Wirel. Commun. 2016, 23, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Dalipi, F.; Yayilgan, S.Y. Security and Privacy Considerations for IoT Application on Smart Grids: Survey and Research Challenges. In Proceedings of the IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), Vienna, Austria, 22–24 August 2016; pp. 63–68. [Google Scholar]
- Sakhnini, J.; Karimipour, H.; Dehghantanha, A.; Parizi, R.M.; Srivastava, G. Security aspects of Internet of Things aided smart grids: A bibliometric survey. Internet Things 2019, 16, 100111. [Google Scholar] [CrossRef]
- Bikmetov, R.; Raja, M.Y.A.; Sane, T.U. Infrastructure and applications of Internet of Things in smart grids: A survey. In Proceedings of the North American Power Symposium, Morgantown, WV USA, 17–19 Septrember 2017; pp. 1–6. [Google Scholar]
- Jiang, A.; Yuan, H.; Li, D.; Tian, J. Key technologies of ubiquitous power Internet of Things-aided smart grid. J. Renew. Sustain. Energy 2019, 11, 062702. [Google Scholar] [CrossRef] [Green Version]
- Ghasempour, A. Internet of Things in Smart Grid: Architecture, Applications, Services, Key Technologies, and Challenges. Invention 2019, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Collier, S.E. The Emerging Enernet: Convergence of the Smart Grid with the Internet of Things. IEEE Ind. Appl. Mag. 2017, 23, 12–16. [Google Scholar] [CrossRef]
- Reka, S.S.; Dragicevic, T. Future effectual role of energy delivery: A comprehensive review of Internet of Things and smart grid. Renew. Sustain. Energy Rev. 2018, 91, 90–108. [Google Scholar] [CrossRef]
- Bedi, G.; Venayagamoorthy, G.K.; Singh, R.; Brooks, R.R.; Wang, K. Review of Internet of Things (IoT) in Electric Power and Energy Systems. IEEE Internet Things J. 2018, 5, 847–870. [Google Scholar] [CrossRef]
- Bahashwan, A.A.O.; Manickam, S. A Brief Review of Messaging Protocol Standards for Internet of Things (IoT). J. Cyber Secur. Mobil. 2019, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Pradeep, K.K.; Vigna, K.R.; Padmanathan, K.; Jia, Y.Y.; Jagadeesh, P.; Arul, R. Application and assessment of internet of things toward the sustainability of energy systems: Challenges and issues. Sustain. Cities Soc. 2020, 53, 101957. [Google Scholar]
- Pramudhita, A.N.; Asmara, R.A.; Siradjuddin, I.; Rohadi, E. Internet of Things Integration in Smart Grid. In Proceedings of the International Conference on Applied Science and Technology (iCAST), North Sulawesi, Indonesia, 26–27 October 2018; pp. 718–722. [Google Scholar]
- Amin, S.M.; Giacomoni, A.M. Smart grid, safe grid. IEEE Power Energy Mag. 2011, 10, 33–40. [Google Scholar] [CrossRef]
- Annaswamy, A. IEEE Vision for Smart Grid Control: 2030 and Beyond Roadmap; IEEE: Los Alamitos, CA, USA, 2013; pp. 1–12. [Google Scholar]
- Li, J.; Li, T.; Han, L. Research on the Evaluation Model of a Smart Grid Development Level Based on Differentiation of Development Demand. Sustainability 2018, 10, 4047. [Google Scholar] [CrossRef] [Green Version]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Dileep, G. A survey on smart grid technologies and applications. Renew. Energy 2020, 146, 2589–2625. [Google Scholar] [CrossRef]
- Tariq, F.; Dooley, L.S. Smart Grid communication and networking technologies: Recent developments and future challenges. In Smart Grids; Springer: Berlin/Heidelberg, Germany, 2013; pp. 199–213. [Google Scholar]
- Barai, G.R.; Krishnan, S.; Venkatesh, B. Smart metering and functionalities of smart meters in smart grid—A review. In Proceedings of the 2015 IEEE Electrical Power and Energy Conference (EPEC), London, ON, Canada, 26–28 October 2015; pp. 138–145. [Google Scholar]
- Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of smart meter data analytics: Applications, methodologies, and challenges. IEEE Trans. Smart Grid 2018, 10, 3125–3148. [Google Scholar] [CrossRef] [Green Version]
- Al-Turjman, F.; Abujubbeh, M. IoT-enabled smart grid via SM: An overview. Future Gener. Comput. Syst. 2019, 96, 579–590. [Google Scholar] [CrossRef]
- Uddin, M.; Romlie, M.F.; Abdullah, M.F.; Halim, S.A.; Kwang, T.C. A review on peak load shaving strategies. Renew. Sustain. Energy Rev. 2018, 82, 3323–3332. [Google Scholar] [CrossRef]
- Hui, H.; Ding, Y.; Shi, Q.; Li, F.; Song, Y.; Yan, J. 5G network-based Internet of Things for demand response in smart grid: A survey on application potential. Appl. Energy 2020, 257, 113972. [Google Scholar] [CrossRef]
- Zhang, X.; Pei, W.; Deng, W.; Du, Y.; Qi, Z.; Dong, Z. Emerging smart grid technology for mitigating global warming. Int. J. Energy Res. 2015, 39, 1742–1756. [Google Scholar] [CrossRef]
- Shobole, A.; Wadi, M.; Tür, M.R.; Baysal, M. Real time active power control in smart grid. In Proceedings of the 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, USA, 5–8 November 2017; pp. 585–590. [Google Scholar]
- Nozaki, Y.; Tominaga, T.; Iwasaki, N.; Takeuchi, A. A technical approach to achieve smart grid advantages using energy management systems. In Proceedings of the International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 9–11 November 2011; pp. 1–5. [Google Scholar]
- Rahman, M.G.; Chowdhury, M.F.B.R.; Al Mamun, M.A.; Hasan, M.R.; Mahfuz, S. Summary of smart grid: Benefits and issues. Int. J. Sci. Eng. Res. 2013, 4, 1–5. [Google Scholar]
- Shu-wen, W. Research on the key technologies of IOT applied on smart grid. In Proceedings of the International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp. 2809–2812. [Google Scholar]
- Hossain, E.; Han, Z.; Poor, H.V. Smart grid communications and networking; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Tightiz, L.; Yang, H. Survey of IEC61850 M2M Interface based on IoT Protocols in Smart Grid Environment. In Proceedings of the Korea Institute Of Communication Sciences (KICS) Winter Conference, YongPyung Resort, Korea, 23–25 February 2019; Volume 1, pp. 382–385. [Google Scholar]
- Daoud, M.; Fernando, X. On the communication requirements for the smart grid. Energy Power Eng. 2011, 3, 53. [Google Scholar] [CrossRef] [Green Version]
- Al-Dulaimi, A.; Wang, X.; Chih-Lin, I. Provisioning Unlicensed LAA Interface for Smart Grid Applications. In 5G Networks: Fundamental Requirements, Enabling Technologies, and Operations Management; IEEE: Los Alamitos, CA, USA, 2018; pp. 603–624. [Google Scholar]
- Kuzlu, M.; Pipattanasomporn, M.; Rahman, S. Communication network requirements for major smart grid applications in HAN, NAN and WAN. Comput. Netw. 2014, 67, 74–88. [Google Scholar] [CrossRef]
- Naumann, A.; Bielchev, I.; Voropai, N.; Styczynski, Z. Smart grid automation using IEC 61850 and CIM standards. Control. Eng. Pract. 2014, 25, 102–111. [Google Scholar] [CrossRef]
- Schmutzler, J.; Gröning, S.; Wietfeld, C. Management of distributed energy resources in IEC 61850 using web services on devices. In Proceedings of the IEEE International Conference on Smart Grid Communications (SmartGridComm), Brussels, Belgium, 17–20 October 2011; pp. 315–320. [Google Scholar]
- Communication Networks and Systems for Power Utility Automation—Part 1: Introduction and Overview (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3, 2nd ed.; document IEC 61850-1; IEC: Geneva, Switzerland, 2013.
- Tightiz, L.; Yang, H.; Piran, M.J. A Survey on Enhanced Smart Micro-Grid Management System with Modern Wireless Technology Contribution. Energies 2020, 13, 2258. [Google Scholar] [CrossRef]
- Rodríguez-Molina, J.; Kammen, D.M. Middleware Architectures for the Smart Grid: A Survey on the State-of-the-Art. Taxonomy and Main Open Issues. IEEE Commun. Surv. Tutor. 2018, 20, 2992–3033. [Google Scholar] [CrossRef]
- Pathaka, A.D.; Tembhurne, J.V. Internet of Things: A Survey on IoT Protocols. In Proceedings of the 3rd International Conference on Internet of Things and Connected Technologies (ICIoTCT), Jaipur, India, 26–27 March 2018; pp. 26–27. [Google Scholar]
- Graube, M.; Hensel, S.; Iatrou, C.; Urbas, L. Information models in OPC UA and their advantages and disadvantages. In Proceedings of the 3rd 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 9–10 May 2017; pp. 1–8. [Google Scholar]
- González, I.; Calderón, A.J.; Figueiredo, J.; Sousa, J. A Literature Survey on Open Platform Communications (OPC) Applied to Advanced Industrial Environments. Electronics 2019, 8, 510. [Google Scholar] [CrossRef] [Green Version]
- Burger, A.; Koziolek, H.; Rückert, J.; Platenius-Mohr, M.; Stomberg, G. Bottleneck identification and performance modeling of OPC UA communication models. In Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering, Barcelona, Spain, 27–29 November 2019; pp. 231–242. [Google Scholar]
- Lee, R. Big Data, Cloud Computing, and Data Science Engineering; Springer: Berlin/Heidelberg, Germany, 2019; Volume 844. [Google Scholar]
- Fagbemi, D.D.; Wheeler, D.M.; Wheeler, J. The IoT Architect’s Guide to Attainable Security and Privacy; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Macarulla, M.; Albano, M.; Ferreira, L.L.; Teixeira, C. Lessons learned in building a middleware for smart grids. J. Green Eng. 2016, 6, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Sanz, R.; Clavijo, J.A.; Segarra, M.; de Antonio, A.; Alonso, M. CORBA-based substation automation systems. In Proceedings of the 2001 IEEE International Conference on Control Applications (CCA’01) (Cat. No. 01CH37204), Mexico City, Mexico, 5–7 September 2001; pp. 773–777. [Google Scholar]
- Shin, I.J.; Song, B.K.; Eom, D.S. International Electronical Committee (IEC) 61850 mapping with constrained application protocol (CoAP) in smart grids based European telecommunications standard institute Machine-to-Machine (M2M) environment. Energies 2017, 10, 393. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, A.B.; Hauksson, E.B.; Andersen, P.B.; Poulsen, B.; Træholt, C.; Gantenbein, D. Facilitating a generic communication interface to distributed energy resources: Mapping IEC 61850 to RESTful services. In Proceedings of the First, IEEE International Conference on Smart Grid Communications, Gaithersburg, MD, USA, 4–6 October 2010; pp. 61–66. [Google Scholar]
- Lehnhoff, S.; Mahnke, W.; Rohjans, S.; Uslar, M. IEC 61850 based OPC UA communication-The future of smart grid automation. In Proceedings of the 17th Power Systems Computation Conference (PSCC’11), Stockholm, Sweden, 22–26 August 2011. [Google Scholar]
- Sucic, S.; Bony, B.; Guise, L. Standards-compliant event-driven SOA for semantic-enabled smart grid automation: Evaluating IEC 61850 and DPWS integration. In Proceedings of the 2012 IEEE International Conference on Industrial Technology, Athens, Greece, 19–21 March 2012; pp. 403–408. [Google Scholar]
- Calvo, I.; De Albéniz, O.G.; Noguero, A.; Pérez, F. Towards a modular and scalable design for the communications of electrical protection relays. In Proceedings of the 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009; pp. 2511–2516. [Google Scholar]
- Bi, Y.; Jiang, L.; Wang, X.J.; Cui, L.Z. Mapping of IEC 61850 to Data Distribute Service for digital substation communication. In Proceedings of the IEEE Power &Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5. [Google Scholar]
- Sučić, S.; Rohjans, S.; Mahnke, W. Semantic smart grid services: Enabling a standards-compliant Internet of energy platform with IEC 61850 and OPC UA. In Proceedings of the Eurocon 2013, Zagreb, Croatia, 1–4 July 2013; pp. 1375–1382. [Google Scholar]
- Youssef, T.A.; Elsayed, A.T.; Mohammed, O.A. Data distribution service-based interoperability framework for smart grid testbed infrastructure. Energies 2016, 9, 150. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R.D.F.; de Oliveira, R.S. Cloud IEC 61850 A Case Study of a Software Defined Protection, Automation Control System. In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Turin, Italy, 4–7 September 2018; Volume 1, pp. 75–82. [Google Scholar]
- Iglesias-Urkia, M.; Urbieta, A.; Parra, J.; Casado-Mansilla, D. IEC 61850 meets CoAP: Towards the integration of smart grids and IoT standards. In Proceedings of the Seventh International Conference on the Internet of Things, Linz, Austria, 22–25 October 2017; pp. 1–9. [Google Scholar]
- Hastings, J.C.; Laverty, D.M. Modernizing wide-area grid communications for distributed energy resource applications using MQTT publish–subscribe protocol. In Proceedings of the IEEE Power &Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar]
- Youssef, T.A.; El Hariri, M.; Elsayed, A.T.; Mohammed, O.A. A DDS-based energy management framework for small microgrid operation and control. IEEE Trans. Ind. Inform. 2017, 14, 958–968. [Google Scholar] [CrossRef]
- Esfahani, M.M.; Hariri, A.; Mohammed, O.A. Game-theory-based Real-Time Inter-Microgrid Market Design Using Hierarchical Optimization Algorithm. In Proceedings of the IEEE Power &Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018; pp. 1–5. [Google Scholar]
- Iglesias-Urkia, M.; Casado-Mansilla, D.; Mayer, S.; Urbieta, A. Validation of a CoAP to IEC 61850 Mapping and Benchmarking vs HTTP-REST and WS-SOAP. In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Torino, Italy, 4–7 September 2018; Volume 1, pp. 1015–1022. [Google Scholar]
- Hussain, S.S.; Aftab, M.A.; Ali, I. IEC 61850 modeling of DSTATCOM and XMPP communication for reactive power management in microgrids. IEEE Syst. J. 2018, 12, 3215–3225. [Google Scholar] [CrossRef]
- Aftab, M.A.; Hussain, S.S.; Ali, I.; Ustun, T.S. IEC 61850 and XMPP communication based energy management in microgrids considering electric vehicles. IEEE Access 2018, 6, 35657–35668. [Google Scholar] [CrossRef]
- Kim, J.S.; Thus, S.M.; Kim, J.T.; Cho, J.W.; Park, H.J.; Jufri, F.H.; Jung, J. Microgrids platform: A design and implementation of common platform for seamless microgrids operation. Electr. Power Syst. Res. 2019, 167, 21–38. [Google Scholar] [CrossRef]
- Petersen, B.; Bindner, H.; Poulsen, B.; You, S. Smart grid communication middleware comparison. In Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS 2017), Portugal, Porto, 22–24 April 2017; pp. 219–226. [Google Scholar]
- Choi, J.S. A Hierarchical Distributed Energy Management Agent Framework for Smart Homes, Grids, and Cities. IEEE Commun. Mag. 2019, 57, 113–119. [Google Scholar] [CrossRef]
- Hatziargyriou, N. Operation of Multi-Microgrids. In Microgrids: Architectures and Control; Wiley: Hoboken, NJ, USA, 2014; pp. 165–205. [Google Scholar]
- Zou, H.; Mao, S.; Wang, Y.; Zhang, F.; Chen, X.; Cheng, L. A survey of energy management in interconnected multi-microgrids. IEEE Access 2019, 7, 72158–72169. [Google Scholar] [CrossRef]
- Kumari, A.; Tanwar, S.; Tyagi, S.; Kumar, N.; Obaidat, M.S.; Rodrigues, J.J.P.C. Fog Computing for Smart Grid Systems in the 5G Environment: Challenges and Solutions. IEEE Wirel. Commun. 2019, 26, 47–53. [Google Scholar] [CrossRef]
- Hussain, M.; Beg, M. Fog Computing for Internet of Things (IoT)-Aided Smart Grid Architectures. Big Data Cogn. Comput. 2019, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Herold, R.; Hertzog, C. Data Privacy for the Smart Grid; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Hasanuzzaman Shawon, M.; Muyeen, S.M.; Ghosh, A.; Islam, S.M.; Baptista, M.S. Multi-Agent Systems in ICT Enabled Smart Grid: A Status Update on Technology Framework and Applications. IEEE Access 2019, 7, 97959–97973. [Google Scholar] [CrossRef]
Reference | Impacts of IoT on Smart Grid | IoT Architecture in Smart Grid | IoT Requirements in Smart Grid | IoT Protocols in Smart Grid | IoT Future Trends in Smart Grid | |||||
---|---|---|---|---|---|---|---|---|---|---|
Computation | Standard | Security | EnergyAcquisition | Communication | Introduction | Performance Comparison | ||||
[22] 2015 | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
[23] 2016 | ✓ | ✗ | ✗ | ✓ | ✗ | ✓ | ✓ | ✗ | ✗ | ✓ |
[24] 2016 | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ |
[25] 2016 | ✓ | ✓ | ✗ | ✗ | ✓ | ✗ | ✓ | ✓ | ✗ | ✓ |
[27] 2017 | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✗ | ✓ |
[30] 2017 | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✓ |
[31] 2018 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✓ |
[32] 2018 | ✓ | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✓ |
[35] 2018 | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ |
[28] 2019 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✓ |
[20] 2019 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✓ |
[26] 2019 | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ |
[29] 2019 | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✓ | ✗ | ✗ | ✓ |
[34] 2020 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ |
Communication Level | Communication Technologies | Application | Bandwidth | Latency | |
---|---|---|---|---|---|
Wired | Wireless | ||||
HAN | Coaxial Cable, Ethernet, PLC | Bluetooth, ZigBee, Z-wave | HEMS | 9.6–56 kbps | 200 ms–2 sec |
EV Charging | 9.6–56 kbps | 2 sec–5 min | |||
V2G | 9.6–56 kbps | 2 sec–5 min | |||
FAN | Coaxial Cable, Ethernet, DSL, Fiber optic, PLC | ZigBee Pro, WiFi, Cellular, Low Power WAN (LPWAN), Satellite | AMI | node: 10–100 kbps backhaul: 500 kbps | 2–15 sec |
DER and ESS | 9.6–56 kbps | 20 ms–15 sec | |||
WAN | Coaxial Cable, DSL, Fiber optic | Cellular, LPWAN, Satellite | DR | 14–100 kbps | 500 ms– several minutes |
DMS | 9.6–100 kbps | 100 ms–2 sec | |||
SAS | 9.6–56 kbps | 15–20 ms | |||
WASA | 600–1500 kbps | 15–200 ms | |||
Outage management | 56 kbps | 2000 ms |
Standard | Subject |
---|---|
IEC 61850 | Communication networks and systems for power utility automation |
IEC 61970 | Energy management system application program interface including the common information model |
IEC 61968 | System interfaces for distribution management |
IEC 61400-25 | Communications for monitoring and control of wind power plants |
IEC 62325 | Framework for energy market communication |
IEC 62351 | Standard for the data transfer security |
IEC 62056 | Data exchange for meter reading, tariff and load control |
IEC 61508 | Functional safety of electrical/electronic/programmable electronic safety-related systems |
IEC 61131 | Programmable controllers |
IEC 61334 | Distribution automation using distribution line carrier systems |
ISO/IEC 14543 | Home Electronic System (HES) architecture |
IEC 61499 | Distributed control and automation |
IEEE 1547 | IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces |
IoT Protocol | QoS | Data Security | Transport Layer | Message Prioritization | Message Pattern | Complexity | Extensibility | Dominant Application in the Smart Grid | Main Advantages | Main Disadvantages |
---|---|---|---|---|---|---|---|---|---|---|
AMQP | ✓ | TLS SSL | TCP | ✓ | Req-Res Pub-Sub | Low | ✓ | Smart meter, AMI | Offer wide message features | Not suitable for resource constrained applications |
CoAP | ✓ | DTLS | UDP | ✓ | Req-Res Pub-Sub | Low | ✓ | Smart Home | Suitable for resource constrained application | Limited QoS |
CORBA | ✓ | SSL | UDP | ✗ | Req-Res Push-Pull | Medium | ✗ | SAS | Support wide variety of languages | Suitable for slow network (Ethernet) |
DDS | ✓ | SSL DTLS | TCP UDP | ✓ | Pub-Sub | High | ✓ | EMS | Extensive QoS | Suitable for large scale system |
DPWS | ✓ | TLS SSL | TCP UDP | ✓ | Pub-Sub | Medium | ✓ | Electricity Market | Suitable for resource constrained application | Some security issues in services |
MQTT | ✓ | TLS SSL | TCP | ✗ | Pub-Sub | Low | ✓ | Smart Home, Smart meter | Easy implementation | Limited scalability because of broker |
OPC UA | ✗ | SSL | TCP | ✗ | Req-Res Pub-Sub Push-Pull | High | ✓ | SAS | Suitable for resource constrained applications | Firewall configuration requirements |
XMPP | ✗ | TLS | TCP | ✗ | Req-Res Pub-Sub Push-Pull | High | ✓ | the smart grid application | Recommended by IEC 61850 | Not suitable on constrained devices since XML parsing |
ZeroMQ | ✓ | TLS | TCP | ✗ | Req-Res Pub-Sub Push-Pull | Medium | ✓ | HEMS | Brokerless | Less QoS compare with DDS |
Authors | Year | Protocols | Utilization Horizon | Benchmark Protocol | Evaluation Methods | |
---|---|---|---|---|---|---|
Analyzer Tools | Metrics | |||||
Sanz et al. [69] | 2001 | CORBA | SAS | - | - | - |
Pedersen et al. [71] | 2010 | HTTP-REST | MicroCHP, EV | - | - | - |
Lenhoff et al. [72] | 2010 | OPC UA | - | - | - | - |
Schmutzler et al. [58] | 2011 | DPWS | EV | - | - | Latency, Scalability |
Sucic et al. [73] | 2012 | DPWS | VPP | - | - | - |
Calvo et al. [74] | 2012 | DDS+CORBA | - | - | - | Jitter, Latency |
Bi et al. [75] | 2013 | DDS | - | - | - | Reliability(Received/Sent) |
Sucic et al. [76] | 2013 | OPC UA | VPP | - | - | - |
Tarek et al. [77] | 2016 | DDS | Micro grid | - | Matlab | Latency, Throughput |
Macarulla et al. [68] | 2016 | AMQP | HAN | - | - | Latency, Processing time |
Ferreira et al. [78] | 2017 | DDS | Protection, Automation, and Control | - | Testbed on Local Network and Virtual Machine | Latency, Jitter |
Shin et al. [70] | 2017 | CoAP | SAS | MQTT, SOAP | OPNET Modeler 17.1 | Packet/Second, Data size, Traffic, Delay |
Iglesias et al. [79] | 2017 | CoAP | - | - | - | - |
Hastings et al. [80] | 2017 | MQTT | Storage Heater | - | - | - |
Tarek et al. [81] | 2017 | DDS | EMS of micro grid | - | MATLAB | Latency |
Esfahani et al. [82] | 2018 | DDS | Micro grid market | - | Ethernet (LAN), Virtual Private Network (VPN) | Energy mismatching in market |
Iglesias et al. [83] | 2018 | CoAP | Smart elevator | HTTP-REST, WS-SOAP | Wireshark | Latency, Data Size, Overhead |
Hussain et al. [84] | 2018 | XMPP | DSTATCOM | - | - | - |
Aftab et al. [85] | 2018 | XMPP | EV | - | - | - |
Kim et al. [86] | 2019 | OPC UA | Micro grid on IEEE 9 bus | - | UACTT OPC UA Compliance Test Tool | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tightiz, L.; Yang, H. A Comprehensive Review on IoT Protocols’ Features in Smart Grid Communication. Energies 2020, 13, 2762. https://doi.org/10.3390/en13112762
Tightiz L, Yang H. A Comprehensive Review on IoT Protocols’ Features in Smart Grid Communication. Energies. 2020; 13(11):2762. https://doi.org/10.3390/en13112762
Chicago/Turabian StyleTightiz, Lilia, and Hyosik Yang. 2020. "A Comprehensive Review on IoT Protocols’ Features in Smart Grid Communication" Energies 13, no. 11: 2762. https://doi.org/10.3390/en13112762