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Abstract: Extensive digitization and interconnection through networks have ushered in a number
of new paradigms over the last years: Internet of Things, cyber–physical systems, Industry 4.0, etc.
These challenging systems rely on an effective information communication between distributed
components. Therefore, the heterogeneity of entities, both hardware and software, must be
handled to achieve an operative interoperability and a proper behavior. However, there is also
a heterogeneous availability of solutions; different technologies, protocols, and architectures aim
to achieve a seamless interconnection. Henceforth, the standardization still requires great efforts
from industrial and scientific environments. In this sense, the interface of the open platform
communications (OPC) has supported connectivity for automation and supervision infrastructures for
more than two decades. The OPC comprises the so-called classic OPC, the original protocol, as well
as the last specification, unified architecture (UA). The widespread utilization of the classic OPC
together with the powerful functionalities of OPC UA, make the latter one of the main candidates to
lead the standardization and systems integration. This paper presents a survey of recent OPC-based
systems reported in scientific literature for different domains as well as research projects. The goal of
this paper is to provide a broad perspective about the OPC’ applicability and capabilities in order to
support the decision about communication interfaces. The results are analyzed and discussed putting
special attention on the aforementioned new paradigms. Finally, the main conclusions and open
research directions are highlighted.

Keywords: industrial communications; OPC UA; classic OPC; SCADA; interoperability;
Internet-of-Things; Industry 4.0; automation

1. Introduction

Digitization and interconnection through networks are increasingly affecting industries.
As the advances in information and communication technologies (ICTs) penetrate the whole chain of
processes, the evolution towards new paradigms is unstoppable: Internet of Things (IoT), cyber–physical
systems (CPS), Industry 4.0, big data, etc. Namely, CPS combine mechatronics and ICTs to control
physical processes and systems, designed as a network of interacting software and hardware
components, devices, and systems [1]. This approach applied to production systems is named
cyber–physical production systems (CPPS) [2–4] or industrial CPS (ICPS) [5–8].
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Even, the advent of the fourth industrial revolution is being performed by the penetration of
information, communication, and control technologies (ICCT) into a networked industrial environment.
This revolution is commonly referred to as Industry 4.0; however, such a term is a label similar to
the German strategic program called Industrie 4.0 [9].

In addition, there are some initiatives around the world to develop the next-generation of
industrial facilities: Nouvelle France Industrielle [10] in France, Connected Industry 4.0 [11] in Spain,
China Manufacturing 2025 [12] in China, Smart Manufacturing Leadership Coalition [13] in the US,
and the Japanese Robot Revolution Initiative [14] that has agreed to cooperate in the field of IoT/Industry
4.0 with the German initiative.

In this context, physical operative technology (OT) and cyber information technology (IT) are
integrated in order to seamlessly collaborate. Operative technology is composed of shop floor devices
like automation units, sensors and actuators, whereas software management systems like manufacturing
execution systems (MES), enterprise resource planning (ERP), and supervisory control and data
acquisition systems (SCADA) constitute the IT level. The OT/IT connectivity and interoperability are
a challenging task for Industry 4.0 implementation that receives important research efforts [15].

Systems integration requires an enormous effort, especially for large-scale infrastructures.
In general, these facilities are complex, vast networked systems that comprise a vast number of devices
and applications with different communication protocols. Therefore, data acquisition, exchange,
and processing are achieved in a distributed way between heterogeneous data sources and consumers.
Cyber–physical systems and IoT are represented by platforms that are integrated through connectivity
protocols that permit a wide sharing of information among different devices [16]. In fact, a big
challenge in these innovative scenarios is related to the wide heterogeneity of devices, operating
systems, platforms, and services [17]. Interoperability is one of the major advantages of Industry
4.0 [18], but proprietary approaches must be replaced by open and standardized communications
solutions to make it a successful reality [19,20]. Consequently, standardization is essential for the real
development and deployment of these systems. The lack of standards is actually considered a big
issue, so research efforts must be performed in the direction of defining standard protocols, languages,
and methodologies to enable the full potential of such concepts [17].

There is also heterogeneity referred to the availability of diverse communication protocols devoted
to the shop floor like OPC, MTConnect, message queue telemetry transport (MQTT), distributed
network protocol (DNP3), as well as modelling information languages, such as the common information
model (CIM) or the unified modelling language (UML). Even, for these paradigms, there are numerous
conceptual frameworks to perform their orchestration and deployment. For instance, the reference
architectural model for Industry 4.0 (RAMI) [21], the industrial internet reference architecture (IIRA)
of the industrial internet consortium [22], and many others [7,23–25] that are continuously enriching
the possibilities of these approaches.

Despite the fact that each one of the available options has pros and cons, such heterogeneity
constitutes a significant obstacle for a real standardization and seamless interconnection of the ecosystems.
This difficulty must be overcome when facing the design and systems integration of infrastructures
under these advanced approaches. The selection of the communication interface to achieve an effective
interoperability and heterogeneity management is a transcendental decision that seriously affects aspects
such as economic costs, maintainability, expandability, security, and resilience.

In this sense, open platform communications (OPC) has proven to be an effective communications
middleware mainly in industrial applications. Due to its powerful functionalities, the last specification,
called unified architecture (UA), is one of the main candidates to lead the standardization and systems
integration for present and future frameworks.

Open platform communications is an industrial communication interface also known as open
process control, or openness, productivity, collaboration. It has even been termed the network
glue for control systems [26]. Open platform communications provides a technology to support
interoperability and heterogeneity in control and automation applications, mainly devoted to industrial
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manufacturing. The so-called classic OPC was developed by an industrial automation industry task
force in 1996 to provide a communication protocol for personal computer (PC)-based software
applications and automation hardware. Currently, OPC comprises ten specifications that are
established and managed by the OPC Foundation [27]: Data access (DA), historical data access
(HDA), alarms and events (A&E), XML-data access (XML-DA), data exchange (DX), complex data
(CD), security, batch, express interface (Xi), and unified architecture (UA). The classic OPC includes
the first eight specifications and the OPC DA is the most widely applied. In fact, initially the term
OPC corresponded to object linking and embedding (OLE) for process control. It is primarily used
to provide real-time access to process control and manufacturing data. One of the main reasons for
the rapid diffusion of OPC classic specification was also the most criticized aspect: it was based on
Microsoft’s distributed component object model (DCOM), and thus, platform-dependent and not
suitable for use in cross-domain scenarios and for the Internet [28]. Classic OPC is nowadays a legacy
technology, and hence, is not further developed.

Far from being left behind, the last specification, OPC UA, is gaining ever-increasing attention.
Developed as the successor to classic OPC, UA specification was released in 2006 and is an IEC
international standard of the international electrotechnical commission (IEC), namely, IEC 62541.
This new version is intended to provide greater interoperability, eliminating MS-Windows dependency;
OPC UA is able to operate in different operative systems like UNIX-based ones. This specification
is built around service-oriented architecture (SOA) and is based on web services, making easier
the implementation of OPC connections over the Internet. As pointed out in Reference [29], classic OPC
did not attract much interest in research communities but the availability of connection to the Internet
made OPC interesting. In fact, since OPC UA was defined, it is receiving growing research efforts
and is intended to replace classic OPC. The highly configurable address space is designed to allow for
the creation of complex networks of data [4]. Moreover, OPC UA has improved features concerning
security-like encryption, authentication, and audition [27].

It is worth emphasizing that within the present paper, OPC classic and OPC UA are grouped
from the point of view of applications, not concerning their absolutely different conceptual design.
In the same regard, it must be noted that the technical particulars of OPC specifications would be
superfluous for the objectives of this paper, whereas detailed information can be found in reference [27].

The inclusion of this standard assures the scalability of the infrastructure and allows later expansions
from diverse hardware/software products. Some of the main benefits of OPC utilization are: wide support
from hardware and software manufacturers, open connectivity, generality, scalability, modularity,
easy configuration, just to name a few. Refer to reference [24] for further details. Figure 1 depicts
the general layout of communication using the classic OPC protocol. The hardware devices act as data
sources and the software applications play the role of data consumers whereas the OPC interface acts
as connectivity middleware, enabling the data flow. i.e., a data hub is materialized by OPC, around
which devices and applications access through their OPC interfaces. Data consumers are commonly
software applications that cover process monitoring and scheduling environments, i.e., SCADA systems,
human–machine interfaces (HMIs), as well as ERP programs. Concerning OPC-enabled hardware
(data sources) programmable logic controllers (PLCs) are the dominant type of automation physical
devices thanks to their reliable and robust operation. Other field devices to be interfaced through OPC
are data acquisition cards (DAQs), remote input/output units, robot controllers, intelligent electronic
device (IED), radio frequency identification (RFID) readers, etc. Indeed, most of industrial equipment
manufacturers provide OPC functionalities. By means of the OPC, the client applications access and manage
the field information without need of knowledge about the physical nature of data sources [24].

Beyond the typical industrial application, the capabilities of OPC technology allow extending
its application to other kinds of environments, such as energy automation, virtualized environments,
educational systems, building automation, and many others. In fact, within the current vortex
of technological evolution, OPC UA is targeted as a fundamental technology by many authors of
the reviewed literature.
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There is a large amount of journal and conference papers reporting OPC application cases;
however, scarce reviews and surveys concerning strictly OPC features can be found in the literature.
Each one of them focuses on specific features or domains, for instance, security [30], performance [28],
or specific applications like maintenance [31]. An exception is the work of Schwarz and Börksök [29],
a survey on OPC reporting details about the specifications and outlining research lines. Although it is
a valuable paper, it is brief and a technical specifications-centered paper, so it does not cover the full
scope of how OPC may be used.

From authors’ viewpoint, given the widespread utilization of classic OPC and the powerful
capabilities of OPC UA, these standards deserve a work focused on reviewing recent and relevant
application examples regardless of the particular domain, and also the main open research trends.
To the best of our knowledge, there is no existing work addressing this issue.

This paper presents a survey of the most meaningful research and development (R&D) works
covering all the widely diverse scopes where OPC has been recently applied. Furthermore, nowadays
the role of OPC UA is receiving even higher relevance due to its interplay in the main challenges of
the technological and scientific world, namely, IoT, CPS, Industry 4.0, etc. This issue is also discussed.

The main goal of this paper is to provide a broad perspective about OPC applicability
and capabilities in order to support the decision about communication interfaces when designing
advanced automation infrastructures. In a more detailed manner, this work provides the following
contributions: (i) An analysis of scientific literature was carried out to highlight the importance of OPC;
(ii) A categorization of the most significant papers was performed according to the application scope;
(iii) A comprehensive background on recent OPC-based systems was afforded, useful for researchers,
academics, and practitioners; (iv) A panoramic view on trends and open research issues of OPC UA is
provided, mainly related with CPS, IoT, and Industry 4.0.

The remainder of the paper is organized as follows. The materials and method used for the survey
of OPC applications reported in the scientific literature are expounded in Section 2. In Section 3,
the achieved results are described, including recent OPC-related R&D projects. Section 4 deals with
the discussion of the reported results jointly with the trends and open research issues regarding OPC
UA. Finally, the main conclusions are addressed.

2. Materials and Methods

Aiming to illustrate the presence of OPC technology in the scientific literature, an analysis of
the available publications, mainly from journals and conferences, was carried out. This survey used
different bibliographic databases, namely, Scopus, Web of Science, Google Scholar, Institute of Electrical
and Electronics Engineers (IEEE) Xplore, and Science Direct. Among these data sources, Scopus indexes
70 million items from more than 5000 publishers and contains 1.4 billion cited references dating back
to 1970. So, for a clearer illustration of the conducted task, the statistics given hereafter have been built
on the results provided by this database.

Due to the diverse ways of referring to OPC communication, the query in the fields of meta-data
(Title, Abstract, and Keywords) included a number of variants of terms like “OPC interface”,
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“OPC protocol”, “OPC standard”, “OPC communication”, “OPC UA”, etc. In addition, some excluding
terms were used to avoid acronyms with different meanings. In order to illustrate the performed
searching tasks, the exact query for Scopus is now given:

(TITLE-ABS-KEY ("OPC interface") OR TITLE-ABS-KEY ("OPC protocol") OR TITLE-ABS-KEY
("OPC standard") OR TITLE-ABS-KEY ("OPC UA") OR TITLE-ABS-KEY ("OPC server") OR
TITLE-ABS-KEY ("OPC channel") OR TITLE-ABS-KEY ("OPC technology") OR TITLE-ABS-KEY
("OPC communication") OR TITLE-ABS-KEY ("OPC link") AND NOT TITLE-ABS-KEY (aerosol)
AND NOT TITLE-ABS-KEY (purification) AND NOT TITLE-ABS-KEY ("optical proximity") AND
NOT TITLE-ABS-KEY ("optical phase") AND NOT TITLE-ABS-KEY (photoconductor) AND
NOT TITLE-ABS-KEY (lithography) AND NOT TITLE-ABS-KEY (oligodendrocyte) AND NOT
TITLE-ABS-KEY (cancer) AND NOT TITLE-ABS-KEY (cement) AND NOT TITLE-ABS-KEY (concrete)
AND NOT TITLE-ABS-KEY (oropharyngeal) AND NOT TITLE-ABS-KEY ("phase shift") AND NOT
TITLE-ABS-KEY ("optical proximity correction") AND NOT TITLE-ABS-KEY ("optical plankton
counter") AND NOT TITLE-ABS-KEY (photolithography)).

A total number of 866 publications were found in Scopus, distributed according to their type
as depicted in Figure 2. The conference papers represented around 66.5% of published papers,
whereas 32% corresponds to journal publications. The third group (others) contained books, technical
notes, and other kinds of works. Relevant contributions published in conferences without public
access may have been left unnoticed. It must be noted that we surveyed not only works related
to OPC applications but also to potential usage of this interface within the innovative scenarios
aforementioned. Moreover, some of the references correspond to web sites where open code for OPC
UA implementations was available or to recent press releases related to OPC UA developments, but
they were not included in these statistics.
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Figure 3 shows the evolution of OPC-related papers since the creation of the classic OPC (1996)
up to 2017. A rapid increase occurred in 2006, from 16 to 29 publications, which indicated that
OPC attracted special attention from that year, starting a growing trend. In this way, the number
of publications increased year by year up to 2013, with a peak of 89. After that year, the amount
of contributions fluctuated until reaching the maximum value in 2017, 91, as can be observed.
It should be noted that during the last years, instead of reporting applications of classic OPC, many of
the publications were devoted to developments of OPC UA related to integration with other standards
and to emerging trends (IoT, CPS, etc.) as exposed in the next sections. In fact, the interplay of
the UA specification with those innovative trends makes OPC UA-related papers a leading research
area in the scientific literature. On the other hand, Figures 4 and 5 show the distribution of publications,
expressed as percentages, between the top six subject areas and the top six countries, respectively. As it
is well known, an article belongs to more than one area, so the final percentage is higher than 100%.
As it can be seen, Engineering is the area to which more papers are devoted (65.82%), whereas China
is the country where the largest percentage of publications is generated, 32%. Computer Science
and Germany are in the second position in the respective graph.
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The present survey puts the focus on the aforementioned types of scientific papers, nonetheless,
a brief overview about OPC communication in patents also portrays the interest about this technology.
A patent searching process was performed in the Scopus database applying the same query terms used
for scientific contributions. For the time span 1996–2017, 1740 patents were found; their classification
by year is shown in Figure 6. As it can be observed, the annual number of patents has not dropped
from 100 since 2007, whilst the maximum number, 187 patents, was reached in 2017.

From all those publications, it was necessary to carry out manual filtering. Some of the contributions
appear in the databases but are not available for downloading, so they have been discarded. A similar
issue occurs with papers with English title and keywords but with the main text published in
other language, in Chinese for example. In other cases, similarities between different papers have
led to remove duplications. Another question is related to papers covering the usage of OPC
classic in traditional automation networks. Only papers that also included some innovative concept
(intelligent control for instance) were selected.
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With the goal of identifying recent and relevant works, the search period was mainly focused on
the last 10 years. Table 1 illustrates the distribution of the reviewed papers in the present work for these
years. As can be seen, a total number of 158 articles, conference proceedings, and book chapters were
surveyed. It should be noted that several of the surveyed papers do not give special prominence to
the OPC interface but report successful application cases for different scopes. Therefore, they represent
illustrative examples of the versatility and applicability of the OPC communication and have been
included so that the survey is rigorous and comprehensive.

Table 1. Distribution of the reviewed papers during years.

Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2006 2004 2002 Total

No.
Publications 19 45 31 16 15 10 9 5 4 1 1 1 1 158

The classification of the literature was carried out taking into account the domain of application,
distinguishing five scopes: industry, energy, education, and advanced industrial environments (AIEs).
The last category groups those works devoted to the next generation of manufacturing and industrial
facilities, significantly influenced by the modern trends of IoT, Industry 4.0, CPS, and big data,
being the term AIEs conceived in the context of the present paper. We have preferred to consider them
a category separated from the general industrial systems. Furthermore, another category, called others,
includes those works that did not fit the first four groups, for instance devoted to precision agriculture,
open source hardware (OSH) platforms, disaster management, or cyber-security. It should be noted that
in many cases, the hardware and software elements are essentially the same, and the only difference is
the field of application. Moreover, it must be kept in mind that the intelligent power grids, smart grids
(SGs) are a particular kind of CPS applied to energy infrastructures. Nonetheless, we have preferred to
include them into the energy scope. Figure 7 shows the distribution of the surveyed papers per scope.
As can be seen, the AIEs group covers the highest percentage of contributions, namely, around 33%.Electronics 2019, 8, x FOR PEER REVIEW 7 of 31 
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3. Results of Literature Survey

In next sub-section, the surveyed literature is classified according to the established scopes and to
the year, area, and country of publication. Afterwards, recent R&D projects related to OPC applications
are exposed.

3.1. Classification

For each scope, a set of subcategories was considered in order to group those works devoted
to similar application cases. For instance, in the AIEs scope, three subcategories were addressed
depending on the main focus of the papers: big data, CPPS-Industry 4.0 and integration of OPC
UA with other protocols/languages.

In addition, it should be noted that, evidently, some of the works can be placed into more than
one category. As a sample, the work reported by García et al. [32] deals with the CPPS concepts
within the Industry 4.0 paradigm using low-cost OSH devices, so it could be allocated both in the AIEs
and other scopes categories. However, in order to avoid duplicates, we have chosen a unique category
for those situations. In the example case, it was considered as an AIEs application. Within the category
others, a subcategory named particle physics infrastructures was considered to cover the publications
related to facilities where advanced particle physics experiments were carried out, like the European
Organization for Nuclear Research (CERN) [33] or the Reactor Experiment for Neutrino Oscillation
(RENO) in South Korea [34].

Tables 2–6 collect the reference number of the surveyed works divided in the aforementioned
group classification per scope. A consideration was related to websites about OPC UA packages for
mobile devices [35,36], two references have been included in the table to illustrate the availability of
such packages but not included in the graphical results since they are not published contributions.

Table 2. Publications in the category of industry.

Category Subcategory Reference Number

Industry
Automation and supervision [28,31,37–51]
Advanced control algorithms [52–66]

Simulated and virtualized environments [67–74]

Table 3. Publications in the category of energy.

Category Subcategory Reference Number

Energy

Renewable energy-based facilities [75–88]
Smart grids and micro grids [25,89–103]

Building automation systems [104–110]
Other energy facilities [111–114]

Table 4. Publications in the category of education.

Category Subcategory Reference Number

Education - [115–123]

Table 5. Publications in the category of advanced industrial environments (AIEs).

Category Subcategory Reference Number

AIEs
Big data [124–128]

Cyber-physical production system (CPPS)-Industry 4.0 [3–5,15,16,19,20,23,24,32,129–146]
Open platform communications unified architecture (OPC UA) integrations [147–166]



Electronics 2019, 8, 510 9 of 29

Table 6. Publications in the category of others.

Category Subcategory Reference Number

Others

Cyber security [30,31,167–170]
Open source hardware (OSH) platforms [171,172]

Mobile devices [35,36]
Precision agriculture [173,174]

Emergency management [175]
Particle physics infrastructures [33,34,176–178]

In order to illustrate the aforementioned categories, concrete examples of each will now be
expounded. In the category industry, the work reported in reference [55] proposes an industrial
artificial neural controller for recovery of faults in electrical distribution substations. Such controller
results from the union between a PLC and a neural network (NN). The PLC performs operational tasks,
whereas the NN algorithm performs data processing in MATLAB, being the information shared through
an OPC-based communication channel. In the energy domain, representative research was found in
References [100,101], where a hydrogen-based lab-scale microgrid to test different control strategies
and their influence on the plant performance was presented. A central PLC receives all sensor signals
and manages the actuators. On the other hand, a SCADA system implements advanced controllers
through the MATLAB environment. The communication between these elements is performed through
an OPC interface. Within the category education, OPC have been applied in reference [121] for a remote
laboratory devoted to managing an electro-pneumatic flexible manufacturing system (FMS) composed
of diverse equipment like robotic arms, conveyor belts, and pneumatic cylinders. A PLC controls
the whole system and a PC runs supervisory software including an OPC server. The architecture
relies on a LabVIEW-based middleware that communicates the measurements of the physical system
and the commands sent by the remote user to a database through OPC. For the AIEs scope, Lee et al. [166]
establish a mapping between OPC UA elements and UML elements. Specifically, a bi-directional
transformation algorithm is developed and validated for three use cases, namely, building automation,
power grid, and smart devices. Under the category others, in the context of precision agriculture,
Oksanen et al. [173] demonstrate the feasibility of using OPC UA to transfer information of a mobile
agricultural vehicle, i.e., a tractor. A data logger acquires the vehicle process data according to the ISO
11783 standard, whereas an OPC server makes those data available for the OPC client. Such a role
is played by a management system which accesses remotely these data in real-time through a 3G
mobile network.

A classification of the surveyed papers has been performed according to the criteria exposed in
the previous section for the results of OPC-related works. Figure 8 shows the distribution of such
papers from 2006 to 2016. As it can be seen, the higher amount of works, 45, corresponds to 2016.
The division between the type of document is presented in Figure 9, where can be observed that
around 65% of publications correspond to journal papers, 34% to congress contributions, and 1.42%
correspond to book chapters. The distribution of papers among the top six subject areas is depicted
in Figure 10, where engineering covers approximately 65% of contributions, followed by computer
science with 49%. Finally, the distribution between the top six countries can be appreciated in Figure 11.
Germany is the country with the largest percentage of these documents, 23%, followed by Spain
with 15%. As commented in the previous section, 32% of the publications concerning OPC are generated
in China; however, Germany leads the reviewed contributions due to the presence of two reasons.
On the one hand, there are various R&D initiatives about OPC UA in Germany; on the other hand,
many of the Chinese contributions appear in databases but are not available in the English language.
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3.2. R&D Projects

Nowadays, OPC UA, itself, is an object of study in various R&D projects. In addition, both classic
OPC and OPC UA act as communications means in different projects not directly devoted to
OPC. Therefore, in this sub-section, a number of recent projects related with OPC are commented.
These publicly funded, or partially funded, projects portray the interest from government institutions
related to research towards technologies and frameworks where OPC is included.

The project entitled Information Modelling in Automation (IWT TETRA 110131) [179] started
in 2012, and aimed to develop a methodology to exchange data, relevant to production in different types
of industries, in a structured way. The relevant parts of industrial standards like International Society
of Automation (ISA)-88 or ISA-95 were modelled using the modelling rules of OPC UA. Some paper
related with this project have been published [130].

SkillPro [180] was a project started in 2012 and ended in 2015. The objective of the project
was to bring smart reconfigurable manufacturing systems into application under the consideration
that cyber–physical assets offer different skills. The composition and cooperation were based on
the open standard of AutomationML (IEC 62714). The communication between the components was
implemented using OPC UA, and the integration of both standards was also addressed. As a result of
the project, the AutomationML for OPC UA companion specification was created and accepted.

The project Crop, Livestock and Forest Integrated System (CLAFIS) [181], started in 2013 and ended
in 2016. It was intended to develop and demonstrate a pre-commercial intelligent integrated solution
prototype. Such a prototype was based on the cross-platform OPC UA specification entitling standards
and related technologies for communication between automation systems and IT systems in farms
and forest related process. Some papers related with this project have been published [173,174].

The objective of the project denominated Subject-Orientation for People-Centered Production
(SO-PC-Pro) [182] was to develop methods and tools for holistic design and management of workplaces
in production companies, thereby aligning business goals and human needs. The project started
in 2013 and finished in 2016. As part of the project activities, OPC UA was used for implementing
the interfaces between subject-oriented models and the specific control systems including human
and environmental sensor data. Related with this project, an OPC UA interface was developed in
reference [131] to provide data communication in a service-oriented business process management
(S-BPM) system.

The OPC4Factory [183] was a project whose goal was to develop semantic OPC UA-based
interfaces for robots and machine controllers of flexible automated manufacturing cells. In the context
of the project, new objects and reference types for OPC UA were developed [153]. Integration with
UML was also approached [160].

Another R&D project, in this case related to SGs, is INGRID, high-capacity, hydrogen-based,
green-energy storage solutions for grid balancing [184]. Started in 2012 and finished in 2016, the project
aimed to introduce and demonstrate the usage of safe, high-density, solid-state hydrogen storage
systems as an effective energy vector to balance the grid also by powering off-grid applications,
thus enabling a smart balance between variable green energy sources supply and the grid demand.
The experimental facility was composed of a water electrolyzer, fuel cell, and hydrogen solid storage
units, managed by an energy management system. In this project, classic OPC was used as part of
an intelligent monitoring, control, and communication solution to link the energy management system,
a SCADA system, and the PLCs at field level [94].

The open62541 project [132] was initiated in 2014 and its objective was to develop an open
reference implementation of the OPC UA which can be used in research projects, the source code can
be downloaded from reference [185]. Other open source implementations are also under development
such as FreeOpcUa [186] and OpenOpcUa [187].

A finished project is entitled Real-Time Monitoring and Optimization of Resource Efficiency
in Integrated Processing Plants (MORE) [188]. The project aimed at identifying resource efficiency
indicators that can support operational decisions in process industries through the use of real-time
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data and the implementation of a dedicated online decision support system. A classic OPC interface
was used as part of the developed real-time communication approach.

The project Open Dynamic Manufacturing Operating System for Smart Plug-and-Produce
Automation Components (openMOS) [189] started in 2015. The motivation of the project is for
the European Manufacturing Industry to become increasingly agile in order to compete in the global
economy. The project vision is to enable full economic sustainability of the production systems based
on intelligent modular plug and produce equipment. Within the tasks of the project, plug and produce
automation systems are being developed using OPC UA [145,165].

Production harmonizEd Reconfiguration of Flexible Robots and Machinery (PERFORM)
is the name of a project started in 2015. The project target is the conceptual transformation of
existing production systems towards plug and produce production systems in order to achieve
a flexible manufacturing environment based on rapid and seamless reconfiguration of machinery
and robots as a response to operational or business events, including OPC UA as middleware [190].

Out of R&D projects, some work is in progress. The PLCOpen organization is also working
with the OPC Foundation to develop IEC 61131 Function Blocks providing OPC UA client
functionality [148,191]. In 2013, the MTConnect Institute and the OPC Foundation announced
a companion specification release candidate that integrates the MTConnect standard and OPC
UA [192]. In April 2016, the OPC Foundation and the World Wide Web Consortium (W3C) have agreed
to closely cooperate to ensure interoperability for the IoT and to facilitate the vision and execution
of a Smart Factory [193]. The addition of the publish/subscribe messaging pattern to the OPC
UA specifications has been lately released, in March 2018 [194]. This support is intended to achieve
seamless interoperability for industrial IoT (IIoT), IoT, and Industry 4.0 enhancing the integration with
modern cloud platforms.

Concerning enterprises, there are numerous corporate innovation programs related to
Industry 4.0/IIoT already available, which include OPC UA. For instance, the Connected Industry
from Bosch [195] provides software suites like the Nexeed Connected Manufacturing solutions or
the Rexroth IoT Gateway. Schneider Electric has developed the EcoStruxure, an IoT-enabled architecture
and platform [196]. Digital Enterprise is the approach of Siemens towards Industry 4.0 [197], which,
among other solutions, offers MindSphere, a cloud-based, open IoT operating system. Other examples
correspond to the Connected Enterprise program of Rockwell Automation [198] or the Connected
Factory of Microsoft [199].

4. Discussion

This section discusses the major findings of the conducted literature survey. The first sub-section
is devoted to analyzing the components most profusely reported in the OT level, i.e., hardware devices,
and in the IT level, this latter was focused on supervisory software. The sub-Section 4.2 deals with
the role that OPC UA is playing in AIEs. Lastly, the main research trends and open issues about OPC
UA developments are addressed.

4.1. Software and Hardware Entities

On the view of the state-of-the-art, the following figures are intended to illustrate the software
packages and devices used for OPC-based communications in the reviewed works. However, it should
be remarked that many of the papers do not specify such information, thus, obviously, the graphical
information was fulfilled according to the available data. Specifically, the OPC client software was
mentioned in 32% of papers, the OPC server software in 22%, and 40% indicated the hardware
apparatus that was applied.

Figure 12a shows the OPC client packages (IT level) reported where the most used one was
National Instruments (NI) LabVIEW (32.65%), closely followed by MATLAB (30.61%). In the case of
OPC server, Figure 12b, the environment NI OPC Servers was mainly used with a presence of 23.5%,
whilst WinCC occupied second place with 17.65%. As can be seen, within the wide variety of
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implementations, the proprietary packages were clearly dominant. In the authors’ opinion, this was
due to two main reasons. The first one was that commonly the person responsible for systems
integration lacks the specialized expertise for low-level configuration required by open source solutions.
The second reason was related to the proven stability and support that commercial packages provide.
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Concerning the hardware equipment (OT level), as expected, PLCs were mostly used; 79% of
the reported works manage these devices (Figure 12c). The OSH platforms (Arduino, Raspberry Pi)
received increasing attention, mainly in the academic environment because of their low-cost and rapid
prototyping features.

Concerning the communications approaches, Table 7 summarizes the utilization of OPC jointly
with different communication fieldbuses, protocols, and languages in the surveyed works.

Table 8 contains the reviewed works divided according to the covered specification, classic OPC
or OPC UA. The publications that cover both or do not indicate the specification were put in a separate
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group; there was a total number of nine works (5.73%) in this situation; 54.77% of publications use
the classic OPC, whereas 39.49% deal with OPC UA.

Table 7. Communication fieldbuses, protocols, and languages used with OPC.

Fieldbus/Protocol Reference

PROcess FIeld Bus (PROFIBUS) [60,77,78,92,151]
MODBUS [107,109]

Controller Area Network (CAN) [33,77,78]
Local Operating Network (LON) [86,104,149]

Ethernet for Control of Automation Technology (EtherCAT) [95]
Building Automation and Control Networks (BACnet) [109,149,175]

Smar Foundation [37]
International Electrotechnical Commission (IEC) 61850 [152,156,163,164]

Distributed Network Protocol (DNP3) [97]
Common Information Model (CIM) [159]
Unified Modelling Language (UML) [150,160,166]

Devices Profiles for Web Services (DPWS) [147,152]
Automation Markup Language (AutomationML) [154,165]

Robot Modelling Language (RobotML) [155]
Representational State Transfer (REST) [157]

KNX [90,149]
ZigBee [149,171]

MTConnect [16]
Data Distribution Service (DDS) [161]

International Society of Automation (ISA) 95 [15]

Table 8. Reviewed publications grouped according to the utilization of classic OPC, OPC UA or both.

Specification Reference

Classic OPC [24,31,34,37–47,49–68,70–88,90,92–94,98,100–102,104–107,110–122,125–127,167,170,171,178]
OPC UA [3–5,15,16,19,20,23,28,30,32,33,48,69,91,95,99,109,123,128,130–133,135–166,168,169,172–174,176]

Both or undetermined [25,29,89,96,108,124,129,134,177]

In a similar sense, Figure 13 shows the specification used in the surveyed works, classic OPC or
OPC UA, over time. Those publications reporting both specifications were not included for a clearer
presentation. In most cases, when using classic OPC, it was not explicitly mentioned whereas the UA usage
was highlighted. The starting year was 2010, since it corresponds to the first of the reviewed works
addressing UA utilization. As it can be appreciated, in global terms, classic OPC was mostly used but
with a small difference; around 49% of contributions used this specification, whereas 40% dealt with
UA. It is worth mentioning that the classic OPC was still applied despite the increasing interest about
UA. In the last two years, the trend was inverted; the amount of papers related to UA exceeded that
dedicated to classic OPC.Electronics 2019, 8, x FOR PEER REVIEW 16 of 31 
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4.2. Role of OPC UA in AIEs

This sub-section contains some considerations about the interplay of OPC UA and the modern
challenging scenarios drawn from this literature review.

The great number of recent works reporting applications of classic OPC shows that this protocol is
noticeably still under exploitation so it must be taken into account in the deployment of AIEs. In other
words, despite the fact that the UA specification is the core of the majority of developments related to
AIEs, the classic OPC still remains in the cutting edge of advanced systems design.

Regarding R&D projects, it has been stated that OPC UA is used to support communications
and interoperability in a number of recent projects dealing with advanced topics, mainly related to
automation and energy.

In the Industry 4.0 scenario, the embedding of OPC UA into industrial environments is a first step
towards the goals of this paradigm [142]. In fact, OPC UA is explicitly considered as a key technology
to manage heterogeneous machine interoperability [155], addressing the challenges derived from this
new framework [139,142]. Indeed, the RAMI 4.0 mentions OPC UA as a recommended communication
technology [21].

The UA specification is a major contender for the application protocol which will be used in
the domain of CPS [157]. For manufacturing environments, it is expected to play an important role in
the CPPS development as language for standardization of communications in a machine-to-machine
(M2M) context [134], providing a reliable, robust and high-performance communication means [32],
and connecting and transmitting information between different CPPSs [23]. In the context of implementing
digital replicas of physical systems/processes, OPC UA was also reported as communication interface for
data exchange in [123,124,143,144,160].

Diverse advanced approaches like virtual and cloud manufacturing, data-driven decision support,
predictive manufacturing, prognostics and health management (PHM), self-organizing maps, to name
a few, are based on data acquisition, storage, and processing, where the interoperability management
is an essential issue. In this sense, an important trend consists on the exploitation of OPC UA to collect
operative information and generate industrial big data and cloud computing, where big data analytics
could bring several advantages when applied to manufacturing domain [2]. Industrial big data is
of high importance for an enterprise, as this data can be used and analyzed to provide meaningful
information making them adaptive and flexible [128].

Concerning IoT, UA is considered safe and secure communication for IoT devices [174], to empower
the interfacing with existing information technology tools in IIoT environments [128], and as
an information carrier for IoT and next generation industrial communications [140].

In the energy automation sphere, despite the definition of communication standards focused on
electric utilities like the IEC 61850, IEC 61970 or DNP3, OPC is profusely used for grids and noticeably
for SGs [24], where OPC UA is signaled as one of the fundamental standards for automation
and communications [150].

Communication standardization attempts in automation are primarily focused on interfaces
like classic OPC. However, the aggregation of data created by field devices (sensors or control units)
into useful information remains still unsolved as their underlying models are carried out using different
modeling paradigms and programming languages [139]. In this regard, a special mention must be done
for OPC UA specification. Thanks to the information model and the address space, this specification
has a great potential, and is in fact, expanding the application possibilities of OPC. The object-oriented
approach of UA allows defining custom or domain-specific information models that extend the base
information model and make OPC UA specialized for various domains [153]. An important research
stream is devoted to integrating existing data models and protocols by mapping them to OPC UA.

To sum up with a wider perspective, since its inception, OPC interfaces have been a step forward
in the interconnectivity in automation and supervisory systems. The conducted literature survey
evidences that it is still gaining relevance in current applications, mainly the OPC UA. Furthermore,
on the one hand, this protocol evolves through the improvements of its specifications, and on
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the other hand, it is being used in diverse applications which involve the most modern trends in
technology. All of the exposed advanced scenarios share a common backbone: reliable and effective
information communication with interoperability and open connectivity features. As demonstrated,
OPC UA successfully supports such features. The interplay of OPC UA with the abovementioned
challenges is symbolized in Figure 14.
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IEC 61499 [158], DPWS [147,152], IEC 61850 [152,156,163,164], AutomationML [154,165],
RobotML [155], CIM [159], DDS [161], REST [157], ISA 95 [15], and open-source middleware
platform for IoT devices (OpenIoT) [141]. Once validated, the standardization of the developed
integrating extensions/models should be achieved by submitting them to the OPC Foundation.
However, the modelling of domain-specific information into OPC UA meta-models is still lacking
a uniform formalization of ontology-represented knowledge [142]. Consequently, this issue will
receive important research attention.

• Cyber-security issues in OPC UA. Data communication networks are vulnerable to cyber-attacks
and malware; thus, aspects like confidentiality, integrity, availability, reliability, and safety of
the process are under real risk. The UA specification enhances the security features of the previous
ones including user authentication, user authorization, confidentiality, integrity and application
authentication [29]. Indeed, in many industrial projects the security concept is often the decisive factor
for the usage of this technology [154]. Utilization of standard protocols for SCADA communication
networks is a potential security breach because detailed information about the protocol is available
for anyone interested, reducing the security through obscurity [167]. Recently, the German Office for
Information Security (BSI) performed an analysis of OPC UA security features and identified various
flaws that are planned to be solved [200]. Therefore, the ever-increasing threat of cyber-attacks
imposes research efforts devoted to this topic, mainly towards the enhancement of the security
mechanisms of this specification [30,168,169].

• Interoperability with legacy equipment. In the emerging and challenging new paradigms,
OPC UA can play a relevant role in managing the obsolescence of equipment by enabling
the communication between new devices and older reliable infrastructures. A problem that arises
in this context is that most enterprises refuse a radical modernization of their entire automation
system or simply cannot take the risk of quitting a running system [201]. Industry 4.0 is envisioned
to facilitate inter-connection and computerization into the traditional industry [18]; however,
the current situation in production organization is still lacking profound interoperability in terms
of vertical information exchange [142]. Consequently, to enable scenarios of the Industry 4.0 in
existing production sites; a true challenge is to extend capabilities of the hardware infrastructure
that is in use to implement modern ways of information management [139]. OPC UA can promote
the integration of existing production systems in the CPPS framework [133]. However, many PLCs’
firmware does not support OPC UA advanced communication features [20] and OPC UA is not
directly backward compatible with classic OPC, so interfaces for both are required. To tackle
this issue, there are commercial solutions that facilitate the migration process or the co-existence
of classic and recent releases of OPC. Also, some research efforts are being conducted towards
developing compatible frameworks [139] and open source solutions based on OPC UA [15].
Enabling full interoperability between these protocols represents a research opportunity with
significant relevance in real industrial practice.

• Integration of UA specification in software packages for advanced simulation. The usage of OPC
for simulated environments has been reported in Section 3. Although, as the OPC UA is gaining
importance and replacing previous specifications, there is still the need of including software
modules that support such specification [71]. Hence, labor must be done in this direction.

• Extensive usage of OPC UA for virtual reality (VR) applications. At the industrial level, VR provides
powerful resources for designing and scheduling of manufacturing environments considering
issues related to automation, maintenance, ergonomics, security, mobile robots, industrial training,
technical education, remote collaboration, and many others. In addition, advancements in
virtual and augmented reality are envisioned to enhance the interactivity between the human
operators and CPS [202]. In 2016, various VR headsets (Oculus Rift, HTC Vive) have been released
at the consumer-level in the market, so the number of VR applications is expected to increase due
to the impact of these devices.
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• User-friendly configuration. High technical expertise is required to adjust many critical parameters
of OPC UA [28]; great effort has to be spent on building the application-specific information models,
which usually makes the implementation of OPC UA complex and inefficient [142,144]. Thus, it is
necessary to design software interfaces with user-friendly features to facilitate the configuration
and tracking of the OPC UA-related operations. This issue would provide an excellent opportunity
to foster and spread its utilization even with training and educational purposes.

• Easy integration of devices. Intimately related to the previously commented research issue,
an important step towards a real standardization of communications is a common interface that
facilitates the direct connection of new devices (sensor, actuator, controller, etc.) into an existing
system. Embedded OPC UA interfaces in new generations of machinery and robots will enable
direct connection to the process [143]. The development of the plug and produce concept, or plug
and work, using OPC UA [3,20,145] reflects this necessity. Moreover, to reach such an approach,
the manufacturers must collaborate, agreeing to the adoption of the OPC UA interface.

• OPC UA models for different products of manufacturers. The creation of these models will facilitate
the application of such a protocol in their specific domains. Consequently, the availability of
models will encourage and expand the presence of OPC UA. In this regard, similar to the precedent
trend, the collaboration among the OPC Foundation and companies is an essential factor.

• On-chip embedded OPC UA for resource constrained devices. In the context of the IoT/IIoT,
the number of connected devices is constantly increasing, and especially resource constrained
devices required to be efficiently linked. Lightweight communication protocols like MQTT
or constrained application protocol (CoAP) are precisely designed for this kind of device.
However, advancements in OPC UA are also promoting its application in this stimulating
field. New implementations with low computational requirements are even commercially
available [203]. The use of ever-smaller embedded chips that integrate OPC UA allows making
further in-roads into the world of sensors [204]. This way, smart sensors with limited capabilities
can be provided with native OPC UA connectivity to be deployed at the shop floor level, enhancing
the applicability of OPC UA.

• Hard real-time applications. OPC UA presents a lack of hard real-time capabilities [4].
However, some research is being conducted to develop a specification using the IEEE 802.1 standard
for time sensitive networking (TSN), enlarging the possibilities of OPC UA and simplifying
many applications in industry and research [141]. The so-called OPC UA TSN is expected to
enable implementing a single Ethernet network where both real-time and non-real-time data
are transmitted. The OPC UA publish/subscribe extension (PubSub) which also contributes to
the development of such deterministic data exchange [194]. These advances boost the deployment
of IIoT and Industry 4.0 frameworks.

5. Conclusions

This paper has presented a comprehensive literature survey about the use of the OPC interface
(both classic and UA) in a number of domains by examining existing publications, mainly contributions
from scientific journals and conferences. From the total amount of 866 publications found in the literature
up to the year 2017, 158 papers were selected and surveyed. These contributions were grouped into
five categories and analyzed. This standard provides an effective solution to handle the heterogeneity,
enabling interoperability and systems integration regardless of the nature of the hardware/software
component. The reviewed works showed that OPC goes far beyond the industrial automation
domain and is applied for widely diverse scopes (energy, education, etc.). In addition, recent R&D
projects and initiatives involving OPC have been exposed. It is worth noting that apart from research
efforts from academia, industrial enterprises also contribute significantly to extend and improve
the applications of OPC UA in the incoming advanced frameworks. Special attention has been put on
the so-called advanced industrial environments (AIEs) that constitute the next generation of industrial
systems under the frameworks of new innovative scenarios like Industry 4.0, IoT, and CPS.
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Current main trends and open research directions have been outlined as well. We have highlighted
that the UA specification is receiving growing attention in order to take advantage of its abilities by means
of improvements and integration with other languages and protocols. Particularly, this specification
has proven to be an essential element in the context of CPS and Industry 4.0. Further standardization
work is required both from industrial and scientific environments. We can assert that this protocol is
playing an important role in those challenging scenarios.

Researchers, academicians, and practitioners can stay up to date with the latest works on OPC
and find useful ideas among them. Notwithstanding of the particular application area, this research
encourages the utilization of OPC UA to handle systems integration and interoperability when
designing AIEs.
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Abbreviations

The following abbreviations are used in this manuscript:

AIEs Advanced Industrial Environments
AutomationML Automation Markup Language
BACnet Building Automation and Control Networks
CAN Controller Area Network
CERN European Organization for Nuclear Research
CIM Common Information Model
CoAP Constrained Application Protocol
CPPS Cyber-Physical Production System
DAQ Data Acquisition Card
DDS Data Distribution Service
DNP3 Distributed Network Protocol
DPWS Devices Profiles for Web Services
EMS Manufacturing Execution System
ERP Enterprise Resource Planning
EtherCAT Ethernet for Control of Automation Technology
FMS Flexible Manufacturing System
GUI Graphical User Interface
HMI Human Machine Interface
ICPS Industrial Cyber-Physical Systems
ICTs Information and Communication Technologies
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IIRA Industrial Internet Reference Architecture
IED Intelligent Electronic Device
IoE Internet of Everything
IoT Internet of Things
ISA International Society of Automation
IT Information Technology
LON Local Operating Network
M2M Machine to Machine
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MQTT Message Queue Telemetry Transport
NN Neural Network
NI National Instruments
OPC Open Platform Communications
OPC A&E OPC Alarms and Events
OPC CD OPC Complex Data
OPC DA OPC Data Access
OPC DX OPC Data eXchange
OPC HDA OPC Historical Data Access
OPC UA OPC Unified Architecture
OPC Xi OPC Express Interface
OPC XML-DA OPC XML Data Access
OT Operative Technology
PHM Prognostics and Health Management
PLC Programmable Logic Controller
PROFIBUS PROcess FIeld Bus
RENO Reactor Experiment for Neutrino Oscillation
RES Renewable Energy Sources
REST Representational State Transfer
RFID Radio Frequency IDentification
RobotML Robot Modelling Language
S-BPM Service-Oriented Business Process Management
SCADA Supervisory Control and Data Acquisition
SOA Service Oriented Architecture
UML Unified Modeling Language
VR Virtual Reality
WSN Wireless Sensor Network
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