Designing an AB2-Type Alloy (TiZr-CrMnMo) for the Hybrid Hydrogen Storage Concept
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Expanded Natural Graphite (ENG) Addition
2.2. Phase, Composition, Microstructural and Morphological Characterizations
2.3. Thermodynamic and Kinetic Characterizations
3. Results
3.1. TiZr-CrMnMo Alloy: Synthesis and Hydrogen Storage Properties Under High Pressure
3.2. (Ti0.9Zr0.1)1.25Cr0.85Mn1.1Mo0.05 with 10 wt.% ENG Added: Characterization, Kinetic-Thermal Behavior and Material’s Properties
4. Discussion
4.1. Design of the (Ti0.9Zr0.1)1.25Cr0.85Mn1.1Mo0.05 added 10wt.% ENG Material
4.2. Potential Application of (Ti0.9Zr0.1)0.125Cr0.85Mn1.1Mo0.05 added 10 wt.% ENG Material in a Hybrid Tank
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Elements | Atomic Fraction (EDX) | A | B/A | A | Elements | Amount | Elements’ Atomic Weight (g) | Amount x Element Weight | Composition of the Alloy |
---|---|---|---|---|---|---|---|---|---|
Ti | 0.337 | 0.375 | 1.6 | 1.25 | Ti | 1.250 | 47.86 | 53.8 | (Ti0.9Zr0.1)1.25Cr0.85Mn1.1Mo0.05 |
Zr | 0.038 | Zr | 0.125 | 91.224 | 11.6 | ||||
Cr | 0.26 | B | B | Cr | 0.850 | 51.996 | 44.0 | Weigh of the alloy (g/mol) | |
Mn | 0.342 | 0.615 | 2 | Mn | 1.100 | 54.938 | 61.1 | 174.6 | |
Mo | 0.013 | Mo | 0.050 | 95.95 | 4.1 |
Appendix C
N° of Cycle | Cycle Conditions | N° of Cycle | Cycle Conditions |
---|---|---|---|
1 | Abs. 25C, 100 bar/Des. 25C, 11–12 bar | 21 | Abs. 9C, 100 bar/Des. 9C, 1.2–1.5 bar |
2 | Abs. 25C, 100 bar/Des. 25C, 11–12 bar | 22 | Abs. 5C, 100 bar/Des. 5C, 1.2–1.5 bar |
3 | Abs. 25C, 100 bar/Des. 25C, 11–12 bar | 23 | Abs. 10C, 100 bar/Des. 10C, 1.2–1.5 bar |
4 | Abs. 25C, 100 bar/Des. 25C, 11–12 bar | 24 | Abs. 35C, 100 bar/Des. 35C, 1.2–1.5 bar |
5 | Abs. 25C, 100 bar/Des. 25C, 11–12 bar | 25 | Abs. 35C, 100 bar/Des. 35C, 1.2–1.5 bar |
6 | Abs. 25C, 100 bar/Des. 25C, 11–12 bar | 26 | Abs. 30C, 70 bar/Des. 30C, 1.2–1.5 bar |
7 | Abs. 25C, 100 bar/Des. 25C, 11–12 bar | 27 | Abs. 25C, 70 bar/Des. 25C, 1.2–1.5 bar |
8 | Abs. 25C, 100 bar/Des. 25C, 11–12 bar | 28 | Abs. 20C, 70 bar/Des. 20C, 1.2–1.5 bar |
9 | Abs. 25C, 100 bar/Des. 25C, 11–12 bar | 29 | Abs. 15C, 70 bar/Des. 15C, 1.2–1.5 bar |
10 | Abs. 25C, 100 bar/Des. 25C, 11–12 bar | 30 | Abs. 5C, 70 bar/Des. 5C, 1.2–1.5 bar |
11 | Abs. 25C, 90 bar/Des. 25C, 1.8–2 bar | 31 | Abs. 5C, 50 bar/Des. 5C, 1.2–1.5 bar |
12 | Abs. 25C, 70 bar/Des. 25C, 3.5–4 bar | 32 | Abs. 5C, 50 bar/Des. 5C, 1.2–1.5 bar |
13 | Abs. 25C, 80 bar/Des. 25C, 2.5–2.7 bar | 33 | Abs. 10C, 50 bar/Des. 10C, 1.2–1.5 bar |
14 | Abs. 25C, 120 bar/Des. 25C, 3–3.5 bar | 34 | Abs. 10C, 90 bar/Des. 10C, 1.2–1.5 bar |
15 | Abs. 25C, 140 bar/Des. 25C, 7.53–8 bar | 35 | Abs. 5C, 75 bar/Des. 5C, 1.2–1.5 bar |
16 | Abs. 25C, 100 bar/Des. 25C, 15.5–16 bar | 36 | Abs. 15C, 100 bar/Des. 15C, 1.2–1.5 bar |
17 | Abs. 25C, 100 bar/Des. 25C, 15.5–16 bar | 37 | Abs. 20C, 130 bar/Des. 20C, 3.3–3.5 bar |
18 | Abs. 25C, 100 bar/Des. 25C, 25.5–26 bar | 38 | Abs. 25C, 147 bar/Des. 20C, 2.0–2.1 bar |
19 | Abs. 25C, 100 bar/Des. 25C, 1.2–1.5 bar | 39 | Abs. 30C, 160 bar/Des. 30C, 2.0–2.2 bar |
20 | Abs. 25C, 100 bar/Des. 25C, 1.2–1.5 bar | 40 | Abs. 30C, 170 bar/Des. 30C, 16–17 bar |
Appendix D
Density [71] | Value | Molecular Weight [71] | Value | Bulk Modulus [69] | Value |
---|---|---|---|---|---|
ρ Ti (g/cm3) | 4.58 | M Ti (g/mol) | 47.86 | B Ti (GPa) | 105.1 |
ρ Zr (g/cm3) | 6.45 | M Zr (g/mol) | 91.224 | B Zr (GPa) | 83.3 |
ρ Cr (g/cm3) | 7.25 | M Cr (g/mol) | 51.996 | B Cr (GPa) | 190.1 |
ρ Mn (g/cm3) | 7.65 | M Mn (g/mol) | 54.938 | B Mn (GPa) | 59.6 |
ρ Mo (g/cm3) | 10.02 | M Mo (g/mol) | 95.95 | B Mo (GPa) | 272.5 |
ρ Fe (g/cm3) | 7.874 | M Fe (g/mol) | 55.845 | B Fe (GPa) | 168.3 |
ρ V (g/cm3) | 6.11 | M V (g/mol) | 50.942 | B V (GPa) | 161.9 |
ρ La (g/cm3) | 6.162 | M La (g/mol) | 138.91 | B V La (GPa) | 24.3 |
Atomic Fraction | |||||||||
---|---|---|---|---|---|---|---|---|---|
Reference | Composition | Ti | Cr | Mn | - | - | Vo (cm3) | B (GPa) | B/Vo (GPa/cm3) |
[12] | Ti1.1CrMn | 0.355 | 0.323 | 0.323 | - | - | 1.64 × 10−22 | 116.0 | 7.079 × 1023 |
[18] | Ti1.02Cr1.2Mn0.2Fe0.6 | Ti | Cr | Mn | Fe | - | - 1.625 × 10−22 | - 142.6 | - 8.775 × 1023 |
0.338 | 0.397 | 0.066 | 0.199 | - | |||||
[21] | (Ti0.85Zr0.15)1.1Cr0.925MnFe0.075 | Ti | Zr | Cr | Mn | Fe | - 1.656 × 10−22 | - 114.1 | - 6.89 × 1023 |
0.274 | 0.048 | 0.298 | 0.322 | 0.024 | |||||
[24] | (Ti0.85Zr0.15)1.1Cr0.9Mo0.1Mn | Ti | Zr | Cr | Mn | Mo | - 1.68 × 10−22 | - 117.4 | - 6.998 × 1023 |
0.301 | 0.053 | 0.29 | 0.322 | 0.032 | |||||
[27] | (Zr0.7Ti0.3)1.04Fe1.8V0.2 | Ti | Zr | Fe | V | - | - 1.723 × 10−22 | - 135.5 | - 7.864 × 1023 |
0.239 | 0.103 | 0.592 | 0.066 | - | |||||
[33] | Ti1.02Cr1.1Mn0.3Fe0.6La0.03 | Ti | Cr | Fe | Mn | La | - 1.6328 × 10−22 | - 135.8 | - 8.317 × 1023 |
0.334 | 0.361 | 0.197 | 0.098 | 0.01 | |||||
[44] | Ti1.02Cr1.0Fe0.75Mn0.25 | Ti | Cr | Fe | Mn | - | - 1.6126 × 10−22 | - 139.0 | - 8.62 × 1023 |
0.343 | 0.32 | 0.253 | 0.084 | - | |||||
This work | (Ti0.9Zr0.1)1.25Cr0.85Mn1.1Mo0.05 | Ti | Zr | Cr | Mn | Mo | - | - | - |
0.337 | 0.38 | 0.26 | 0.342 | 0.013 | 1.656 × 10–22 | 116.6 | 7.041 × 1023 |
Appendix E
298 K, 350 bar | ||
---|---|---|
X (Filling Fraction) | kg H2/m3 System | wt.% |
0 | 19.4 | 21.1 |
0.1 | 24.3 | 4.4 |
0.2 | 29.2 | 2.90 |
0.3 | 34.2 | 2.33 |
0.4 | 39.1 | 2.03 |
0.5 | 44.0 | 1.85 |
0.6 | 49.0 | 1.72 |
0.7 | 53.9 | 1.63 |
0.8 | 58.8 | 1.57 |
0.9 | 63.8 | 1.51 |
1 | 68.7 | 1.47 |
25 °C, 250 bar | 25 °C, 350 bar | ||||
---|---|---|---|---|---|
x (Filling Fraction) | Kg H2/m3 System | wt.% | x (Filling Fraction) | Kg H2/m3 System | wt.% |
0 | 11.6 | 2.69 | 0 | 14.6 | 3.05 |
0.1 | 12.8 | 2.39 | 0.1 | 15.7 | 2.71 |
0.2 | 14.1 | 2.18 | 0.2 | 16.7 | 2.46 |
0.3 | 15.3 | 2.04 | 0.3 | 17.8 | 2.28 |
0.4 | 16.5 | 1.93 | 0.4 | 18.9 | 2.14 |
0.5 | 17.8 | 1.85 | 0.5 | 19.9 | 2.03 |
0.6 | 19.0 | 1.78 | 0.6 | 21.0 | 1.95 |
References
- Chen, B.; Dong, L.; Liu, X.; Shi, G.Y.; Chen, L.; Nakajima, T.; Habib, A. Exploring the possible effect of anthropogenic heat release due to global energy consumption upon global climate: A climate model study. Int. J. Climatol. 2016, 36, 4790–4796. [Google Scholar] [CrossRef]
- REN21. Renewables 2019 Global Status Report; REN21 Secretariat: Paris, France, 2019; ISBN 978-3-9818911-7-1. Available online: http://www.ren21.net/gsr-2019/ (accessed on 26 July 2019).
- OECD/IEA. Global Energy and CO2 Status Report. Available online: https://www.iea.org/geco/ (accessed on 25 May 2019).
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Manning, A.C.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; Jackson, R.B.; et al. Global Carbon Budget 2018 (pre-print). Earth Syst. Sci. Data Discuss. 2018, 1–54. [Google Scholar] [CrossRef]
- Heuser, P.; Grube, T.; Heinrichs, H.; Robinius, M.; Stolten, D. Worldwide Hydrogen Provision Scheme Based on Renewable Energy. 2020, pp. 1–27. Available online: https://www.preprints.org/manuscript/202002.0100/v1 (accessed on 25 April 2020).
- Hobein, B.; Krüger, R. Hydrogen and Fuel Cells; Stolten, D., Ed.; WILEY–VCH: Weinheim, Germany, 2010; pp. 377–393. [Google Scholar]
- Andersson, J.; Grönkvist, S. Large-scale storage of hydrogen. Int. J. Hydrogen Energy 2019, 44, 11901–11919. [Google Scholar] [CrossRef]
- Lototskyy, M.V.; Tolj, I.; Pickering, L.; Sita, C.; Barbir, F.; Yartys, V. The use of metal hydrides in fuel cell applications. Prog. Nat. Sci. Mater. Int. 2017, 27, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Lai, Q.; Sun, Y.; Wang, T.; Modi, P.; Cazorla, C.; Demirci, U.B.; Ares Fernandez, J.R.; Leardini, F.; Aguey-Zinsou, K.F. How to Design Hydrogen Storage Materials? Fundamentals, Synthesis, and Storage Tanks. Adv. Sustain. Syst. 2019, 3, 1–64. [Google Scholar] [CrossRef]
- Bellosta von Colbe, J.; Ares, J.R.; Barale, J.; Baricco, M.; Buckley, C.; Capurso, G.; Gallandat, N.; Grant, D.M.; Guzik, M.N.; Jacob, I.; et al. Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. Int. J. Hydrogen Energy 2019, 44, 7780–7808. [Google Scholar] [CrossRef]
- Matsunaga, T.; Kon, M.; Washio, K.; Shinozawa, T.; Ishikiriyama, M. TiCrVMo alloys with high dissociation pressure for high-pressure MH tank. Int. J. Hydrogen Energy 2009, 34, 1458–1462. [Google Scholar] [CrossRef] [Green Version]
- Sivov, R.B.; Zotov, T.A.; Verbetsky, V.N. Hydrogen sorption properties of ZrFex (1.9 ≤ x ≤ 2.5) alloys. Int. J. Hydrogen Energy 2011, 36, 1355–1358. [Google Scholar] [CrossRef]
- Zotov, T.A.; Sivov, R.B.; Movlaev, E.A.; Mitrokhin, S.V.; Verbetsky, V.N. IMC hydrides with high hydrogen dissociation pressure. J. Alloys Compd. 2011, 509, S839–S843. [Google Scholar] [CrossRef]
- Tsukahara, M. Hydrogenation properties of vanadium-based alloys with large hydrogen storage capacity. Mater. Trans. 2011, 52, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Young, K.; Nei, J.; Huang, B.; Fetcenko, M.A. Studies of off-stoichiometric AB2 metal hydride alloy: Part 2. Hydrogen storage and electrochemical properties. Int. J. Hydrogen Energy 2011, 36, 11146–11154. [Google Scholar] [CrossRef]
- Aoki, M.; Noritake, T.; Ito, A.; Ishikiriyama, M.; Towata, S.I. Improvement of cyclic durability of Ti-Cr-V alloy by Fe substitution. Int. J. Hydrogen Energy 2011, 36, 12329–12332. [Google Scholar] [CrossRef]
- Mitrokhin, S.; Zotov, T.; Movlaev, E.; Verbetsky, V. Hydrogen interaction with intermetallic compounds and alloys at high pressure. J. Alloys Compd. 2013, 580, S90–S93. [Google Scholar] [CrossRef]
- Verbetsky, V.N.; Zotov, T.A.; Movlaev, E.A. Absorption of hydrogen by V-Mo and V-Mo-Ti alloys. Inorg. Mater. Appl. Res. 2014, 5, 70–74. [Google Scholar] [CrossRef]
- Chen, Z.; Xiao, X.; Chen, L.; Fan, X.; Liu, L.; Li, S.; Ge, H.; Wang, Q. Influence of Ti super-stoichiometry on the hydrogen storage properties of Ti1+xCr1.2Mn0.2Fe0.6 (x = 0–0.1) alloys for hybrid hydrogen storage application. J. Alloys Compd. 2014, 585, 307–311. [Google Scholar] [CrossRef]
- Lototskyy, M.V.; Yartys, V.A.; Pollet, B.G.; Bowman, R.C. Metal hydride hydrogen compressors: A review. Int. J. Hydrogen Energy 2014, 39, 5818–5851. [Google Scholar] [CrossRef] [Green Version]
- Bibienne, T.; Bobet, J.L.; Huot, J. Crystal structure and hydrogen storage properties of body centered cubic 52Ti-12V-36Cr alloy doped with Zr7Ni10. J. Alloys Compd. 2014, 607, 251–257. [Google Scholar] [CrossRef]
- Cao, Z.; Ouyang, L.; Wang, H.; Liu, J.; Sun, L.; Zhu, M. Composition design of Ti-Cr-Mn-Fe alloys for hybrid high-pressure metal hydride tanks. J. Alloys Compd. 2015, 639, 452–457. [Google Scholar] [CrossRef]
- Shen, C.C.; Li, H.C. Cyclic hydrogenation stability of γ-hydrides for Ti25V35Cr40 alloys doped with carbon. J. Alloys Compd. 2015, 648, 534–539. [Google Scholar] [CrossRef]
- Jiang, L.; Tu, Y.; Tu, H.; Chen, L. Microstructures and hydrogen storage properties of ZrFe2.05−xVx (x = 0.05–0.20) alloys with high dissociation pressures for hybrid hydrogen storage vessel application. J. Alloys Compd. 2015, 627, 161–165. [Google Scholar] [CrossRef]
- Cao, Z.; Ouyang, L.; Wang, H.; Liu, J.; Sun, D.; Zhang, Q.; Zhu, M. Advanced high-pressure metal hydride fabricated via Ti-Cr-Mn alloys for hybrid tank. Int. J. Hydrogen Energy 2015, 40, 2717–2728. [Google Scholar] [CrossRef]
- Jain, P.; Dixit, V.; Jain, A.; Srivastava, O.N.; Huot, J. Effect of magnesium fluoride on hydrogenation properties of magnesium hydride. Energies 2015, 8, 12546–12556. [Google Scholar] [CrossRef] [Green Version]
- Rönnebro, E.C.E.; Whyatt, G.; Powell, M.; Westman, M.; Zheng, F.; Fang, Z.Z. Metal hydrides for high-temperature power generation. Energies 2015, 8, 8406–8430. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Ouyang, L.; Wang, H.; Liu, J.; Sun, L.; Felderhoff, M.; Zhu, M. Development of Zr-Fe-V alloys for hybrid hydrogen storage system. Int. J. Hydrogen Energy 2016, 41, 11242–11253. [Google Scholar] [CrossRef]
- Lushnikov, S.A.; Movlaev, E.A.; Bobrikov, I.A.; Simkin, V.G.; Verbetsky, V.N. Hydriding of TiMo alloys at high hydrogen pressures. Inorg. Mater. 2016, 52, 1126–1131. [Google Scholar] [CrossRef]
- Ulmer, U.; Dieterich, M.; Pohl, A.; Dittmeyer, R.; Linder, M.; Fichtner, M. Study of the structural, thermodynamic and cyclic effects of vanadium and titanium substitution in laves-phase AB2 hydrogen storage alloys. Int. J. Hydrogen Energy 2017, 42, 20103–20110. [Google Scholar] [CrossRef] [Green Version]
- Takeichi, N.; Senoh, H.; Takeshita, H.T.; Oishi, T.; Tanaka, H.; Kiyobayashi, T.; Kuriyama, N. Hydrogenation properties and structure of Ti-Cr alloy prepared by mechanical grinding. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2004, 108, 100–104. [Google Scholar] [CrossRef]
- Puszkiel, J.; Garroni, S.; Milanese, C.; Gennari, F.; Klassen, T.; Dornheim, M.; Pistidda, C. Tetrahydroborates: Development and potential as hydrogen storage medium. Inorganics 2017, 5, 74. [Google Scholar] [CrossRef] [Green Version]
- Møller, K.T.; Sheppard, D.; Ravnsbæk, D.B.; Buckley, C.E.; Akiba, E.; Li, H.W.; Jensen, T.R. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage. Energies 2017, 10, 1645. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Liu, L.; Xiao, X.; Wang, C.; Jiang, L.; Chen, L. Effect of rare earth doping on the hydrogen storage performance of Ti1.02Cr1.1Mn0.3Fe0.6 alloy for hybrid hydrogen storage application. J. Alloys Compd. 2018, 731, 524–530. [Google Scholar] [CrossRef]
- Bibienne, T.; Gosselin, C.; Bobet, J.L.; Huot, J. Replacement of vanadium by ferrovanadium in a Ti-based Body Centred Cubic (BCC) alloy: Towards a low-cost hydrogen storage material. Appl. Sci. 2018, 8, 1151. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Li, J.; Shao, H.; Li, W.; Lin, H. Synthesis, morphology, and hydrogen absorption properties of TiVMn and TiCrMn nanoalloys with a FCC structure. Scanning 2018, 2018, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Milanese, C.; Garroni, S.; Gennari, F.; Marini, A.; Klassen, T.; Dornheim, M.; Pistidda, C. Solid state hydrogen storage in alanates and alanate-based compounds: A review. Metals (Basel) 2018, 8, 567. [Google Scholar] [CrossRef] [Green Version]
- Garroni, S.; Santoru, A.; Cao, H.; Dornheim, M.; Klassen, T.; Milanese, C.; Gennari, F.; Pistidda, C. Recent progress and new perspectives on metal amide and imide systems for solid-state hydrogen storage. Energies 2018, 11, 1027. [Google Scholar] [CrossRef] [Green Version]
- Jepsen, J.; Milanese, C.; Puszkiel, J.; Girella, A.; Schiavo, B.; Lozano, G.A.; Capurso, G.; Von Colbe, J.M.B.; Marini, A.; Kabelac, S.; et al. Fundamental material properties of the 2LiBH4-MgH2 reactive hydride composite for hydrogen storage: (I) Thermodynamic and heat transfer properties. Energies 2018, 11, 1081. [Google Scholar] [CrossRef] [Green Version]
- Jepsen, J.; Milanese, C.; Puszkiel, J.; Girella, A.; Schiavo, B.; Lozano, G.A.G.A.; Capurso, G.; Bellosta von Colbe, J.M.; Marini, A.; Kabelac, S.; et al. Fundamental material properties of the 2LiBH4-MgH2 reactive hydride composite for hydrogen storage: (II) Kinetic properties. Energies 2018, 11, 1170. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Jiang, X.; Li, G.; Li, X. Development of Ti1.02Cr2-x-yFexMny (0.6 ≤ x ≤ 0.75, y = 0.25, 0.3)alloys for high hydrogen pressure metal hydride system. Int. J. Hydrogen Energy 2019, 44, 15087–15099. [Google Scholar] [CrossRef]
- Kandavel, M.; Ramaprabhu, S. Hydriding properties of Ti-substituted non-stoichiometric AB2 alloys. J. Alloys Compd. 2004, 381, 140–150. [Google Scholar] [CrossRef]
- Nyamsi, S.N.; Tolj, I.; Lototskyy, M. Metal hydride beds-phase change materials: Dual mode thermal energy storage for medium-high temperature industrialwaste heat recovery. Energies 2019, 12, 3949. [Google Scholar] [CrossRef] [Green Version]
- Dematteis, E.M.; Baricco, M. Hydrogen desorption in Mg(BH4)2-Ca(BH4)2 system. Energies 2019, 12, 3230. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Jiang, X.; Li, Z.; Jiang, L.; Li, X. High-pressure hydrogen storage properties of TixCr1—yFeyMn1.0 alloys. Int. J. Energy Res. 2019, 43, 5759–5774. [Google Scholar] [CrossRef]
- Wang, Q.; Dai, X.; Wu, C.; Mao, Y.; Chen, Y.; Cao, X.; Yan, Y.; Wang, Y.; Zhang, H. Lattice defects and micro-strains in V60Ti25Cr3Fe12 alloy and influence on the ab/desorption of hydrogen. J. Alloys Compd. 2020, 830, 154675. [Google Scholar] [CrossRef]
- Puszkiel, J.; Gasnier, A.; Amica, G.; Gennari, F. Tuning LiBH4 for hydrogen storage: Destabilization, additive, and nanoconfinement approaches. Molecules 2020, 25, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojima, Y.; Kawai, Y.; Towata, S.; Matsunaga, T.; Shinozawa, T.; Kimbara, M. Development of metal hydride with high dissociation pressure. J. Alloys Compd. 2006, 419, 256–261. [Google Scholar] [CrossRef]
- Mitrokhin, S.; Zotov, T.; Movlaev, E.; Verbetsky, V. Synthesis and properties of AB5-type hydrides at elevated pressures. J. Alloys Compd. 2007, 446–447, 603–605. [Google Scholar] [CrossRef]
- Shibuya, M.; Nakamura, J.; Akiba, E. Hydrogenation properties and microstructure of Ti-Mn-based alloys for hybrid hydrogen storage vessel. J. Alloys Compd. 2008, 466, 558–562. [Google Scholar] [CrossRef]
- Zotov, T.; Movlaev, E.; Mitrokhin, S.; Verbetsky, V. Interaction in (Ti,Sc)Fe2-H2 and (Zr,Sc)Fe2-H2 systems. J. Alloys Compd. 2008, 459, 220–224. [Google Scholar] [CrossRef]
- Shibuya, M.; Nakamura, J.; Enoki, H.; Akiba, E. High-pressure hydrogenation properties of Ti-V-Mn alloy for hybrid hydrogen storage vessel. J. Alloys Compd. 2009, 475, 543–545. [Google Scholar] [CrossRef]
- Takeichi, N.; Senoh, H.; Yokota, T.; Tsuruta, H.; Hamada, K.; Takeshita, H.T.; Tanaka, H.; Kiyobayashi, T.; Takano, T.; Kuriyama, N. “Hybrid hydrogen storage vessel”, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material. Int. J. Hydrogen Energy 2003, 28, 1121–1129. [Google Scholar] [CrossRef]
- Mori, D.; Hirose, K. Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int. J. Hydrogen Energy 2009, 34, 4569–4574. [Google Scholar] [CrossRef]
- Matsunaga, T.; Shinozawa, T.; Washio, K.; Mori, D.; Ishikikiyama, M. Development of metal hydrides for high pressure mh tank. Mater. Issues Hydrogen Econ. 2009, 144–154. [Google Scholar] [CrossRef]
- Mori, D.; Haraikawa, N.; Kobayashi, N.; Kubo, H.; Toh, K.; Tsuzuki, M.; Shinozawa, T.; Matsunaga, T. High-pressure metal hydride tank for fuel cell vehicles. SAE Tech. 2005, 884, 72–78. [Google Scholar] [CrossRef]
- Chengdu Huarui Industrial Co., Ltd. Available online: https://hrmetal01.en.alibaba.com/?spm=a2700.details.cordpanyb.4.62706069FtdeVg (accessed on 30 April 2020).
- Izumi, F. Rietveld analysis and MEM-based whole-pattern fitting under partial profile relaxation. Rigaku J. 2000, 17, 34–35. [Google Scholar]
- Jepsen, J. Technical and Economic Evaluation of Hydrogen Storage Systems Based on Light Metal Hydrides; HZG Report 2014-2; Helmut-Schmidt-University: Hamburg, Germany, 2014. [Google Scholar]
- Hemmes, H.A.; Driessen, R.G. Thermodynamic properties of hydrogen at pressures up to 1 Mbar and temperatures between 100 and 1000K. J. Phys. C Solid State Phys. 1986, 19, 3571–3585. [Google Scholar] [CrossRef]
- Puszkiel, J.A. Preparation, Study and Optimization of Complex Hydrides for Hydrogen Storage (in Spanish); Universidad Nacional de Cuyo, Instituto Balseiro: San Carlos de Bariloche, Río Negro, Spain, 2012. [Google Scholar]
- Schulz, R.; Huot, J.; Boily, S. Equipment for Gas Titration and Cycling of an Absorbent or Adsorbent Material. Pantent CA2207149A1, 10 February 2009. [Google Scholar]
- Lozano, G.A.; Ranong, C.N.; Bellosta von Colbe, J.M.; Bormann, R.; Hapke, J.; Fieg, G.; Klassen, T.; Dornheim, M. Optimization of hydrogen storage tubular tanks based on light weight hydrides. Int. J. Hydrogen Energy 2012, 37, 2825–2834. [Google Scholar] [CrossRef]
- Sánchez, A.R.; Klein, H.P.; Groll, M. Expanded graphite as heat transfer matrix in metal hydride beds. Int. J. Hydrogen Energy 2003, 28, 515–527. [Google Scholar]
- Heubner, F.; Pohlmann, C.; Mauermann, S.; Kieback, B.; Röntzsch, L. Mechanical stresses originating from metal hydride composites during cyclic hydrogenation. Int. J. Hydrogen Energy 2015, 40, 10123–10130. [Google Scholar] [CrossRef]
- Ge, H.-W.; Wang, X.-H.; Zhang, Y.; Li, H.; Chen, L.-X.; Li, S.-Q.; Yan, M.; Chen, C.-P. Hydrogen storage properties of Ti-Cr-Mn-M (M = V, Fe, Ni, Cu) alloys. J. Funct. Mater. 2009, 40, 420–423. [Google Scholar]
- Standard ISO/DIS 15869.2:2006. Gaseous Hydrogen and Hydrogen Blends—Land Vehicle Fuel Tanks—Part 2: Particular Requirements for Metal Tanks; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- ZAO, Association of Aerospace Engineers. Pionerskay 4 141070 KOROLEV MOSCOW REGION RUSSISCHE FÖDERATION. Available online: https://unitech-mo.ru/eng/university/history/ (accessed on 30 April 2020).
- Lundin, C.E.; Lynch, F.E.; Magee, C.B. A correlation between the interstitial hole sizes in intermetallic compounds and the thermodynamic properties of the hydrides formed from those compounds. J. Less Common Met. 1977, 56, 19–37. [Google Scholar] [CrossRef]
- Beeri, O.; Cohen, D.; Gavra, Z.; Johnson, J.R.; Mintz, M.H. Thermodynamic characterization and statistical thermodynamics of the TiCrMn-H2(D2) system. J. Alloys Compd. 2000, 299, 217–226. [Google Scholar] [CrossRef]
- Pickering, L.; Lototskyy, M.V.; Davids, M.W.; Sita, C.; Linkov, V. Induction melted AB2-Type metal hydrides for hydrogen storage and compression applications. Mater. Today Proc. 2018, 5, 10470–10478. [Google Scholar] [CrossRef]
- Park, J.G.; Jang, H.Y.; Han, S.C.; Lee, P.S.; Lee, J.Y. The thermodynamic properties of Ti-Zr-Cr-Mn Laves phase alloys. J. Alloys Compd. 2001, 325, 293–298. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics, 7th ed.; John Wiley & Sons: New York, NY, USA, 2020. [Google Scholar]
- Somo, S.; Maponya, M.; Davids, D.; Hato, H.; Lototskyy, L.; Modibane, M. A Comprehensive Review on Hydrogen Absorption Behaviour of Metal Alloys Prepared through Mechanical Alloying. Metals 2020, 10, 562. [Google Scholar] [CrossRef]
- Lototskyy, M.; Yartys, V.A. Comparative analysis of the efficiencies of hydrogen storage systems utilising solid state H storage materials. J. Alloys Compd. 2015, 645, S365–S373. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Energy Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles. In U.S Drive; 2017; pp. 1–29. Available online: https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles (accessed on 30 April 2020).
- Wriedt, H.A.; Oriani, R.A. Effect of tensile and compressive elastic stress on equilibrium hydrogen solubility in a solid. Acta Met. 1970, 18, 753–760. [Google Scholar] [CrossRef]
- Nasako, K.; Ito, Y.; Hiro, N.; Osumi, M. Stress on a reaction vessel by the swelling of a hydrogen absorbing alloy. J. Alloys Compd. 1998, 264, 271–276. [Google Scholar] [CrossRef]
- Davids, M.W.; Lototskyy, M.; Malinowski, M.; van Schalkwyk, D.; Parsons, A.; Pasupathi, S.; Swanepoel, D.; van Niekerk, T. Metal hydride hydrogen storage tank for light fuel cell vehicle. Int. J. Hydrogen Energy 2019, 44, 29263–29272. [Google Scholar] [CrossRef]
- Available online: https://materialsproject.org/#search/materials (accessed on 30 April 2020).
- Zheng, J.; Li, L.; Chen, R.; Xu, P.; Kai, F. High pressure steel storage vessels used in hydrogen refueling station. J. Press. Vessel Technol. 2008, 130, 244–254. [Google Scholar] [CrossRef]
- NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 8.0. Available online: http://www.nist.gov/srd/nist23.htm (accessed on 30 April 2020).
Reference | Composition | ΔHdes. (kJ/mol H2) | Peq.des. (−30 °C) (bar) 1 | Peq.des. (0 °C) (bar) 1 | wt.% H2 2 | Cycling Stability | Hydro./Dehydro. Times and Conditions |
---|---|---|---|---|---|---|---|
[48] | Ti1.1CrMn | 22 | 15.7 | 51.8 | 1.8 | 1000 cycles with 94 % of the initial capacity | Abs. under 330 bar and 23 °C in 60 s/Des. 1 bar and 23 °C in 300 s |
[19] | Ti1.02Cr1.2Mn0.2Fe0.6 | 16.67 | 53.9 | 133.4 | 1.61 | 10 cycles at 218 bar and −10 °C/No loss of capacity | Abs. under 218 bar and −10 °C in 900 s |
[21] | (Ti0.85Zr0.15)1.1Cr0.925MnFe0.075 | 25.4 | 2.7 | 10.6 | 1.54 | 50 cycles with no hydrogen lost (shown Des. 0 °C) | Des. 1 bar and at 0 °C in 360 s/Des. 1 bar and at 30 °C in 120 s (Abs. N.A.) |
[25] | (Ti0.85Zr0.15)1.1Cr0.9Mo0.1Mn | 23.7 | 2.7 | 9.5 | 1.78 | 50 cycles with no hydrogen lost (shown Des. 0 °C) | Des. 1 bar and at 0 °C in 420 s/Des. 1 bar and at 25 °C in 120 s (Abs. N.A.) |
[28] | (Zr0.7Ti0.3)1.04Fe1.8V0.2 | 23.5 | 3.12 | 11.2 | 1.51 | 200 cycles with stable capacity | Des. 1 bar and at 0 °C in 480 s/Des. 1 bar and at 25 °C in 300 s (Abs. N.A.) |
[34] | Ti1.02Cr1.1Mn0.3Fe0.6La0.03 | 16.63 | 7.4 | 18 | 1.715 | N.A. | N.A. |
[45] | Ti1.02Cr1.0Fe0.75Mn0.25 | 19 | 12 | 33 | 1.85 | N.A. | Des. at −40 °C in 180 s (Abs. N.A.) |
This work | (Ti0.9Zr0.1)1.25Cr0.85Mn1.1Mo0.05 + 10 wt.% ENG3 | 24 | 4 | 14 | 1.5 | 40 cycles with stable capacity (within the error bar) | Abs. 97–100 bar and about 25 °C in 25 s/Des. 11–12 bar about 25 °C in 70 s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puszkiel, J.; Bellosta von Colbe, J.M.; Jepsen, J.; Mitrokhin, S.V.; Movlaev, E.; Verbetsky, V.; Klassen, T. Designing an AB2-Type Alloy (TiZr-CrMnMo) for the Hybrid Hydrogen Storage Concept. Energies 2020, 13, 2751. https://doi.org/10.3390/en13112751
Puszkiel J, Bellosta von Colbe JM, Jepsen J, Mitrokhin SV, Movlaev E, Verbetsky V, Klassen T. Designing an AB2-Type Alloy (TiZr-CrMnMo) for the Hybrid Hydrogen Storage Concept. Energies. 2020; 13(11):2751. https://doi.org/10.3390/en13112751
Chicago/Turabian StylePuszkiel, Julián, José M. Bellosta von Colbe, Julian Jepsen, Sergey V. Mitrokhin, Elshad Movlaev, Victor Verbetsky, and Thomas Klassen. 2020. "Designing an AB2-Type Alloy (TiZr-CrMnMo) for the Hybrid Hydrogen Storage Concept" Energies 13, no. 11: 2751. https://doi.org/10.3390/en13112751