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Abstract: Hydrogen has a very diverse chemistry and reacts with most other elements to form
compounds, which have fascinating structures, compositions and properties. Complex metal hydrides
are a rapidly expanding class of materials, approaching multi-functionality, in particular within the
energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the
solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar
heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is
highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review
focuses on the unique properties of light element complex metal hydrides mainly based on boron,
nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can
provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale
storage of renewable energy.

Keywords: complex metal hydrides; thermal energy storage; hydrogen storage; solid-state electrolytes;
electrodes; fuel cell

1. Introduction

The ultimate challenge of our time is the development of an environmentally friendly energy
system based on sustainable renewable energy to replace our fossil fuel dependency. Fossil fuels
are burnt and energy release is accompanied by release of carbon dioxide (CO2), nitrogen oxides
(NOx), particles etc. and may locally lead to extreme air pollution and smog while climate changes are
observed globally. Hence, the great challenge of our time is efficient conversion and large-scale storage
of renewable energy for days, weeks, and maybe months [1]. However, renewable energy sources
generally vary significantly over time and place [2]. Thus, the realization of this scenario calls for
a range of novel ideas, technologies, and a paradigm shift in design and development of novel energy
materials with new functionalities. Incremental improvement of known materials never changes the
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world, but just one new material may, since novel materials often form the basis for technological
paradigm shifts. The chemistry of hydrogen is very diverse and a wide range of novel hydrides have
been discovered during the past decade with a rich and fascinating structural chemistry and a range of
useful properties, e.g., energy storage, which is the topic of this review.

Renewable energy occurs mainly as heat from the sun or electricity from sun or wind. Electricity
can be used directly, stored in a battery, or used to split water to hydrogen and oxygen, see Figure 1.
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Hydrogen (H2), is the lightest element of all and also has some unique properties among
known substances, e.g., the highest gravimetric energy density, the fastest diffusion speed in air,
and a low density both as a gas and liquid. The latter makes hydrogen challenging to store in a
dense manner. Figure 1 illustrates that maybe in the future, carbon dioxide from the atmosphere
is reacted with hydrogen to create ‘carbon neutral’ hydrocarbons or carbohydrates. Oxidation of
such hydrocarbons/carbohydrates will not increase the carbon dioxide level in the atmosphere.
Sustainability means that all material cycles are closed, including our energy system. Therefore, all
materials that we use must be reused as illustrated in Figure 1.

This review reveals metal hydrides as a diverse class of materials with a range of compositions,
structures and properties towards multi-functionality. The focus is on light elemental hydrides,
consisting mainly of boron, nitrogen or aluminum, which may be used for storage of hydrogen, solar
heat or as novel battery materials. It is hoped that this review will provide new inspiration to create
new materials and technologies for efficient conversion and large-scale storage of renewable energy.

2. Complex Metal Hydrides for High-Density Hydrogen Storage

Complex metal hydrides (CMHs) formed by light elements, such as boron, nitrogen, or aluminum
often have extreme hydrogen densities but also poor thermodynamic and kinetic properties and
limited reversibility [1–4]. Initially, the discovery of reversibility in titanium-catalyzed NaAlH4

initiated a paradigm shift in hydrogen storage research towards complex anions [5]. Hence, research
was extended to include metal borohydrides, e.g., LiBH4 and nitrogen-based complex hydrides,
e.g., LiNH2 [6–8]. The complex hydride anions consist mainly of covalent bonds with well-defined
directionality, whereas ionic bonding dominates in the solid state between the complex anions and
counter cations, e.g., in LiBH4, NaBH4, and NaAlH4. Solid state CMHs have high volumetric and
gravimetric hydrogen densities (see Table 1), which makes them interesting as hydrogen storage
materials. However, the poor thermodynamic and kinetic properties only allow hydrogen release and
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uptake at elevated temperatures and pressures, which makes them unsuitable for portable applications.
The hydrogen release pathway from complex hydrides is complicated compared to metallic and ionic
hydrides, and thus remains not fully understood.

Amide-hydride composite systems, e.g., LiNH2-LiH, has been investigated as possible candidates for
hydrogen storage [7]. The LiNH2-LiH composite has a high calculated hydrogen content of ρm = 10.5 wt %
H2 and releases hydrogen according to reaction scheme (1).

LiNH2(s) + 2LiH(s)↔ Li2NH(s) + LiH(s) + H2(g)↔ Li3N(s) + 2H2(g) (1)

The decomposition reaction initiates at T = 180 ◦C, which is lower than those of the individual
reactants, i.e., 300 ◦C for LiNH2 and 600 ◦C for LiH [7]. Thus, similar composite systems have
been considered [9–13], e.g., Mg(NH2)2-2LiH (5.6 wt % H2) with suitable thermodynamic properties
(∆Hdes = 39 kJ mol−1 H2, ∆Sdes = 112 J K−1 mol−1 H2), i.e., dehydrogenation may occur below
90 ◦C at p(H2) = 1 bar [14]. However, experimental results reveal that T > 180 ◦C is required to
achieve hydrogen release [9]. Addition of CaH2 (8 mol %) catalyzes the reaction and decreases the
activation energy, i.e., the decomposition begins at 78 ◦C [15]. Generally, the dehydrogenation of
amide-hydride systems suffer from sluggish kinetics that might be caused by interface reactions,
nucleation/nuclei growth, and/or diffusion processes. Mechanical milling was found to be effective in
increasing the dehydrogenation kinetics, due to the reduced grain size and increased homogeneous
distribution of amide and hydride particles [16,17]. An effective catalyst may significantly improve the
kinetics. Recently, K2[Zn(NH2)4] was synthesized by mechanochemical milling and the composite
K2[Zn(NH2)4]-8LiH showed release of 4.2 wt % H2 below 400 ◦C [18–20]. Remarkably, the composite
may be fully hydrogenated in 30 s at 230 ◦C and p(H2) = 50 bar [18–20]. The LiAl(NH2)4-4LiH desorbs
5.0 wt % H2 at 130 ◦C [21]. However, the instability of LiAl(NH)2, one of the desorption products,
prevents rehydrogenation [21]. Metal amides and metal hydroxides may also form solid solutions,
such as in the NaNH2-NaOH system [22].

Table 1. Properties of selected light element complex metal hydrides [23,24]. M = molar mass;
ρ = volumetric mass density; ρm = gravimetric hydrogen density; ρV = volumetric hydrogen
density; ∆Hdec = decomposition enthalpy; T(1 bar) = equilibrium temperature at p(H2) = 1 bar;
Tdec = decomposition temperature.

M
(g/mol) ρ (g/mL) ρm (wt % H2) ρV (g H2/L) ∆Hdec

(kJ/mol)
T(1 bar)

(◦C) Tdec (◦C) Ref.

LiBH4 21.78 0.66 18.4 122.5 74 370 ~400 [25]
NaBH4 37.83 1.07 10.8 115.6 108 534 ~500 [26]
LiAlH4 37.95 0.92 10.6 97.5 −10 - ~150 a [27]
Li3AlH6 53.85 1.02 11.2 114.2 25 −81 c ~200 a [27]
NaAlH4 54.00 1.28 7.3 93.4 33.1 18 ~230 a [28]
Na3AlH6 102.00 1.45 5.9 85.6 49.0 103 ~275 a [28]

LiNH2 22.96 1.18 8.8 103.6 67 b - ~300 [29–31]
a Not catalysed. Decomposition temperatures strongly depend on the physical conditions for the measurement and
the published data scatter significantly; b Reported for the LiNH2-LiH system; c Calculated based on the van’t Hoff
equation using ∆S = 130 J/(mol K).

2.1. Complex Aluminum Hydrides

2.1.1. Aluminum Hydride

Aluminum hydride (AlH3, alane), is a promising hydrogen-storage material based on
thegravimetric and volumetric hydrogen density of ρm = 10.1 wt % H2 and ρV = 149 g H2/L,
respectively. Additionally, alane has a low hydrogen desorption temperature and fast desorption
kinetics, whilst aluminum is abundant [32]. Alane is thermodynamically unstable at room temperature
due to a positive Gibbs free energy of formation, ∆Gf

◦ = 46.5 kJ/mol, however, the crystalline α-AlH3

is kinetically stable at room temperature [33–35]. Alane was first synthesized in its pure form in
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1947 [36]. Since then, a variety of six polymorphs of alane has been discovered (α, α′, β, γ, δ and ε) [37].
The obtained polymorph is entirely dependent on the chosen synthesis route [38]. The structures
of α-, α′-, β-, and γ-AlH3 consist of corner-sharing AlH6 octahedra whereas γ-AlH3 also possesses
edge-sharing AlH6 octahedra [37,39–43].

Alane can be produced directly from the elements by hydrogenation of aluminum. However,
this synthesis method is impractical as it requires a hydrogen pressure above 25 kbar at room
temperature [44]. Another synthesis method is by mechanochemical treatment at liquid nitrogen
temperature (cryomilling, T = −196 ◦C) where a thermodynamically spontaneous metathesis reaction,
∆Gr

◦ = −191 kJ/mol, between AlCl3 and LiAlH4 occurs (see reaction scheme (2)), producing several
polymorphs of alane (α, α′, β, and γ-AlH3) [40,45,46].

AlCl3(s) + 3LiAlH4(s)→ 3LiCl(s) + 4AlH3(s) (2)

Furthermore, ball milling of AlCl3 and LiAlH4 at room temperature under hydrogen pressure
(p(H2) > 210 bar) only leads to formation of α-AlH3 [47]. A solid state reaction is facilitated by thermal
treatment at T ~75 ◦C followed by solvent extraction of LiCl [48]. The monomeric alane can also be
stabilized as a solvate R·AlH3 (R = Et2O, amines or tetrahydrofuran (THF)) by reaction in donating
solvents such as ethers or amines [49,50]. Subsequently, the solvent can be removed from the AlH3

adduct by heating in vacuum. Alane readily reacts with metal hydrides to form other complex
hydrides [51], e.g., NaAlH4, which will be discussed in the next section.

2.1.2. Metal Alanates

The potential of complex aluminum hydrides was seriously established with the discovery of
titanium-catalyzed NaAlH4 by Bogdanović in 1997 [5]. The system shows a reversible capacity
approximately twice of any of the conventional metal hydrides [52]. The complex aluminum hydrides
are based on the tetrahydridoaluminate(1−) or hexahydridoaluminate(3−) complex anion, AlH4

− or
AlH6

3−, respectively, which is commonly denoted alanates.
In the 1960s it was discovered that a range of alkali metal alanates can be prepared through direct

hydrogenation of the alkali metal hydride (MH, M = Li, Na, K, Cs) and aluminum either in the solid
state or in a solvent-mediated reaction [53,54]. The reaction is commonly described as a two-step
reaction [55,56], see reaction schemes (3) and (4)

3MH(s) + Al(s) + 3/2H2(g)↔M3AlH6(s) (3)

M3AlH6(s) + 2Al(s) + 3H2(g)↔ 3MAlH4(s) (4)

However, the detailed reaction mechanism for different metal alanates is debatable and other
intermediates may be involved [55,57].

LiAlH4 (ρm = 10.5 wt % H2) was synthesized in the late 1940s and is widely used as a reducing
agent in organic chemistry [58], but it attained increased attention as a hydrogen storage material with
the discovery of the titanium-catalyzed NaAlH4. Thermolysis of LiAlH4 is initiated by the melting
of LiAlH4, Tmp(LiAlH4) = 125 ◦C [23], which subsequently decomposes into solid Li3AlH6 and Al
accompanied by an exothermic release of hydrogen gas in the temperature range 150–220 ◦C [59,60].
The exothermic decomposition in this first step hinders the full reversibility of the system. The second
decomposition step occurs around 190–260 ◦C as an endotherm [61,62]. Ball milling metal alanates
tends to lower the decomposition temperature as particle size is reduced and defects are introduced.
However, LiAlH4 often decomposes during milling with additives, e.g., TiCl3, VCl3, and Fe [63–66].
Furthermore, addition of TiCl3 only reduces the decomposition temperature but does not enable
rehydrogenation [67]. A way to overcome the energy barrier preventing rehydrogenation of LiAlH4 is
to use a solvent-mediated synthesis route, hence LiH and Al stirred in, e.g., THF or Me2O and apply
hydrogen pressure as low as p(H2) > 10 bar [68,69].
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Sodium alanate, NaAlH4 (ρm = 7.4 wt % H2) is the most investigated metal alanate with moderate
rehydrogenation conditions of titanium-catalyzed NaAlH4 (at T = 170 ◦C, p(H2) = 150 bar) [5]. However,
the useful capacity is low (5.6 wt % H2) and not ideal for consideration in mobile applications. Thus,
a tremendous effort has been carried out in research to tailor the system, e.g., by addition of dopants or
nanoconfinement [70–77]. Furthermore, NaAlH4 has also been widely used as a precursor in metathesis
reactions to synthesize new metal alanate compounds, e.g., Mg(AlH4)2, Ca(AlH4)2, Sr(AlH4)2, and
Eu(AlH4)2 [78–80].

Potassium alanate, KAlH4 (ρm = 5.7 wt % H2), has a less understood mechanism of decomposition
as compared to LiAlH4 and NaAlH4. The formation of an intermediate has been observed
experimentally and a crystal structure and composition of K3AlH6 has been suggested by density
functional theory (DFT) calculations [37,81–83]. In contrast, experimental observations suggest a
KyAlHx compound with 1 ≤ y ≤ 3 and 4 ≤ x ≤ 6 [57]. The main advantage of KAlH4 over LiAlH4

and NaAlH4 is the reversible hydrogen sorption at low pressure (<10 bar) and moderate temperature
(250–300 ◦C) without the need of additives [84].

In general the alkali metal alanates are less stable than the alkali metal borohydrides with
decomposition temperatures of 60 to 300 ◦C as compared to T > 350 ◦C, respectively [2,67]. Hence,
they may more easily become a practical hydrogen storage material, but generally with lower
gravimetric hydrogen storage capacity.

2.2. Metal Borohydrides

In 2003, lithium borohydride, LiBH4, was proposed as a hydrogen storage material. Since then,
a wide range of novel metal borohydrides has been discovered, due to the great coordination flexibility
of the complex BH4

− anion, which can act as a counter ion in the solid state, or coordinate to a metal
via corner sharing (η1), edge sharing (η2), or face sharing (η3) [3,85]. Metal borohydride structures
appear to be related to structures of metal oxides, e.g., polymorphs of Ca(BH4)2 are isostructural to
polymorphs of TiO2 [85].

2.2.1. Monometallic Borohydrides

Lithium is one of the lightest elements and LiBH4 has a high gravimetric and volumetric hydrogen
density of ρm = 18.4 wt % H2 and ρV = 122.5 g H2/L, respectively [6,8,86,87]. The structure of LiBH4

is orthorhombic (Pnma), o-LiBH4, at room temperature whereas a first-order polymorphic transition
into a hexagonal (P63mc) structure, denoted h-LiBH4, occurs at T ~108 ◦C [8,86,88]. Both polymorphs
contain relatively rigid, regular, and undistorted BH4

− tetrahedra [89]. Furthermore, LiBH4 melts
at T ~ 275 ◦C and eventually decomposes at T > 350 ◦C into LiH and elemental B where the
enthalpy change amounts to ∆Hdec = 74 kJ/mol H2 [25]. The other alkali metal borohydrides MBH4,
M = Na, K, Rb and Cs have higher thermal stability and all crystallize in the Rock salt structure. Sodium
borohydride is also stable in basic aqueous solutions, which has been used as a hydrogen storage
media [90]. Alkali metal borohydrides are known to have the highest thermal stability, which hampers
the possible application as hydrogen storage materials.

Only recently, the full series of alkaline earth metal borohydrides was completed with the
discovery of Ba(BH4)2, Sr(BH4)2, and their chloride derivatives [91–93]. The alkaline earth metal
borohydrides show decreasing degree of covalent and directional bonding in the series, Mg > Ca > Sr
> Ba. Magnesium borohydride is known in seven different polymorphs and, remarkably, one of these,
γ-Mg(BH4)2, has permanent porosity and 30 % of open space in the structure [94–103]. The heavier
alkali earth metal borohydrides form three to four polymorphs [3].

A few transition metal borohydrides have also been described and those that are stable at room
temperature have electron configurations d0, d5 or d10 [2], i.e., containing the metal ions, Sc3+, Y3+,
Zr4+, Mn2+, Zn2+ or Cd2+. A few less stable transition metal borohydrides are also described, e.g.,
Ti(BH4)3 (d1) which sublimes at T ~0 ◦C, or Fe(BH4)2 which is stable in solution (at T ~−30 ◦C) and
can be stabilized as [Fe(NH3)6](BH4)2 [104,105].
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Some monometallic borohydrides form molecular solids and sublime at low temperatures, e.g.,
Al(BH4)3 and Zr(BH4)4, where the latter is the most stable, Tsub = 29 ◦C and may be prepared by
vapour deposition [106].

2.2.2. Bimetallic Borohydrides

Lithium potassium borohydride, LiK(BH4)2, was the first discovered bimetallic
borohydride [107,108]. Later, a range of lithium, rubidium, and caesium borohydrides were
described while also a solid solution of Na1−xKxBH4 was discovered [85,109]. These compounds have
structures similar to their parent monometallic borohydrides.

Bimetallic borohydrides, where the metals have increasing difference in Pauling electronegativity,
have structures constructed of larger metal complexes with the most electronegative metal as the
central ion and the less electronegative metal with dominantly ionic coordination. Thus, lithium
scandium borohydride, LiSc(BH4)4, consists of [Sc(BH4)4]− complexes and Li+ ions. Additionally, a
relationship between the Pauling electronegativity of the metal cation and the thermal stability of the
metal borohydride has been established as higher electronegativity results in lower decomposition
temperature, see Figure 2 [2,110,111].
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metals electronegativity.

Sodium zinc borohydrides are known in two compositions, NaZn(BH4)3 and NaZn2(BH4)5,
which contain the complex ions [Zn(BH4)3]− and [Zn2(BH4)5]−, respectively. The latter can also
be described as two identical interpenetrated three-dimensional frameworks [112–114]. Strong and
directional Zn-BH4 bonding by edge sharing (η2) is observed, which defines the structural architecture.
The compound LiCe(BH4)3Cl, has a very unique structure consisting of tetranuclear anionic clusters
[Ce4Cl4(BH4)12]4− with a distorted cubane Ce4Cl4 core [3,115].

Perovskite structures have long been known for metal hydrides, e.g., CsCaH3 and NaMgH3

containing the anion H− [117–121]. However, only recently the first perovskite-type metal
borohydride, KMn(BH4)3, was reported, though followed up by extensive research reporting
multiple new perovskite-type metal borohydrides containing the complex anion BH4

−, see also
Figure 3 [116,122–124]. Structurally, the metal borohydride perovskites differ from regular oxide and
halide ABX3 perovskites as their polymorphic transitions are not always intuitively towards higher
symmetry with increasing temperature. H-H repulsion between the BH4

− ligands may in some cases
result in lower symmetry.[123,125].
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2.2.3. Trimetallic Borohydrides

The first trimetallic borohydrides, Li3MZn5(BH4)15, M = Mg and Mn, presented in 2013 [126],
were prepared by partial cation substitution in LiZn2(BH4)5 using the chemical knowledge that the
ions, Li+, Mg2+, Mn2+, and Zn2+ share some chemical properties and may substitute for each other
in the solid state. The two compounds, Li3MZn5(BH4)15, M = Mg and Mn, are isostructural with
cation disorder in the hexagonal (P63/mcm) structure related to bimetallic LiZn2(BH4)5 [126]. The five
trimetallic compounds ALiM(BH4)4 (A = K or Rb; M = Mg or Mn) and K3Li2Mg2(BH4)9 have negatively
charged Li-Mg/Mn layered structures [127]. These trimetallic compounds have interesting structural
relationships to aluminosilicates, e.g., KAlSi3O8 (feldspar), and may open new research directions,
e.g., preparation of zeolite-like metal borohydrides. Similarly, zeolites contain three-dimensional
negatively charged Al-Si-O networks [127]. Double perovskites LiA2M(BH4)6 have been observed for
large alkali metals A = Rb, Cs and M = Y, Ce, Gd while the smaller alkali metal A = K stabilizes the
garnet-type structure Li3K3M2(BH4)12 for M = La, Ce [128,129].

2.2.4. Metal Borohydrides Modified by Neutral Molecules

Metal borohydrides have been modified with neutral molecules in order to improve hydrogen
release and uptake properties [3]. Nitrogen-based molecules have attracted significant attention,
e.g., ammonia, NH3, hydrazine, N2H4, and ammonia borane, NH3BH3, in order to introduce
dihydrogen bonding via partly positively charged hydrogen atoms, e.g., B–Hδ−· · · +δH–N in the
solid state. Dihydrogen bonding is explored for tailoring thermal stability and decomposition.
Trends in composition, structure, and properties for a range of new ammine metal borohydrides,
M(BH4)m·nNH3, have been investigated recently. The interest in ammine metal borohydrides has
increased tremendously during the past ~5 years [3,4]. The number of BH4

− anions (m) in the
compounds is fixed and determined by the oxidation state of the metal, whereas the number of NH3

ligands (n) may range from 1 to 8, e.g., Ca(BH4)2·NH3 and Zr(BH4)4·8NH3 [130,131]. In all cases
the ammonia molecule, NH3, coordinates via the lone pair on N to the metal, and the BH4

− anions
coordinate in a more flexible way (η0–η3). The most extensive series of crystalline ammine metal
borohydride is formed by Y(BH4)3·nNH3 (n = 1, 2, 4, 5, 6 and 7), which illustrates the great structural
flexibility ranging from cation complexes (n = 6 and 7), molecular neutral complexes (n = 4 and 5),
one-dimensional chain like (n = 2), and two-dimensional layered structure (n = 1) [132].

Ammine metal borohydrides have been considered promising hydrogen storage materials, e.g.,
Al(BH4)3·6NH3, Li2Al(BH4)5·6NH3, and Zn(BH4)2·2NH3 release 9 to 12 wt % H2 in the temperature
range 115 to 170 ◦C with traces of NH3 [133–135].

Interestingly, ammonia has a destabilizing effect for metal borohydrides with low metal
electronegativity (χp < ~1.6) and a stabilizing effect for those with χp > ~1.6. Thus the latter are
often more thermally stable than their respective metal borohydride [104,130]. The stabilization may
be due to complex formation and a shielding effect of the metal cation, which would otherwise be
reduced to the metallic state, e.g., Zn(BH4)2·4NH3 and Zn(BH4)2·2NH3 [135].
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Previously, a low NH3/BH4
− ratio (n/m ~1) and strong dihydrogen bonds were assumed to

provide H2 rich (and NH3 poor) gas release during thermolysis. However, recent experimental results
disagree with this hypothesis [130,132,136]. The composition of the released gas appears to depend
on the thermal stability of the ammine metal borohydride, i.e., if it is similar to or higher than the
thermal stability of the corresponding metal borohydride, then H2 is released. In contrast, mainly NH3

is released if the thermal stability of the ammine metal borohydride is significantly lower than the
corresponding metal borohydride. For instance, the compounds, M(BH4)m·nNH3, M = Al, Zn, Zr, and
V, release H2 (and maybe some NH3), e.g., Al(BH4)3·6NH3 releases H2 and a small amount of NH3 at
T ~165 ◦C [131,133,135,137].

Ammonia borane metal borohydride compounds have also been investigated,
M(BH4)m·nNH3BH3, M = Li, Mg, Ca, or Al [138–142]. They tend to separate during thermal
treatment and NH3BH3 decomposes at T > 200 ◦C and the release of the toxic gasses is not suppressed,
as observed for metal amidoboranes, M(NH2BH3)m [143]. An interesting amidoborane is the complex
Na[Al(NH2BH3)4] which was found to reversibly absorb 1.7 mole of H2, although between two
amorphous decomposition states [144]. Replacement of the Na+ ion with a K+ ion results in similar
thermal decomposition temperatures. However, the reversibility seem to be disabled by this cation
substitution [145].

3. Complex Metal Hydrides for Electrochemical Applications

Ni-metal hydride (Ni-MH) batteries have been used commercially in portable electrical devices
since the early 1990’s. The cathode consists of Ni(OH)2, while the anode is a MH and the electrolyte is
an alkaline solution [146]. The overall reaction is:

MH + NiOOH↔M + Ni(OH)2 M: Hydrogen storage alloy (5)

The LaNi5-based AB5 type alloy was modified and commercially used as negative electrodes for
Ni-metal hydride batteries [147]. Even though the energy densities of these batteries are smaller than
those of Li-ion batteries, they still play an important role in the market, especially for hybrid and fuel
cell vehicles. Furthermore, several metal hydrides have been proposed as conversion type electrodes
and others as electrolytes for complete solid state batteries. Different properties of metal hydrides have
also been highlighted elsewhere [148].

3.1. Metal Hydrides as Electrode Materials

In 2008 use of metal hydrides as conversion type anodes in Li-ion batteries was proposed for the
first time by Oumellal et al. [149]. In this concept, hydrides store lithium through the following general
conversion reaction:

MHn + nLi→ nLiH + M M: Metal or intermetallic hydride (6)

The first investigation in 2008 focused on MgH2 as the anode material, but the study also showed
successful conversion reactions for TiH2, NaH, LaNi4.25Mn0.75H5 and Mg2NiH3.7. The high theoretical
capacities of the hydrides (e.g., 2038 mAh/g for MgH2, i.e., more than five times that of graphite)
naturally caused significant interest for this new class of anodes. Furthermore, the investigation
revealed that magnesium hydride exhibits smaller cell polarization (∆V between charge and discharge)
than any of the other previously investigated conversion type electrodes (e.g., electrodes based
on nitrides, sulfides and oxides) [149]. Unfortunately, hydride materials show limitations in their
initial capacity (relative to the theoretical values) and large capacity loss upon cycling, which is
subscribed to poor electronic conductivity and the large volume change occurring in the electrode
during cycling, which may lead to poor contact. The capacity of MgH2 can be improved by limiting
the amount of inserted lithium [149], through careful formulation (e.g., choice of binder) and choice of
electrolyte. Hereby, a capacity retention for MgH2 of 542 mAh/g over 40 cycles has been achieved [150].
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Subsequently, several studies have investigated Li-ion storage in MgH2 [151–158], TiH2 [159,160],
AlH3 [151,161], M-LiH (M = Mg, Ti) [162] and TiH2-MgH2 [163] composites as well as a series
of Mg-based complex hydrides such as Mg2FeH6, Mg2CoH5 and Mg2NiH4 [164]. For detailed
descriptions of these results we refer to other reviews [165,166].

Li-ion storage through conversion reactions in lithium and sodium alanate, LiAlH4 and NaAlH4,
were investigated for the first time in 2015 [161,167,168]. The theoretical capacity for these materials is
~2000 mAh/g when considering reaction with 3 Li equivalents and full reduction to LiH and metallic
aluminium. Silvestri et al. [168] obtained an initial discharge capacity of 1180 mAh/g for LiAlH4,
corresponding to storage of 1.67 Li equivalent, at discharge potentials dominated by extended plateaus
at 0.78, 0.26 and 0.16 V versus Li. The conversion reaction has been shown by powder X-ray diffraction
to occur through the following steps:

2LiAlH4 + 3Li+ + 3e− → Li3AlH6 + Al + 2LiH (7)

Li3AlH6 + 3Li+ + 3e− → Al + 6LiH (8)

The formation of Al results in formation of the LiAl alloy according to the following reaction,
which is predicted to occur below 0.29 V [168].

Li+ + e− + Al→ LiAl (9)

The reversible capacity in the first charge is less than 1/3 of the capacity in the first discharge with
the alloying/de-alloying reaction being responsible for the majority of the reversible capacity.

For NaAlH4 anodes initial capacities of 1700–1800 mAh/g can be achieved according to
Reale et al. [167] with the majority of the Li storage reaction taking place at potentials <0.45 V.
High energy ball milling with conductive carbon (Super P) for 15 h improves the reversible capacity
in the first cycle from less than 30% to almost 70%. The discharge mechanism is still not completely
agreed upon. In general, multiple reaction steps are reported and the bi-alkali hexa-alanate, LiNa2AlH6

is a common intermediate [161,167].

NaAlH4 + 3/2Li+ + 3/2 e− → 1/2LiNa2AlH6 + 1/2Al + LiH (10)

LiNa2AlH6 + 5Li+ + 5 e− → 2Na + Al + 6LiH (11)

However, Reale et al. [167] also observed formation of the sodium hexa-alanate, Na3AlH6

(Equation (12)), which is suggested to be a competitive process affected by kinetic limitations.
Formation of Na3AlH6 during discharge was also confirmed in a separate study through 23Na and
27Al solid state NMR [169].

3NaAlH4 + 6Li + 6 e− → Na3AlH6 + 6LiH + 2Al (12)

Reale et al. also used the hexa-alanates Na3AlH6 and LiNa2AlH6 directly as anodes, which were
found to behave similarly to the alanates.

Recently, attempts were made to improve the reversibility of NaAlH4 by nanoconfinement in
mesoporous carbon scaffolds [170,171]. Nanoconfinement seems to alter the conversion mechanism by
enhancing the conversion from NaAlH4 to Na3AlH6. Also it appears to increase the capacity retention
of the system, however the results suggests that the majority of the long term capacity stems from the
carbon scaffolds [171].

Metal borohydrides have very high theoretical capacities, e.g., 4992 mAh/g for LiBH4

and thus have great potential as future anode materials. However, only a few studies of
borohydride-based anodes exists [172,173]. Theoretical calculations predict that Li-conversion reactions
are thermodynamically feasible for a long list of metal borohydrides both through a one-step
mechanism with direct formation of the metal, elemental boron and lithium hydride, or through



Energies 2017, 10, 1645 10 of 30

a two-step reaction with formation of a metal hydride as an intermediate. In the same investigation,
five mono-metallic borohydrides, M(BH4)n (M = Li, Na, K, Mg and Ca) were tested as anodes in Li-ion
batteries. Ca(BH4)2 appears to be electrochemically inactive, and for LiBH4 and KBH4 capacities below
75 mAh/g were achieved in the first discharge. Mg(BH4)2 and NaBH4 exhibited initial capacities
of ~540 and 250 mAh/g, which is well below their theoretical capacities of 3971 and 2834 mAh/g,
respectively. Furthermore, the reversible capacity in the second discharge is less than 50%. Thus,
it appears that metal borohydride based systems require further improvements in order to yield results
comparable to those obtained for the metal alanates.

3.2. Complex Metal Hydrides as Electrolytes

Metal borohydrides have recently been employed as a new class of solid-state electrolytes for
batteries [174,175] and the main advantages of light-weight CMHs are: (i) low material density
compared to similar oxides and chalcogenides (can be two to three times lower); (ii) thinner solid
state electrolytes, hence (i) and (ii) provide higher battery energy density; (iii) safer batteries because
flammable organic ionic liquids and polymeric electrolytes are avoided; and (iv) easier assembly of
all-solid-state batteries [176].

Research on metal borohydrides and derivatives, oxides and chalcogenides as solid state
electrolytes have been mainly focused on monovalent alkali metals, Li+ and Na+. Indeed, multivalent
cations, e.g., Mg2+, Ca2+, and Al3+, may further increase the energy density of solid state batteries.
However, development of fast ion conductors for these cations is challenging due to much larger
charge density as compared to mono-valent cations. Therefore, very large, low charge density anions,
such as closo-boranes, B12H12

2−, or closo-carboranes, CB11H12
−, may prove useful for design of

new electrolytes.
The high-temperature polymorph h-LiBH4 was among the first metal hydrides to be discovered as

fast ion conductors with Li+ conductivity of the order of 10−3 S cm−1 at T > 115 ◦C [177]. Attempts to
stabilize the high-temperature polymorph at room temperature were successful by halide-substitution
of the borohydride group, i.e., h-Li(BH4)1−xIx [178–180]. Reversible Mg stripping/plating has
been demonstrated using Mg(BH4)2 as an electrolyte in THF and dimethoxyethane solutions [181].
However, the conductivity of solid state Mg(BH4)2 is very low (<10−12 S cm−1 at 30 ◦C) [182] but
may be enhanced in double anion compounds, e.g., Mg(BH4)(NH2) has a Mg2+ conductivity of
1 × 10−6 S cm−1 at T = 150 ◦C [183]. Recently, the addition of ethylene diamine, NH2(CH2)2NH2 (en),
to Mg(BH4)2 resulted in the formation of cis-Mg(en)(BH4)2 which shows ion conductivity between
5 × 10−8 and 6 × 10−5 S cm−1 in the temperature range 30 to 70 ◦C, respectively [182]. So far, the
most promising compounds are Na2B10H10 and Na2B12H12, which show superionic conductivity
in the high-temperature polymorphs (phase transition at 87 and 207 ◦C, respectively) with Na ion
conductivity of ~0.01 and 0.1 S cm−1, respectively [184,185].

Intermolecular anion substitution in metal borohydrides has been explored as a valuable technique
for tailoring physical and chemical properties [3]. The heavier halides have provided a wide range
of metal borohydride halides with either fully ordered, e.g., KZn(BH4)2Cl or Sr(BH4)Cl [92,186],
partly ordered, e.g., NaY(BH4)2−xCl2+x [187,188], or disordered structures, e.g., K2Zn(BH4)xCl4−x [189].
The smaller fluoride ion can substitute for the hydride ion, i.e., intramolecular anion substitution,
F−→H−, in the BH4

− complex and the composite NaBH4-NaBF4 provided the first fluorine-substituted
borohydride, NaBH2.1F1.9, observed in the temperature range of 200–215 ◦C [190,191].

Recently, a new class of Li ion conductors was discovered, LiRe(BH4)3Cl, Re = La, Ce, Pr, Nd,
Sm, Gd, with an interesting new structure type [115,192–194]. The structure reveals disordered Li+

ions that occupy only 2/3 of the 12d Wyckoff sites, but a fully ordered anion lattice. The Li+ ion
conductivity for LiCe(BH4)3Cl was measured to be 1.03 × 10−4 Scm−1, at 20 ◦C [115]. Additionally,
solid-state 1H, 11B, and 7Li NMR measurements of spin-lattice relaxation rates of LiLa(BH4)3Cl reveal
two types of dynamics on the same frequency scale, i.e., Li-ion diffusion and reorientational motion
of BH4

− groups. Therefore the Li-ion diffusion and the dynamics of BH4
− complexes appear to be
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correlated, which suggests a paddle wheel mechanism is responsible for fast ionic mobility [195,196].
Anion substitution in this class of materials is also possible, i.e., LiLa(BH4)3X, X = Cl, Br, I, which may
open new possibilities for improvement of ion conductivity by tailoring the structural aperture for
cation diffusion in the solid materials [197,198].

New types of double anion hydride-oxides, i.e., containing BH4
− and BO3

3−, have also been
discovered recently [199,200], which may suggest formation of new types of hydrides containing, also
SO4

2−, PO4
3−, or PS4

3−, which may be compatible with known electrode materials.
A new class of silver closo-boranes was discovered recently, Ag2B12H12 and Ag2B10H10, with high

ion conductivities. Anion substitution with iodine stabilizes a high temperature polymorph with ion
conductivity up to 3.2 mS cm−1 at room temperature [201]. Partly or fully halogenated closo-boranes
may in future be useful to create new materials with higher conductivities [202,203].

Substitution of a boron atom with a carbon atom in closo-boranes leads to the formation of
closo-carboranes, e.g., CB11H12

− with even lower charge density. Particularly, LiCB11H12, and
NaCB11H12 have lower polymorphic transition temperatures (127 and 107 ◦C, respectively) compared
to the analogues Li2B12H12 and Na2B12H12 (342 and 256 ◦C, respectively) while showing some of the
most promising Li and Na ion conductivities of >0.1 S cm−1 yet observed [204].

4. Complex Metal Hydrides for Thermal Energy Storage

There are thousands of metals, metal alloys and compounds that can reversibly react with
gaseous hydrogen [205] at temperatures as low as −100 ◦C (TiCr1.9H3.5 [206]) and as high as 1100 ◦C
(LaHx [207]). The absorption of hydrogen is an exothermic process that releases heat while the
desorption of hydrogen is an endothermic process that absorbs heat and the direction of the reaction
can be controlled by changing either the hydride temperature or hydrogen pressure. This property of
metal hydrides means that they can be exploited for a wide range of closed-loop energy storage and
energy transformation applications including as; H2 compressors; hydride heat engines, actuators and
temperature sensors; thermochemical heat storage; heat pumping and thermally driven refrigeration.
In fact, many of the relevant engineering principles were developed and proven during the 1970s
and 1980s based on the high-cost, low capacity intermetallic hydrides known at the time. Extensive
reviews on the progress of metal hydrides for these applications have been published [208–211].
However, a consistent road block to the commercialisation of metal hydrides for these applications has
been the relatively low H2 capacity and high cost of traditional intermetallic hydrides based on transition
metals [210].

With the commercialization of concentrating solar power plants (CSPs) incorporating molten
nitrate salts heat storage and, in conjunction with the U.S. Department of Energy SunShot Initiative
to drive down the cost of solar electricity [212], there has been a renewed focus on the potential of
low-cost, high-temperature metal hydrides to be the second generation of CSP heat storage materials
that can operate at temperatures above 600 ◦C [213–217]. This is because the thermochemical heat
storage capacity of metal hydrides can exceed the sensible heat storage capacity of molten salts by
a factor of >10 [216]. In fact, the theoretical thermochemical heat storage capacity of some metal
hydrides, such as LiH and CaH2, are only exceeded by methane reforming reactions [214,218].
Specific details about the energy cycle for using metal hydrides as high temperature heat storage
materials for CSP can be found elsewhere [67,214,219–222]. Besides the intermetallic hydrides first
considered for heat storage in the 1970s and 1980s, most of the research on metal hydrides for high
temperature heat storage (T > 400 ◦C) has focused on a few particular sub-sets. These include: simple
binary/ternary hydrides and their partially fluorinated analogues [216], such as MgH2 [223–227],
NaH/NaH1−xFx [215,228], NaMgH3/NaMgH2F [229,230], and TiHx [213]; destabilized binary
hydrides, such as LiH-Al [231], xLiH-Si [232,233], and CaH2-Al [234] and; complex transition metal
hydrides, such as Mg2NiH4 [235,236], Mg2FeH6 [236,237], Mg2CoH5, and Mg6CoH11 [236]. The high
thermodynamic stability in conjunction with their high hydrogen capacity make CMHs intriguing
candidates as thermochemical heat storage materials for CSP and for industrial waste heat recovery
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and utilization. Despite this, CMHs have rarely been considered for heat storage applications with
examples in the literature limited to: the Li2NH/Li4NH system [238]; Na3AlH6, Na2LiAlH6 and
K2NaAlH6 [215] and; 6LiBH4 + CaH2 [239].

For this review, we have used the thermodynamic data reported in the literature for the H2

absorption/desorption from CMHs to calculate properties relevant for heat storage, Figure 4a,b and
Table 2. Figure 4a shows the theoretical gravimetric and volumetric heat storage capacities of 15 CMH
systems compared to other well-known: (1) thermochemical heat storage materials (TCMs) based on
metal hydrides, carbonates, hydroxides and oxides; (2) phase change materials (PCMs) and; (3) sensible
heat storage materials (SHMs). Another important factor in determining the suitability of a metal
hydride for a particular application is the H2 equilibrium pressure which increases exponentially
with temperature. Figure 4b shows the temperature dependent H2 equilibrium pressure for the CMH
systems, with NaH, MgH2, Mg2NiH4, Mg2FeH6 and TiH1.0–1.6H included as comparisons. The H2

equilibrium pressures have been plotted up to a value of 150 bar except for where thermodynamic
data is not available, i.e., above the melting point of NaBH4.
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Figure 4. (a) Theoretical volumetric heat storage capacities versus gravimetric heat storage capacities for
complex hydrides with a number of other heat storage materials included for comparison; (b) Hydrogen
absorption equilibrium pressures of complex hydrides versus temperature. Data for some well-known
heat storage metal hydrides are included as a comparison. Open symbols refer to data for complex
hydrides. TCM = thermochemical heat storage material, PCM = phase change heat storage material,
SHM = sensible heat storage material.

Figure 4a shows that the theoretical gravimetric and volumetric heat storage capacities of LiBH4

(4936 kJ/kg and 3296 kJ/L at 727 ◦C [240]), NaBH4 (5176 kJ/kg and 5559 kJ/L at 507.5 ◦C [241]) and
KBH4 (4248 kJ/kg and 4986 kJ/L at 615.5 ◦C [241]) are some of the highest known for a gas-solid
thermochemical reaction. Only LiH (8389 kJ/kg and 6543 kJ/L at 938 ◦C [241]) and CaH2 (3857 kJ/kg
and 7374 kJ/L at 1018 ◦C [241]) have theoretical gravimetric and/or volumetric heat storage capacities
that are higher. However, the theoretical operating temperatures for LiBH4, NaBH4 and KBH4 are
well within the target window of 600–800 ◦C for next generation CSP [212], whereas LiH and CaH2
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require operating temperatures of >900 ◦C and 1000 ◦C, respectively. One issue with utilizing the
alkali metal borohydrides for thermal heat storage is their reversibility. Both NaBH4 and KBH4 release
hydrogen and decompose directly to the respective molten alkali metals that easily vaporize and
segregate from the other decomposition product, boron. Pure LiBH4 also has problems with full
reversibility but progress has recently been made by starting from the 0.68LiBH4-0.32Ca(BH4)2 eutectic
composition [242].

Table 2. Properties of complex metal hydrides compared to selected heat storage materials. * Volumetric
heat storage capacity (in kJ/L) calculated based on the room-temperature crystalline density of materials
unless otherwise noted. # The operating temperature ranges correspond to H2 equilibrium pressures
that range between 1 bar and 150 bar unless otherwise noted.

Hydride Materials Theoretical H2 Capacity
(wt %) ∆Hdes/∆Habs (kJ/mol·H2) kJ/kg * kJ/L

# Operating Temperature
Range (◦C)

NaAlH4 ↔ 1/3Na3AlH6 + 2/3Al + H2(g) 3.73 38.4/−35.2 [243] 651.8 808.3 25 a–202 b

Na3AlH6 ↔ 3NaH + Al + 3/2H2(g) 2.96 47.6/−46.1 [243] 678.0 983.0 100–290
LiNa2AlH6 ↔ 2NaH + LiH + Al + 3/2H2(g) 3.52 54.95/n.a. [244,245] 959.0 1371.4 135–315
NaK2AlH6 ↔ 2KH + NaH + Al + 3/2H2(g) 2.25 98.0/−98.0 [246] 1095.3 1818.1 380–600 c

KAlH4 + LiCl↔KCl + LiH + Al + 3/2H2(g) [247] 2.69 37.6/−37.6 d 501.2 728.2 111–396
KAlH4 + NaCl↔ KCl + NaH + Al + 3/2H2(g)

[247]
2.35 62.3/−62.3 d 726.6 1111.8 334–574 e

Mg(NH2)2 + 2LiH↔ Li2Mg(NH)2 + 2H2(g) 5.58 38.9/n.a. [14] 2086.3 2166.5 75–280
LiNH2 + LiH↔ Li2NH + H2(g) 6.52 64.5/n.a. [30,248] 912.6 2086.1 270–375 f

CaNH + CaH2 ↔ Ca2NH + H2(g) 2.07 n.a./−88.7 [7] 1077.8 1257.8 590–780 g

LiBH4(l)↔ LiH + B + 3/2H2(g) 13.88 57.3/−57.3[240] 3945.7 2634.9 460–688 h

LiBH4(l)↔ LiH(l) + B + 3/2H2(g) 13.88 71.7/−71.7 [240] 4936.2 3296.3 688 h–1000+
NaBH4 ↔ Na(l) + B + 2H2(g) 10.66 97.9/−97.9 [241] 5176.0 5559.1 ~507.5 i

KBH4 ↔ K(l) + B + 2H2(g) 7.47 114.6/−114.6 [241] 4250.1 4985.9 ~615.5 j

2LiBH4 + MgH2 ↔ 2LiH + MgB2 + 4H2(g) 11.54 48.3/−48.3 k 2766.6 2308.0 205–467 l

NaH↔ Na(l) + 1/2H2(g) 4.20 116.8/−116.8 m 2433.5 2355.7 427–638 m

MgH2 ↔Mg + H2(g) 7.66 74.1/−74.1 [249] 2813.2 3994.7 282–534 n

Mg2NiH4 ↔Mg2Ni + 2H2(g) 3.62 64.6/n.a. [235] 1159.7 3142.7 253–523
Mg2FeH6 ↔ 2Mg + Fe + 3H2(g) 5.47 77.4/−77.4 [237] 2101.1 5757.0 300–566

TiH1.6 ↔ TiH1.0 + 0.3H2(g) 1.22 n.a./−165.5 o 1003.2 3772.0 645–921

Other Thermochemical Materials (TCM) ∆Hdes/∆Habs (kJ/mol Gas Species) kJ/kg kJ/L Temperature Range (◦C)

CaCO3 ↔ CaO + CO2(g) 178/−178 [218] 1764 4982.4 700–1000 p

Ca(OH)2 ↔ CaO + H2O(g) 104/−104 [218] 1404 3146.4 350–900 q

2Co3O4 ↔ 6CoO + O2(g) 205/−205 [218] 864 2124 700–850 r

2BaO2 ↔ 2BaO + O2(g) 77/−77 [218] 468 2361.6 400–1025 s

Phase Change Materials (PCM) ∆Hmelt/∆Hfusion (kJ/mol) kJ/kg kJ/L Melting Point (◦C)

Al↔ Al(l) 10.7/−10.7 [241] 397 1071.9 660
LiF↔ LiF(l) 27.0/−27.0 [250] 1041 2747.2 849

LiCl↔ LiCl(l) 19.9/−19.9 [241] 469.3 969.6 610
NaCl↔ NaCl(l) 28.2/−28.2 [250] 482 1033.4 801

60 wt % NaNO3(l), 40 wt % KNO3(l) [212] 1.59 t 436.3 958.6 (802.8 u) 290–565
60 wt % NaNO3(l), 40 wt % KNO3(l) [212] 1.59 t 174.5 383.4 (321.1 u) 290–400

“n.a.” = data not available. a The lower temperature limit is based on the thermodynamics of the system. In practice,
however, temperatures above ~100 ◦C are required for reasonable kinetics. b NaAlH4 is molten above 183 ◦C [243].
c Upper temperature potentially limited by melting point of NaH, ~638 ◦C [241], and KH, ~619 ◦C [241], decomposition
products. There are some indications that NaH and KH may also form a eutectic melt at a temperature as low as 280 ◦C
[246]. d There are some discrepancies in the reported thermodynamics for KAlH4. The enthalpy of formation of KAlH4,
∆Hf

◦ =−175.4 kJ/mol, was taken as the average of the values reported in [241,251] while the entropy of KAlH4, S◦ = 120.9
J/mol·H2·K, was taken as the average of the values reported in [241,252]. e At ~574 ◦C, decomposition directly to liquid
sodium metal rather than solid NaH becomes thermodynamically preferred according to the reaction KAlH4 + NaCl↔
KCl + Na(l) + Al + 2H2(g). The H2 equilibrium pressure at this temperature is ~33.2 bar. f Limited to melting point of
LiNH2 = 375 ◦C [253]. g Calculated up to the α-CaH2 to β-CaH2 phase transition at 780 ◦C [241]. At this temperature,
the H2 equilibrium pressure for the CaNH + CaH2↔ Ca2NH + H2(g) system is ~10.0 bar. The H2 equilibrium pressure
for the 6LiBH4(l) + CaH2 ↔ 6LiH(l) + CaB6 + 10H2(g) system is ~132.4 bar. h The melting point of LiH is ~688 ◦C.
The enthalpy and entropy of melting are ∆Hm = 21.8 kJ/mol and ∆Sm = 22.6 J/mol.K, respectively [241]. i The melting
point of NaBH4, 507.5 ◦C, is taken as the average of reference values [254,255]. This temperature corresponds to an H2
equilibrium pressure of ~0.26 bar [241]. The thermodynamics of molten NaBH4 have not been experimentally determined.
j The melting point of KBH4, 615.5 ◦C, is taken as the average of reference [254,255]. This temperature corresponds to
an H2 equilibrium pressure of ~0.23 bar [241]. The thermodynamics of molten KBH4 have not been experimentally
determined. k Thermodynamic data source for: (1) LiBH4 is reference [240]; (2) Mg is reference [241]; (3) MgH2 is reference
[256] and; (4) MgB2 is reference [257]. l At 467 ◦C, the H2 equilibrium pressure is ~57.8 bar for the reaction between 2LiBH4
and MgH2. Above this temperature the direct decomposition of MgH2 becomes thermodynamically preferred which
is then followed by the reaction of metallic Mg with LiBH4(l). m Data is for solid NaH up to its melting point ~638 ◦C
[207,241]. The H2 equilibrium pressure at this temperature is ~106.5 bar. n Practical maximum operating temperature
limited to ~400 ◦C due Mg sintering and capacity loss above this temperature [258]. o Enthalpy and entropy for the
reaction TiH1.6−TiH-0.3H2(g) calculated using data extracted for 527 ◦C≤ T ≤ 707 ◦C from Figure 2 on p 241 of [207].
p The operating temperature range corresponds to a CO2(g) partial pressure of between 0 and 10 bar [218]. q The operating
temperature range corresponds to a H2O(g) partial pressure of between 0 and 2 bar [218]. r The operating temperature
range corresponds to a O2(g) partial pressure of between 0 and 1 bar [218]. s The operating temperature range corresponds
to a O2(g) partial pressure of between 0 and 10 bar [218]. t Weighted average of the values for NaNO3(l) (1.83 kJ/kg·K),
and KNO3(l) (1.22 kJ/kg·K), respectively [259]. u Due to the substantial volume change upon melting, the volumetric heat
storage capacity calculated at 400 ◦C, ρ = 1.84 g/cm3 [260], has also been included for 60 wt % NaNO3/40 wt % KNO3.
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Complex Metal Hydrides and Fuel Cell Applications

An emerging research direction is that of CMHs as H2 storage materials for stationary fuel cells
(FCs) for clean power generation in seasonal storage, remote area and off-grid applications [261–264].
Unlike the closed-loop applications discussed in Section 4, this application utilizes an electrolyser to
produce H2, which is stored (e.g., in a metal hydride) until the consumption of hydrogen by the fuel
cell is required for electricity production. Interest in the use of classic intermetallic hydrides for this
role began in the 1990s [261,262] and an in-depth review of the principles and progress on the use of
metal hydrides in fuel cell applications has recently been published [264]. Some of the advantages
of energy storage based on a photo voltaic (PV)-electrolyser-H2 storage-fuel cell configuration over
a PV-Li ion battery system include:

Self-discharge: All batteries steadily lose charge over time and the self-discharge rate of
Li-ion is highly dependent on temperature and the state-of-charge (SOC). The higher the
temperature/SOC, the higher self-discharge rate [265]. The self-discharge rate of Li-ion batteries
is usually 3–5% a month [265]. However, ageing of the battery may influence the self-discharge rate
significantly [266]. In comparison, metal hydrides do not undergo “self-discharge” and can store their
“charge” indefinitely.

Safety: Li-ion batteries suffer from lithium dendrite formation which may lead to short-circuit of
the battery. Additionally, the organic electrolyte is hazardous in the presence of an oxidizing agent,
which may result in runaway reactions and the battery catching fire or exploding [267]. The classic
intermetallic hydrides first studied at near-ambient temperatures in combination with FCs have
intrinsic safety due to their modest H2 pressures and operating temperatures combined with the
endothermic nature of the H2 release process [264]. A more complicated scenario is presented by
CMHs due to the fact that they are, in general, strong reducing agents, and many have the potential
to be flammable or pyrophoric upon contact with air or water. However, in practical applications
CMHs are typically used in the form of dense compacts and research on these has shown that they
only undergo a mild temperature increase on exposure to air, and that direct immersion in water
results in a mild temperature increase combined with slow release of H2 [268,269]. A comprehensive
determination of the safety of CMHs would require performing reactivity testing at their practical
operating temperatures.

Deep discharge: Unlike rechargeable batteries [270], metal hydride systems do not, in general,
suffer capacity loss from being fully discharged [263].

Longevity: A battery’s cycle life is defined as the number of cycles until the capacity reaches 80%
of its initial reversible value [271]. Commonly, Li-ion batteries have a cycle life between 1000 and
4500 cycles, i.e., a lifetime between 7 and 20 years [272]. Li-ion batteries with a 95% retention after
30,000 cycles have been discovered, however, at the expense of energy density [273], which is a severe
drawback. In comparison, LaNi5 showed no capacity loss over 3300 cycles when using a H2 purity
above 99.9999% [274]. Furthermore, TiFe0.8Ni0.2 showed only a 16% capacity loss after 65,000 cycles:
equivalent to a ~178 year product lifetime based on a daily cycling regime [275]. The biggest issue
so far for the CMHs is the reversibility and cyclic stability and much less long term cycling has
been performed.

System size: As the energy density of CMHs is much higher than for Li-ion batteries, the system
size of a stationary energy storage system will be much denser [263]. Additionally, the mass of an
extensive Li-ion battery capable of storing large amounts of energy is considerable [276].

An additional benefit of thermally integrating CMHs with moderate- and high-temperature FCs
is that, by consuming a significant fraction of the waste heat generated, the CMHs could actually
improve the thermal control of high-temperature FC stacks [264].

One of the original driving forces for reducing the operating temperature of high capacity
CMHs was that they could be used in mobile applications/passenger vehicles, where the waste
heat (~80 ◦C) of Low Temperature Proton Exchange Membrane Fuel Cells (LT-PEMFCs) could
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be used to release H2 for FC consumption. However, H2 storage in complex hydrides with high
thermodynamic stability is less of an issue for stationary applications as a number of different types
of fuel cells are available that operate in different temperature ranges (AFC = Alkaline Fuel Cell,
HT-PEMFC = High-Temperature Proton Exchange Membrane Fuel Cell, PAFC = Phosphoric Acid
Fuel Cell, MCFC = Molten Carbonate Fuel Cell, SOFC = Solid Oxide Fuel Cell). Consequently, using
complex hydride systems such as NaAlH4 [277–282] and Mg(NH2)2 + 2LiH [283] in conjunction with
HT-PEMFCs is now being investigated. The integration of SOFCs with MgH2 [284–288], a metal
hydride that historically suffered from high thermodynamic stability and poor kinetics, highlights the
potential of CMHs for this application.

The different types of FCs are characterized by different operating temperatures as well as different
efficiencies. The efficiency of the FC determines the amount of waste heat generated, Qloss, which
can be used to release H2 from the metal hydride provided it exceeds the enthalpy of desorption,
∆Hdes. The potential for thermal integration of a CMH with a particular type of FC can be assessed
by considering their respective operating temperatures and the amount of waste heat available in
comparison to that required to release H2 from the CMH. Figure 5 presents this comparison for the
CMH systems and NaH, MgH2, Mg2NiH4, Mg2FeH6 and TiH1.0–1.6. It also includes the general range
that applies to intermetallic hydrides, as a comparison, since most fuel cell integration research has
been performed with these types of hydrides. Not all metal hydrides are suitable as H2 storage
materials when paired with FCs. As an example, TiH1.0–1.6 would not be appropriate for use with any
of the fuel cells, regardless of type, as the thermal energy required for H2 release, exceeds the waste
heat available from the fuel cell.Energies 2017, 10, 1645  16 of 32 
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Figure 5. Potential of various metal hydrides, based on their H2 enthalpy of desorption (∆Hdes), and
the associated heat loss (Qloss) of different types of fuel cells. The operating temperature range of
the metal hydrides corresponds to H2 absorption equilibrium pressures of between 1 and 150 bar
unless otherwise noted in Table 2. The step changes that occur for the NaH and LiBH4 curves are
a result of a phase change for either one of the reactants or products. This figure is based on that from
reference [264].

The choice of CMH for H2 storage when paired with a particular FC will be dependent on the
application under consideration. Some of the potential deciding factors include: CMH cost; cost and
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complexity of thermal integration between the CMH and FC; CMH footprint/volume; CMH operating
temperature range; H2 equilibrium pressure of the CMH; H2 sorption kinetics of the CMH as a function
of temperature and; the amount of FC waste heat available. The supply of H2 from CMHs with
operating temperatures below ~250 ◦C requires only modest energy input where simple heat transfer
solutions with low-efficiency, but low-cost, can be implemented. In principle, metal hydrides that
operate at either low- or high-temperature are suitable for use with high-temperature fuel cells (MCFCs
and SOFCs).

Figure 5 shows that, in general, the classic intermetallic hydrides are suitable for use with low-
and moderate-temperature FCs (i.e., ~250 ◦C and below), including LT- and HT-PEMFCs, AFCs and
PAFCs. In contrast, of all the CMH systems, only NaAlH4 and the Mg(NH2)2 + 2LiH system can
theoretically operate at low enough temperatures for use with a LT-PEMFC. However, in practice,
these systems only display sufficient H2 sorption kinetics above ~100 ◦C, which excludes their practical
use with LT-PEMFCs. The CMH systems based on Na3AlH6, Na2LiAlH6 and KAlH4 + LiCl can also,
in theory, operate with the low- and moderate-temperature FCs other than LT-PEMFCs. Of these
systems, uncatalyzed KAlH4-LiCl also has kinetic limitations with the maximum rate of H2 release
only achieved at ~230 ◦C [247]. Figure 5 also shows that all of the CMHs can potentially be used for
H2 storage when paired with MCFCs and SOFCs. The choice of CMH would then be determined by
the best match of the FC operating conditions, CMH properties and the application requirements.

To summarize, the high thermal stability of CMHs makes them attractive as heat storage materials
as the energy density may be tenfold higher than current state-of-the-art materials. Secondly, CMHs
in combination with a fuel cell for stationary energy storage, have several advantages compared to
commercially available Li-ion batteries, e.g., no self-discharge, higher safety and energy density.

5. Conclusions

The chemistry of complex metal hydrides is extremely diverse, and has provided a wide range
of novel materials in the past decade. Especially metal borohydrides with gravimetric hydrogen
density of >10 mass %, have received increasing interest as solid state hydrogen storage materials.
Furthermore, these materials have extremely rich chemistry based on structural flexibility and a wide
range of elemental compositions.

The potential of complex metal hydrides for use in a range of new applications have also been
highlighted in this review, see Figure 6. Examples are: as electrodes or electrolytes in solid state
batteries, e.g., the high-temperature polymorph of Na2B12H12 which has a high ionic conductivity;
thermal energy storage, e.g., at 507.5 ◦C NaBH4 has theoretical gravimetric and volumetric heat storage
capacities of 5176 kJ/kg and 5559 kJ/L, respectively; and fuel cell applications. Indeed, many other
properties, e.g., optical and magnetic properties are also promising and have been discovered in
the metal borohydrides CsEu(BH4)3 and K2Gd(BH4)5 as fluorescent and magnetocaloric properties,
respectively [123,289]. Furthermore, the metal closo-boranes, Ag2B10H10 and Ag2B12H12, display
photosensitivity analogous to silver halides and forms silver nanofilaments upon electron beam
exposure [201].

Hopefully, new metal borohydrides will be possible to design with desired chemical composition,
atomic coordination, and exciting properties, based on the extensive knowledge about novel
compounds, e.g., new combinations of light elements and boron, nitrogen or aluminum in complexes
with hydrogen may lead to new interesting possibilities in applications.
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properties of complex hydride perovskite materials. Nat. Commun. 2014, 5. [CrossRef] [PubMed]

124. Møller, K.T.; Jørgensen, M.; Fogh, A.S.; Jensen, T.R. Perovskite alkali metal samarium borohydrides: Crystal
structures and thermal decomposition. Dalton Trans. 2017, 46, 11905–11912. [CrossRef] [PubMed]

125. Schouwink, P.; Hagemann, H.; Embs, J.P.; D’Anna, V.; Černý, R. Di-hydrogen contact induced lattice
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132. Jepsen, L.H.; Ley, M.B.; Černý, R.; Lee, Y.-S.; Cho, Y.W.; Ravnsbæk, D.; Besenbacher, F.; Skibsted, J.; Jensen, T.R.
Trends in Syntheses, Structures, and Properties for Three Series of Ammine Rare-Earth Metal Borohydrides,
M(BH4)3·nNH3 (M = Y, Gd, and Dy). Inorg. Chem. 2015, 54, 7402–7414. [CrossRef] [PubMed]

133. Guo, Y.; Yu, X.; Sun, W.; Sun, D.; Yang, W. The Hydrogen-Enriched Al–B–N System as an Advanced Solid
Hydrogen-Storage Candidate. Angew. Chem. Int. Ed. 2011, 50, 1087–1091. [CrossRef] [PubMed]

134. Guo, Y.; Wu, H.; Zhou, W.; Yu, X. Dehydrogenation Tuning of Ammine Borohydrides Using Double-Metal
Cations. J. Am. Chem. Soc. 2011, 133, 4690–4693. [CrossRef] [PubMed]

135. Gu, Q.; Gao, L.; Guo, Y.; Tan, Y.; Tang, Z.; Wallwork, K.S.; Zhang, F.; Yu, X. Structure and decomposition of
zinc borohydride ammonia adduct: Towards a pure hydrogen release. Energy Environ. Sci. 2012, 5, 7590–7600.
[CrossRef]
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Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I. J. Phys. Chem. C 2017, 121,
19010–19021. [CrossRef]

198. Lee, Y.-S.; Ley, M.B.; Jensen, T.R.; Cho, Y.W. Lithium Ion Disorder and Conduction Mechanism in
LiCe(BH4)3Cl. J. Phys. Chem. C 2016, 120, 19035–19042. [CrossRef]

199. Lee, Y.-S.; Filinchuk, Y.; Lee, H.-S.; Suh, J.-Y.; Kim, J.W.; Yu, J.-S.; Cho, Y.W. On the Formation and the Structure
of the First Bimetallic Borohydride Borate, LiCa3(BH4)(BO3)2. J. Phys. Chem. C 2011, 115, 10298–10304.
[CrossRef]

200. Riktor, M.D.; Filinchuk, Y.; Vajeeston, P.; Bardají, E.G.; Fichtner, M.; Fjellvåg, H.; Sørby, M.H.; Hauback, B.C.
The crystal structure of the first borohydride borate, Ca3(BD4)3(BO3). J. Mater. Chem. 2011, 21, 7188.
[CrossRef]

201. Paskevicius, M.; Hansen, B.R.S.; Jørgensen, M.; Richter, B.; Jensen, T.R. Multifunctionality of Silver
closo-Boranes. Nat. Commun. 2017. [CrossRef] [PubMed]

202. Hansen, B.R.S.; Paskevicius, M.; Jørgensen, M.; Jensen, T.R. Halogenated Sodium-closo-Dodecaboranes as
Solid-State Ion Conductors. Chem. Mater. 2017, 29, 3423–3430. [CrossRef]

203. Bukovsky, E.V.; Peryshkov, D.V.; Wu, H.; Zhou, W.; Tang, W.S.; Jones, W.M.; Stavila, V.; Udovic, T.J.;
Strauss, S.H. Comparison of the Coordination of B12F12

2−, B12Cl12
2−, and B12H12

2− to Na+ in the Solid
State: Crystal Structures and Thermal Behavior of Na2(B12F12), Na2(H2O)4(B12F12), Na2(B12Cl12), and
Na2(H2O)6(B12Cl12). Inorg. Chem. 2017, 56, 4369–4379. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/adma.201403157
http://www.ncbi.nlm.nih.gov/pubmed/25312377
http://dx.doi.org/10.1039/C3CC49805K
http://www.ncbi.nlm.nih.gov/pubmed/24584582
http://dx.doi.org/10.1002/ejic.201000119
http://dx.doi.org/10.1016/j.ijhydene.2012.02.130
http://dx.doi.org/10.1039/c1dt10955c
http://www.ncbi.nlm.nih.gov/pubmed/22052250
http://dx.doi.org/10.1021/jp209848r
http://dx.doi.org/10.1039/c3cp52815d
http://www.ncbi.nlm.nih.gov/pubmed/24071912
http://dx.doi.org/10.1039/C7CP05565J
http://dx.doi.org/10.1021/jp307762g
http://dx.doi.org/10.1021/jp205105j
http://dx.doi.org/10.1039/C3RA44012E
http://dx.doi.org/10.1021/jp403746m
http://dx.doi.org/10.1515/zna-1995-1114
http://dx.doi.org/10.1021/acs.jpcc.7b04905
http://dx.doi.org/10.1021/acs.jpcc.6b06564
http://dx.doi.org/10.1021/jp2012232
http://dx.doi.org/10.1039/c1jm00074h
http://dx.doi.org/10.1038/ncomms15136
http://www.ncbi.nlm.nih.gov/pubmed/28443627
http://dx.doi.org/10.1021/acs.chemmater.6b04797
http://dx.doi.org/10.1021/acs.inorgchem.6b02920
http://www.ncbi.nlm.nih.gov/pubmed/28383911


Energies 2017, 10, 1645 27 of 30

204. Tang, W.S.; Unemoto, A.; Zhou, W.; Stavila, V.; Matsuo, M.; Wu, H.; Orimo, S.; Udovic, T.J. Unparalleled
lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions.
Energy Environ. Sci. 2015, 8, 3637–3645. [CrossRef] [PubMed]

205. Sandrock, G.; Thomas, G. The IEA/DOE/SNL on-line hydride databases. Appl. Phys. A 2001, 72, 153–155.
[CrossRef]

206. Johnson, J.R. Reaction of hydrogen with the high temperature (C14) form of TiCr2. J. Common Met. 1980, 73,
345–354. [CrossRef]

207. Manchester, F.D. Phase Diagrams of Binary Hydrogen Alloys; Monograph Series on Alloy Phase Diagrams, 13;
ASM International: Materials Park, OH, USA, 2000; ISBN 0-87170-587-7.

208. Sandrock, G.; Suda, S.; Schlapbach, L. Hydrogen in Intermetallic Compounds II, Topics in Applied Physics;
Springer: Berlin/Heidelberg, Germany, 1992; Volume 67.

209. Dantzer, P. Properties of intermetallic compounds suitable for hydrogen storage applications. Mater. Sci. Eng. A
2002, 329–331, 313–320. [CrossRef]

210. Sandrock, G.; Bowman, R.C. Gas-based hydride applications: Recent progress and future needs. J. Alloys Compd.
2003, 356, 794–799. [CrossRef]

211. Lototskyy, M.V.; Yartys, V.A.; Pollet, B.G.; Bowman, R.C., Jr. Metal hydride hydrogen compressors: A review.
Int. J. Hydrogen Energy 2014, 39, 5818–5851. [CrossRef]

212. SunShot Vision Study. Chapter 5: Concentrating Solar Power: Technologies, Cost, and Performance; US Department
of Energy: Washington, DC, USA, 2012.

213. Rönnebro, E.C.E.; Whyatt, G.; Powell, M.; Westman, M.; Zheng, F.; Fang, Z.Z. Metal Hydrides for
High-Temperature Power Generation. Energies 2015, 8, 8406–8430. [CrossRef]

214. Sheppard, D.A.; Paskevicius, M.; Humphries, T.D.; Felderhoff, M.; Capurso, G.; von Colbe, J.B.; Dornheim, M.;
Klassen, T.; Ward, P.A.; Teprovich, J.A.; et al. Metal hydrides for concentrating solar thermal power energy
storage. Appl. Phys. A 2016, 122, 395. [CrossRef]

215. Sheppard, D.A.; Humphries, T.D.; Buckley, C.E. Sodium-based hydrides for thermal energy applications.
Appl. Phys. A 2016, 122, 406. [CrossRef]

216. Fellet, M.; Buckley, C.E.; Paskevicius, M.; Sheppard, D.A. Research on metal hydrides revived for
next-generation solutions to renewable energy storage. MRS Bull. 2013, 38, 1012–1013. [CrossRef]

217. Ward, P.A.; Corgnale, C.; Teprovich, J.A.; Motyka, T.; Hardy, B.; Sheppard, D.; Buckley, C.; Zidan, R.
Technical challenges and future direction for high-efficiency metal hydride thermal energy storage systems.
Appl. Phys. A 2016, 122, 462. [CrossRef]

218. Pardo, P.; Deydier, A.; Anxionnaz-Minvielle, Z.; Rougé, S.; Cabassud, M.; Cognet, P. A review on high
temperature thermochemical heat energy storage. Renew. Sustain. Energy Rev. 2014, 32, 591–610. [CrossRef]

219. Corgnale, C.; Hardy, B.; Motyka, T.; Zidan, R.; Teprovich, J.; Peters, B. Screening analysis of metal hydride
based thermal energy storage systems for concentrating solar power plants. Renew. Sustain. Energy Rev. 2014,
38, 821–833. [CrossRef]

220. Harries, D.N.; Paskevicius, M.; Sheppard, D.A.; Price, T.E.C.; Buckley, C.E. Concentrating Solar Thermal
Heat Storage Using Metal Hydrides. Proc. IEEE 2012, 100, 539–549. [CrossRef]

221. Sheppard, D.A.; Humphries, T.D.; Buckley, C.E. What is old is new again. Mater. Today 2015, 8, 414–415.
[CrossRef]

222. Felderhoff, M.; Urbanczyk, R.; Peil, S. Thermochemical heat storage for high temperature applications—A
review. Green 2013, 3, 113–123. [CrossRef]

223. Paskevicius, M.; Sheppard, D.A.; Williamson, K.; Buckley, C.E. Metal hydride thermal heat storage prototype
for concentrating solar thermal power. Energy 2015, 88, 469–477. [CrossRef]
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