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Featured Application: Cost reduction of metal hydrides for hydrogen storage.

Abstract: We report here the effect on hydrogen sorption behavior of replacing vanadium by
ferrovanadium (FeV) in Ti-V-Cr Body Centred Cubic (BCC) solid solution alloys. The compositions
studied were Ti1.56V0.36Cr1.08 and Ti1.26V0.63Cr1.11. Both of the alloys were synthesized by melting
with 4 wt % of Zr7Ni10 in order to enhance the first hydrogenation (i.e., activation) kinetics.
The ferrovanadium substitution leads to the same microstructure as the vanadium pristine alloys and
no significant change in the lattice parameters was found. However, a longer incubation time was
observed in the activation process for the FeV substituted alloy. Finally, the replacement of vanadium
by ferrovanadium did not have a noticeable impact on the hydrogen capacities, heat of formation,
and entropy.
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1. Introduction

Body Centred Cubic (BCC) Vanadium-based alloys have been studied intensively since Reilly
et al. reported that vanadium hydride can store 3.8 wt % of hydrogen (i.e., dihydride VH2) and has
a reversible capacity of about 2 wt % [1–3]. For hydrogen storage applications, one limitation of
these alloys is the high price of vanadium. Thus, a low-cost alloy (i.e., with lower vanadium content)
could be more attractive for industrial production. Following this idea, the effect of the addition of
other transition elements has been studied by many groups [4–12]. In general, upon substitution,
the reversible storage capacity decreases, but for most cases, the hydrogen capacity is around 2 wt %,
which is acceptable for some applications.

Metal hydrides containing vanadium may be too expensive to be commercially viable. One way to
reduce cost is then to replace vanadium by the less expensive ferrovanadium [9,11,13–19]. For example,
Taizhong et al. found that the alloy TiCr1.2(FeV)0.6 has a total hydrogen capacity of 3.0 wt % and a
reversible capacity of 1.8 wt % [9]. Kim et al. showed that the as-cast Ti0.85Zr0.13(FeV)0.56Mn1.47Ni0.05

alloys was made of a C14 Laves phase and the FeO phase. The origin of the FeO phase was the
replacement of V by FeV. However, annealing at 1000 ◦C for one hour resulted in a single phase with
C14 Laves phase with a reversible hydrogen capacity of 1.6 wt %. Santos et al. reported that the
alloys TiMn0.9(FeV)1.1 and TiMn1.1(FeV)0.9 have faster activation kinetics than their pure vanadium
counterpart [16]. The total hydrogen capacity was lower for the ferrovanadium containing alloys,
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but the reversible capacity was higher due to the modification of the plateau pressures. Recently,
Mao et al. synthesized (FeV80)48Ti26Cr26 by the hydride powder sintering method [11]. They found
that the hydrogen capacity was reduced when compared to the melted alloy. However, adding 4 at% of
Ti the sintered sample was shown to have similar hydrogen absorption-desorption capacities than the
melted sample. Sakaki et al. studied TiZrMn BCC alloy for metal hydride actuators [19]. They showed
that ferrovanadium could be used for cost reduction and that the Al impurity in ferrovanadium could
reduce the hysteresis factor.

Recently, we reported the investigation of Ti1.56V0.36Cr1.08 Cr and Ti1.26V0.63Cr1.11 alloys, to which
Zr7Ni10 was added to enhance the activation process [20,21]. In order to decrease the cost of these
alloys, we investigated the partial replacement of vanadium by ferrovanadium (FeV). For both
alloys 50 at%, vanadium was replaced by ferrovanadium thus obtaining Ti1.56V0.18(FeV)0.18Cr1.08

and Ti1.26V0.315(FeV)0.315Cr1.11 alloys. The effects of partial replacement of V by FeV in these Ti-V-Cr
alloys on the crystal structure, microstructure, and thermodynamics parameters are presented here.

2. Materials and Methods

The raw elements were purchased from Alfa-Aesar and had the following purities: Ti (99.95%),
V (99%), Cr (99%), Zr (99.95%), and Ni (99.7%). The ferrovanadium alloy (FeV) had a composition of
79.88 wt % V; 16.26 wt % Fe; 3.74 wt % Al; 0.09 wt % Si; and, 0.03 wt % Cr.

To facilitate the first hydrogenation (activation) 4 wt % of Zr7Ni10 alloy was added to
Ti1.26V0.63Cr1.11 and Ti1.56V0.36Cr1.08 alloys using the following synthesis method. In a first step,
both xTi-yV-zCr and Zr7Ni10 alloys were melted independently. In the second step, both of the alloys
were crushed separately in a mortar and pestle, mixed in the right proportion, and remelted together.
This process is thereafter called co-melt. More details about this process could be found in our previous
paper [21]. Replacement of 50 at% of vanadium by ferrovanadium was done in both Ti1.56V0.36Cr1.08

and Ti1.26V0.63Cr1.11 alloys. In order to simplify, the name ‘50% FeV’ refer to the composition were 50
at% of vanadium was replaced by ferrovanadium and ‘100% FeV’ to the composition where 100 at% of
vanadium was replaced.

In casting, each sample was turned over and melted three times to ensure homogeneity.
The X-ray diffraction patterns were acquired on a Bruker D8 Focus apparatus using Cu kα radiation.
The crystallographic parameters (lattice parameters, crystallite size, and strain) were evaluated by
Rietveld’s refinement of the X-ray diffraction patterns using Topas software [22]. The refined crystal
parameters are quoted with three standard deviations.

The microstructure was investigated with a Tescan Vega3 SEM. An Electron Probe Micro Analysis
(EPMA, CAMECA SX 100), coupled with Wavelength Dispersive (WDS), was used for mapping
the elements.

Pressure-Composition-Isotherms were measured using a home-made Sievert-type apparatus.
Each sample was crushed using a mortar and pestle under argon atmosphere to prevent oxidation and
then exposed to hydrogen without prior treatment. Activations were performed at room temperature
under 2 MPa of H2. Desorptions were performed at 400 ◦C under dynamic vacuum for 4 h.

3. Results

3.1. Ti1.56V0.18(FeV)0.18Cr1.08 + 4 wt % Zr7Ni10

3.1.1. Microstructure

Figure 1 shows the microstructure and elements distribution of the Ti1.56V0.18(FeV)0.18Cr1.08 + 4%
Zr7Ni10 co-melt alloy. Two distinct phases are present: a main dark phase and a bright secondary
phase. The secondary phase is evenly distributed and the size of each ‘island’ of secondary phase
is of the order of a few microns. The element mapping indicates that the secondary phase is rich in
zirconium and nickel elements.



Appl. Sci. 2018, 8, 1151 3 of 13
Appl. Sci. 2018, 8, x FOR PEER REVIEW  3 of 12 

 

Figure 1. Backscattered micrograph and elements mappings of the as-cast co-melt 
Ti1.56V0.18(FeV)0.18Cr1.08 + 4% Zr7Ni10 alloy. 

Figure 2 shows a quantitative chemical analysis using EDX. The two lines (A and B on Figure 2) 
analysis clearly indicate that the amount of titanium, vanadium, and chromium slightly decrease in 
the secondary phase when compared to the matrix. Iron and nickel are almost exclusively found in 
the secondary phase. As far as zirconium is concerned, a small proportion is present in the matrix, 
but its abundance is much higher in the secondary phase. The quantitative analysis is reported in 
Table 1. One can notice in Table 1 that a relative variation of element abundance between the matrix 
and the secondary phase can be seen for iron, zirconium, and nickel, while the smallest variations are 
noticed for titanium and chromium. The matrix phase has a chemical composition that is very close 
to the nominal one except that zirconium and nickel are is a very low concentration. These two 
elements are almost exclusively found in the secondary phase, in which vanadium content is much 
reduced when compared to the matrix, but titanium and chromium concentrations are very similar 
to the ones that are found in the matrix. 

Table 1. Nominal and measured atomic percentage of the as-cast co-melt 52Ti-6V-6FeV-36Cr + 
4%Zr7Ni10. Uncertainties on the last significant digits are quoted in parentheses. 

Element Bulk Nominal Value Matrix Secondary Phase 

Ti 50.6 50.2 (4) 47.0 (3) 
Fe 1.0 0.83 (1) 1.6 (1) 
V 10.7 11.3 (1) 7.4 (2) 
Cr 35.0 35.6 (5) 34 (2) 
Zr 1.1 0.7 (4) 5.7 (1) 
Ni 1.6 1.3 (1) 4.5 (3) 

Figure 1. Backscattered micrograph and elements mappings of the as-cast co-melt Ti1.56V0.18(FeV)0.18Cr1.08

+ 4% Zr7Ni10 alloy.

Figure 2 shows a quantitative chemical analysis using EDX. The two lines (A and B on Figure 2)
analysis clearly indicate that the amount of titanium, vanadium, and chromium slightly decrease in
the secondary phase when compared to the matrix. Iron and nickel are almost exclusively found in the
secondary phase. As far as zirconium is concerned, a small proportion is present in the matrix, but its
abundance is much higher in the secondary phase. The quantitative analysis is reported in Table 1.
One can notice in Table 1 that a relative variation of element abundance between the matrix and the
secondary phase can be seen for iron, zirconium, and nickel, while the smallest variations are noticed
for titanium and chromium. The matrix phase has a chemical composition that is very close to the
nominal one except that zirconium and nickel are is a very low concentration. These two elements are
almost exclusively found in the secondary phase, in which vanadium content is much reduced when
compared to the matrix, but titanium and chromium concentrations are very similar to the ones that
are found in the matrix.

Table 1. Nominal and measured atomic percentage of the as-cast co-melt 52Ti-6V-6FeV-36Cr + 4%Zr7Ni10.
Uncertainties on the last significant digits are quoted in parentheses.

Element Bulk Nominal Value Matrix Secondary Phase

Ti 50.6 50.2 (4) 47.0 (3)
Fe 1.0 0.83 (1) 1.6 (1)
V 10.7 11.3 (1) 7.4 (2)
Cr 35.0 35.6 (5) 34 (2)
Zr 1.1 0.7 (4) 5.7 (1)
Ni 1.6 1.3 (1) 4.5 (3)
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Figure 2. Linear chemical analysis of the as-cast co-melt Ti1.56V0.18(FeV)0.18Cr1.08 + 4% Zr7Ni10alloy; lines 
positions are indicated on the backscattered electrons (BSE) SEM micrograph. 

3.1.2. Crystal Structure 

The alloy’s crystal structure was investigated by X-ray powder diffraction. Diffraction patterns 
of co-melt Ti1.56V0.18(FeV)0.18Cr1.08 + 4%Zr7Ni10 taken in as cast, hydrogenated and dehydrogenated 
states are shown in Figure 3. The as-cast pattern only shows the BCC structure and there is no 
evidence of a secondary phase. As seen in Figures 1 and 2, the proportion of secondary phase is quite 
small, thus making it harder to identify by X-ray diffraction. Also, it is clear from the atomic 
compositions of both phases presented in Table 1 that both BCC alloys have an almost similar bulk 
composition. Therefore, even if the crystal structure of the secondary phase remains unknown, there 
is a strong probability that it exhibits the same crystal structure as the matrix phase. According to our 
calculations that are based on the diameter of every element provided by the Shannon’s Table, the 
average metallic radii in both the matrix and the secondary phase were estimated to be, respectively, 
0.1392 nm and 0.1401 nm [23]. This means that, if the matrix and secondary phase have both a BCC 
structure and if one of them has a much lower abundance than the other, then it may be effectively 
impossible to distinguish them using the powder X-ray diffraction technique. Assuming the same 
crystal structure and the average metallic radius, we calculated a shift in the Bragg’s peaks of only 
0.01° at 42° and 0.1° at 104°. As the secondary phase abundance is much lower than the main phase, 
its peak will be effectively ‘buried’ under the main phase peaks. 

Figure 2. Linear chemical analysis of the as-cast co-melt Ti1.56V0.18(FeV)0.18Cr1.08 + 4% Zr7Ni10alloy;
lines positions are indicated on the backscattered electrons (BSE) SEM micrograph.

3.1.2. Crystal Structure

The alloy’s crystal structure was investigated by X-ray powder diffraction. Diffraction patterns
of co-melt Ti1.56V0.18(FeV)0.18Cr1.08 + 4%Zr7Ni10 taken in as cast, hydrogenated and dehydrogenated
states are shown in Figure 3. The as-cast pattern only shows the BCC structure and there is no evidence
of a secondary phase. As seen in Figures 1 and 2, the proportion of secondary phase is quite small,
thus making it harder to identify by X-ray diffraction. Also, it is clear from the atomic compositions
of both phases presented in Table 1 that both BCC alloys have an almost similar bulk composition.
Therefore, even if the crystal structure of the secondary phase remains unknown, there is a strong
probability that it exhibits the same crystal structure as the matrix phase. According to our calculations
that are based on the diameter of every element provided by the Shannon’s Table, the average metallic
radii in both the matrix and the secondary phase were estimated to be, respectively, 0.1392 nm and
0.1401 nm [23]. This means that, if the matrix and secondary phase have both a BCC structure and
if one of them has a much lower abundance than the other, then it may be effectively impossible to
distinguish them using the powder X-ray diffraction technique. Assuming the same crystal structure
and the average metallic radius, we calculated a shift in the Bragg’s peaks of only 0.01◦ at 42◦ and
0.1◦ at 104◦. As the secondary phase abundance is much lower than the main phase, its peak will be
effectively ‘buried’ under the main phase peaks.
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stoichiometry of the hydride sample. From the lattice parameters, the formula unit volume was 
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(FCC) hydride counterpart, a volume of 20.24 Å3 was estimated, corresponding to an expansion of 
5.35 Å3 per formula unit. Using the Westlake’s criteria claiming a volume change comprised between 
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The kinetics of the first hydrogenation (activation) under 2MPa of hydrogen at room 
temperature of the Ti1.56V0.18(FeV)0.18Cr1.08 + 4%Zr7Ni10 and Ti1.56V0.36Cr1.08 + 4%Zr7Ni10 alloys are 
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slightly longer incubation time for the ferrovanadium-containing sample. After the incubation time, 
the absorption proceeds quite rapidly and full capacity is reached in less than 300 s for both pure 
vanadium and vanadium substituted alloys. The maximum capacity is close to 3.2 wt % of hydrogen, 
which is slightly higher than other Ti-V based materials that was reported in the literature [24–27]. 

Figure 3. XRD pattern of the co-melt Ti1.56V0.18(FeV)0.18Cr1.08 + 4%Zr7Ni10 alloy in as cast, fully hydride,
and desorbed state.

Rietveld refinements were performed on the three patterns and results are shown in Table 2.
The values that are reported in this table are essentially identical to the one reported in our previous
investigation on the alloy Ti1.56V0.36Cr1.08 + 4%Zr7Ni10 [21]. The main discrepancies are the slightly
less important reduction of crystallite size upon dehydrogenation and a larger increase of micro-strain
after hydrogenation. Nevertheless, it seems that the partial replacement of vanadium has no important
effect on the crystal structure of the BCC alloy.

Table 2. Crystal parameters of the co-melt Ti1.56V0.18(FeV)0.18Cr1.08 + 4% Zr7Ni10.

Sample Crystal Structure Lattice Parameter (nm) Crystallite Size (nm) Micro-Strain (%)

As-cast BCC 0.3100 (1) 14 (1) 0.4 (1)
Hydrided FCC 0.4326 (3) 13 (2) 1.4 (1)
Desorbed BCC 0.3089 (3) 8 (1) 1.2 (2)

Rietveld refinements of the patterns that are displayed in Figure 3 also enable us to estimate
the stoichiometry of the hydride sample. From the lattice parameters, the formula unit volume was
calculated to be 14.89 Å3 for the BCC structure of the as-cast sample. Regarding its Face Centred Cubic
(FCC) hydride counterpart, a volume of 20.24 Å3 was estimated, corresponding to an expansion of
5.35 Å3 per formula unit. Using the Westlake’s criteria claiming a volume change comprised between
2 and 3 Å3 for each hydrogen atom absorbed, the cell structure expansion is consistent with a dihydride
FCC phase (Ti1.56V0.36Cr1.08)H2.

3.1.3. Hydrogen Storage Properties

The kinetics of the first hydrogenation (activation) under 2MPa of hydrogen at room temperature
of the Ti1.56V0.18(FeV)0.18Cr1.08 + 4%Zr7Ni10 and Ti1.56V0.36Cr1.08 + 4%Zr7Ni10 alloys are presented in
Figure 4. The activation is similar for both of the alloys, the only difference being a slightly longer
incubation time for the ferrovanadium-containing sample. After the incubation time, the absorption
proceeds quite rapidly and full capacity is reached in less than 300 s for both pure vanadium and
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vanadium substituted alloys. The maximum capacity is close to 3.2 wt % of hydrogen, which is slightly
higher than other Ti-V based materials that was reported in the literature [24–27].
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Figure 4. Activation kinetics of the co-melt Ti1.56V0.18(FeV)0.18Cr1.08 + 4%Zr7Ni10 and Ti1.56V0.36Cr1.08

+ 4%Zr7Ni10 under 20 bars of H2 at 25 ◦C.

After activation, the samples were desorbed and the pressure-composition isotherm was
registered. However, we found out that there was an important reduction of capacity that makes
the measurement practically impossible. For this reason, after activation at room temperature,
the temperature was increased while keeping the sample under high hydrogen pressure in order
to prevent it to desorb. Thereafter, the desorption curve was registered. This procedure was repeated
for each isotherm, meaning that every isotherm was measured using a freshly hydrided sample.
Figure 5 gathers the Pressure Composition desorption isotherms (PCT) that were recorded at 150,
180, 200, and 230 ◦C. For each temperature, a few measurements were performed with similar results.
As the temperature increases, so does the equilibrium pressure. It should be mentioned that the plateau
recorded are for the transition from the dihydride to the monohydride. The monohydride plateau is
too stable to be recorded with our apparatus. The fact that the plateaus are sloped is probably due
to the solid solution nature of the as-cast material. As there is an important reduction of capacity
after the first cycle, this may explain why the capacities of various isotherms changed. Further work
on cycling properties of this material is needed. This is also the reason why we considered the
middle of each plateau as the plateau pressure and not the hydrogen pressure at a given hydrogen
concentration. The fact that the capacity increases with temperature is puzzling. One reason may
be the lowering of the first plateau that makes the transition from the first to second plateau even
more sloping, thus making the measurement of total capacity of the second plateau more difficult.
From these pressures, a Van’t Hoff plot was obtained and is reported in Figure 5. The formation
enthalpy of the hydride has been determined to be −59 ± 3 kJ·(mol·H2)−1 and its associated entropy
−166 ± 8 J·(mol·H2)−1·K−1. The errors have been calculated using the linear fit of the Van’t Hoff
plot. As a comparison, the formation enthalpy of the Ti1.56V0.36Cr1.08 + 4% Zr7Ni10 hydride has been
determined to be −61 kJ·(mol·H2)−1 and its associated entropy −169 J·(mol·H2)−1·K−1 [21].
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Figure 5. Desorption the Pressure Composition desorption isotherms (PCTs) at 150, 180, and 200 °C 
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Figure 5. Desorption the Pressure Composition desorption isotherms (PCTs) at 150, 180, and 200 ◦C
and ln (Peq) vs (1000/T) of the co-melt Ti1.56V0.18(FeV)0.18Cr1.08 + 4% Zr7Ni10.

The high value of the entropy term when compared to the usual one found in metal hydrides
(103 to 115 J·(mol·H2)−1·K−1) should be addressed. We recently made a series of experiments on the
alloys Ti1-xVxCr37 and found some evidences of an entropy-enthalpy compensation in these alloys.
As this is a controversial subject and may be due to some experimental bias, the investigation is still in
progress. But, the preliminary results seems to indicate that ∆H is directly proportional to ∆S in these
alloys [28].

3.2. Ti1.26V0.315(FeV)0.315Cr1.11 + 4 wt % Zr7Ni10

3.2.1. Microstructure

The other composition studied was Ti1.26V0.315(FeV)0.315Cr1.11 doped with 4 wt % of Zr7Ni10.
This composition was selected because we have already studied the composition Ti1.26V0.63Cr1.11 [20].
Figure 6 shows the microstructure and elements mapping of as cast co-melt Ti1.26V0.315(FeV)0.315Cr1.11

+ 4 wt % Zr7Ni10. It is clear that, as for the previous composition, the alloy is made of a main and a
secondary phase where the secondary phase is depleted in chromium and vanadium but is rich in
zirconium and nickel.

A quantitative analysis of element abundance is shown in Figure 7 and the values are reported in
Table 3. The situation is similar to what has been observed for the sample Ti1.56V0.18(FeV)0.18Cr1.08 +
4% Zr7Ni10. It shows that Fe, Zr, and Ni elements are principally found in the secondary phase and
that chromium and vanadium concentrations are depleted when compared to the main phase. The
only difference with the previous alloy consists of a higher titanium abundance in the secondary phase
than in the matrix.
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Table 3. Nominal and measured atomic percentage of the as-cast co-melt Ti1.26V0.315(FeV)0.315Cr1.11

+ 4% Zr7Ni10 alloy.

Element Bulk Nominal Value Matrix Secondary Phase

Ti 40.9 38 (2) 47 (2)
Fe 1.7 1.2 (1) 3.1 (1)
V 18.7 21 (1) 9.5 (2)
Cr 36.0 38.5 (5) 29.5 (4)
Zr 1.1 0.3 (1) 6.3 (1)
Ni 1.6 1.0 (1) 5.1 (2)

3.2.2. Crystal Structure

Figure 8 presents the X-ray diffraction patterns of the as-cast, hydrided, and desorbed
Ti1.26V0.315(FeV)0.315Cr1.11 + 4% Zr7Ni10 alloy. Table 4 presents the crystal structure parameters,
as determined by Rietveld refinements.
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Figure 8. XRD patterns of Ti1.26V0.315(FeV)0.315Cr1.11 + 4% Zr7Ni10 alloy.

Table 4. Crystal parameters of the co-melt Ti1.26V0.315(FeV)0.315Cr1.11 + 4% Zr7Ni10. Uncertainties on
last significant digit are indicated in parentheses.

Sample Crystal Structure Lattice Parameter (nm) Crystallite Size (nm) Micro-Strain (%)

As-cast BCC 0.3062 (2) 13 (1) 0.6 (1)
Hydrided FCC 0.4296 (3) 16 (2) 1.1 (1)
Desorbed BCC 0.3059 (4) 10 (1) 1.2 (2)

The as-cast alloy crystallizes with a BCC structure, as reported for its 100 at% vanadium
homologous alloy and has a slightly smaller lattice parameter (0.3062 nm as compared to 0.3074 nm
for the Ti1.26V0.63Cr1.11 alloy) [20]. From the value of lattice parameter of Table 4, the volume of the
formula unit was found to be 14.34 Å3. The diffraction pattern of the hydride sample clearly shows
two phases. One of these phases is the dihydride FCC phase. The other phase is more difficult to
determine, and two possibilities were investigated: (1) a BCC phase with hydrogen in solid solution
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and (2) a monohydride BCT (body centered tetragonal) phase. The Rietveld refinement using both
structures gave similar Goodness-of-fit and R-values. It should be noted that the formula unit volume
was exactly the same (15.76 Å3) for both BCT and BCC phases, thus corresponding to an expansion of
1.42 Å3. It is very close to one fourth of the expansion of the FCC phase. Therefore, even if we could
not precisely determine the crystal structure of this second phase, we are confident that it contains
about one hydrogen atom for two formula units.

3.2.3. Hydrogen Storage Properties

The kinetics of the hydrogen activation of the Ti1.26V0.315(FeV)0.315Cr1.11 + 4% Zr7Ni10 and co-melt
Ti1.26V0.63Cr1.11 + 4% Zr7Ni10 are presented in Figure 9. The main difference is clearly that the
alloy containing ferrovanadium presents a long incubation time, while hydrogen absorption starts
immediately for the alloy with pure vanadium. For both alloys, the full capacity is reached in about
200 s after the reaction started. The maximum capacity of ferrovanadium alloy (3.2 wt % of hydrogen)
is slightly smaller than its pure vanadium counterpart (3.4 wt %).
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Figure 9. Activation under 20 bars of H2 at 25 ◦C of the co-melt Ti1.26V0.315(FeV)0.315Cr1.11 + 4%
Zr7Ni10 and co-melt Ti1.26V0.63Cr1.11 + 4% Zr7Ni10.

From Figures 4 and 9 we see that replacement of vanadium by ferrovanadium made the first
hydrogenation starts only after an incubation time. Once the reaction starts, the intrinsic kientics is
almost the same as for the alloy without ferrovanadium. The reason of appearance of this incubation
time is still not clear. One possible reason may be the nature of the surface of the particles. Alloys that
are containing iron may have a thicker oxide on surface, thus making the incubation time longer. But,
this hypothesis has to be confirmed by further tests.

Figure 10 exhibits the Pressure Composition desorption isotherms (PCT) of Ti1.26V0.63Cr1.11 +
4%Zr7Ni10 recorded at 80, 100 and 130 ◦C. Once again, as the temperature increases, so does the
equilibrium pressure. A Van’t Hoff plot has been made using the pressure value at the middle of
the plateau. The formation enthalpy of the hydride has been determined to be −38 kJ·(mol·H2)−1

and its associated entropy −138 J·(mol·H2)−1·K−1. These values are very close to the ones found
for Ti1.26V0.63Cr1.11 + 4% Zr7Ni10 hydride, which were determined to be −38 kJ·(mol·H2)−1 and its
associated entropy −125 J·(mol·H2)−1·K−1 [13].
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Figure 10. Desorption PCTs at 80, 100, and 130 ◦C and ln (Peq) vs. (1000/T) of the co-melt
Ti1.26V0.315(FeV)0.315Cr1.11 + 4% Zr7Ni10.

4. Conclusions

The microstructure, crystal structure, and hydrogen sorption properties of Ti1.56V0.18(FeV)0.18Cr1.08

+ 4 wt % Zr7Ni10 and Ti1.26V0.315(FeV)0.315Cr1.11 + 4 wt % Zr7Ni10 were investigated. Both of the alloys
consisted of two phases. The main phase had a BCC structure and a composition that was close to the
nominal one, but with minor inclusions of iron, zirconium, and nickel. For the Ti1.56V0.18(FeV)0.18Cr1.08

+ 4 wt % Zr7Ni10, the secondary phase is depleted in vanadium. In the case of Ti1.26V0.315(FeV)0.315Cr1.11

+ 4 wt % Zr7Ni10, the secondary phase is depleted in vanadium and chromium, while titanium is more
abundant than in the main phase. For both alloys, the secondary phase has much higher proportion of
iron, zirconium, and nickel than in the main phase.

For both compositions, we evidenced that a replacement of 50 at% of vanadium by ferrovanadium
did not significantly change the lattice parameter but it increased the incubation time of the first
hydrogenation. However, the replacement of vanadium by ferrovanadium did not have a significant
impact on the hydrogen capacities, heat of formation, and entropy. The main drawback of these FeV
substituted alloys is an important loss of capacity after only one cycle. This behaviour should be
studied more thoroughly.
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