Heat and Mass Transfer in Hydromagnetic Second-Grade Fluid Past a Porous Inclined Cylinder under the Effects of Thermal Dissipation, Diffusion and Radiative Heat Flux
Abstract
1. Literature Survey
2. Mathematical Modelling
3. Solution Methodology
4. Results Interpretation
5. Outcomes of Analysis
- (i)
- Increasing aptitude of velocity within the boundary layer region is depicted against the curvature parameter;
- (ii)
- It is found that the velocity profile upsurges against the viscoelastic parameter whereas it declines by uplifting the Darcy parameter;
- (iii)
- The thermal Biot number raises the temperature profile and also enriches the magnitude of the Nusselt number;
- (iv)
- Concentration of the Biot number causes growth in the concentration profile and augments the mass flux coefficient;
- (v)
- Dufour and Soret effects enhance the temperature field and depreciate the concentration profile.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Dimensional velocity components | Dimensionless velocity component | ||
T | Dimensional temperature | θ | Dimensionless temperature |
C | Dimensional concentration | Dimensionless concentration | |
Density | Mass diffusivity | ||
Curvature parameter | Darcy parameter | ||
Dufour number | Soret number | ||
Thermal Grashof number | Gc | Solutal Grashof number | |
Thermal Biot number | Radiation parameter | ||
Dimensionless similarity variable | Concentration Biot number | ||
Nusselt number | Skin friction coefficient | ||
Sherwood number | Dimensional curvature parameter | ||
Viscoelastic parameter | Fluid temperature | ||
Ambient fluid temperature | Ambient fluid concentration |
References
- Vejravelu, K.; Roper, T. Flow and heat transfer in a second-grade fluid over a stretching sheet. Int. J. Non Linear Mech. 1999, 34, 1031–1036. [Google Scholar] [CrossRef]
- Rajeswari, G.K.; Rathna, S.L. Flow of a Particular Class of non-Newtonian Visco-elastic and Visco-elastic Fluids near a Stagnation Point. Z. Angew. Math. Phys. 1962, 13, 43–57. [Google Scholar] [CrossRef]
- Garg, V.K.; Rajagopal, K.R. Flow of a non-Newtonian Fluid Past a Wedge. Acta Mech. 1991, 88, 113–123. [Google Scholar] [CrossRef]
- Fetecau, C. Starting Solutions for the Motion of a Second Grade Fluid Due to Longitudnal and Torsional Oscillations of a Circular Cylinder. Int. J. Eng. Sci. 2006, 44, 788–796. [Google Scholar] [CrossRef]
- Bilal, S.; Mustafa, Z.; Rehman, K.U.; Malik, M.M. MHD Second Grade NanoFluid Flow Induced by a Rotatory Cone. J. Nanofluids 2019, 8, 876–884. [Google Scholar] [CrossRef]
- Abel, M.S.; Mahesha, N.; Malipatil, S.B. Heat Transfer Due to MHD Slip Flow of a Second-Grade Liquid Over a Stretching Sheet Through a Porous Medium with Non Uniform Heat Source/Sink. Chem. Eng. Commun. 2011, 198, 191–213. [Google Scholar] [CrossRef]
- Mushtaq, M.; Asghar, S.; Hossain, M.A. Mixed Convection Flow of Second Grade Fluid along a Vertical Stretching Flat Surface with Variable Surface Temperature. Heat Mass Transf. 2007, 43, 1049–1061. [Google Scholar] [CrossRef]
- Cortell, R. MHD Flow and Mass Transfer of an Electrically Conducting Fluid of Second Grade in a Porous Medium over a Stretching Sheet with Chemically Reactive Species. Chem. Eng. Process. 2007, 46, 721–728. [Google Scholar] [CrossRef]
- Merkin, J.H. Natural Convection Boundary-Layer Flow on a Vertical Surface with Newtonian Heating. Int. J. Heat Fluid Flow 1994, 15, 392–398. [Google Scholar] [CrossRef]
- Salleh, M.Z.; Nazar, R.; Pop, I. Boundary layer flow and heat transfer over a stretching sheet with Newtonian heating. J. Taiwan Inst. Chem. Eng. 2010, 41, 651–655. [Google Scholar] [CrossRef]
- Haq, R.U.; Nadeem, S.; Khan, Z.; Okedayo, T. Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet. Cent. Eur. J. Phys. 2014, 129, 862–871. [Google Scholar] [CrossRef]
- Nadeem, S.; Haq, R.U.; Akbar, N.S. MHD three-dimensional boundary layer flow of Casson nanofluid past a linearly stretching sheet with convective boundary condition. IEEE Trans. Nanotechnol. 2014, 13, 1326–1332. [Google Scholar] [CrossRef]
- Kameswaran, P.K.; Sibanda, P.; Murti, A.S.N. Nanofluid flow over a permeable surface with convective boundary conditions and radiative heat transfer. Math. Probl. Eng. 2013, 201219. [Google Scholar] [CrossRef]
- Bakar, N.A.A.; Zaimi, W.M.K.A.W.; Hamid, R.A.; Bidin, B.; Ishak, A. Boundary layer flow over a stretching sheet with a convective boundary condition and slip effect. World Appl. Sci. J. 2012, 17, 49–53. [Google Scholar]
- Hayat, T.; Shehzad, S.A.; Qasim, M.; Obaidat, S. Flow of a second-grade fluid with convective boundary conditions. Int. J. Therm. Sci. 2011, 15, S253–S261. [Google Scholar] [CrossRef]
- Makinde, O.D.; Aziz, A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 2011, 50, 1326–1332. [Google Scholar] [CrossRef]
- Merkin, J.H.; Pop, I. The forced convection flow of a uniform stream over a flat surface with a convective surface boundary condition, Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 3602–3609. [Google Scholar] [CrossRef]
- Kothandapani, M.; Prakash, J. Effects of thermal radiation parameter and magnetic field on the peristaltic motion of Williamson nanofluid in a tapered asymmetric channel. Int. J. Heat Mass Tran. 2015, 81, 234–245. [Google Scholar] [CrossRef]
- Kumar, K.G.; Rudraswamy, N.G.; Gireesha, B.J.; Manjunatha, S. Nonlinear thermal radiation effect on Williamson fluid with particle-liquid suspension over a stretching surface. Results Phys. 2017, 7, 3196–3202. [Google Scholar] [CrossRef]
- Khan, M.; Hussain, M.; Azam, M. Magnetohydrodynamic flow of Carreau fluid over a convectively heated surface in the presence of thermal radiation. J. Magn. Magn. Mater. 2016, 412, 63–68. [Google Scholar] [CrossRef]
- Waqas, M.; Khan, M.I.; Hayat, T.; Alsaedi, A. Numerical simulation for magneto Carreau nanofluid model with thermal radiation: A revised model. Comput. Method. Appl. M. 2017, 324, 640–653. [Google Scholar] [CrossRef]
- Goodarzi, M.; Safaei, M.R.; Oztop, H.K.; Karimipour, A.; Sadighinezhad, E.; Dahari, M.; Kazi, S.N.; Jomhari, N. Numerical study of entropy generation due to coupled laminar and turbulent mixed convection and radiation in an enclosure filled with a semitransparent medium. Sci. World J. 2014. [Google Scholar] [CrossRef] [PubMed]
- Podarjani, H.; Aghakhani, S.; Karimpour, A.; Afrand, M.; Goodarzi, M. Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field by magnetic field and radiation. J. Therm. Anal. Calorim. 2019, 37, 997–1019. [Google Scholar]
- Aghaei, A.; Sheikhzadeh, G.A.; Goodarzi, M.; Hasani, H.; Damirchi, H.; Afrand, M. Effect of horizontal and vertical elliptic baffles inside an enclosure on the mixed convection of a MWCNTs-water nanofluid and its entropy generation. Eur. Phys. J. Plus 2018, 133, 486–497. [Google Scholar] [CrossRef]
- Hirshfelder, J.O.; Bird, R.C. Molecular Theory of Gases and Liquids; John Wiley: New York, NY, USA, 1954. [Google Scholar]
- Afify, A.A. Similarity solution in MHD effects of thermal diffusion and diffusionthermo on free convective heat and mass transfer over a stretching surfaceconsidering suction or injection. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2202–2214. [Google Scholar] [CrossRef]
- Bhaatacharyya, K.; Layek, G.C.; Seth, G.S. Soret and Dufour effects on convective heat and mass transfer in stagnation point flow towards a shrinking sheet. Phys. Scr. 2014, 89, 095203. [Google Scholar] [CrossRef]
- Awad, F.G.; Sibanda, P.; Khidir, A.A. Thermo diffusion effects on magneto-nano fluid flow over a stretching sheet. Bound. Value Prob. 2013. [Google Scholar] [CrossRef]
- Goyal, M.; Bhrgava, R. Numerical study of thermodiffusion effects on boundary layer flow of nanofluids over a power law stretching sheet. Inst. Mech. Eng. 2014, 17, 591–604. [Google Scholar] [CrossRef]
- Khan, U.; Mohyuddin, S.T.; Mohsin, B.B. Convective heat transfer and thermo-diffusion effects on flow of nanofluid towards a permeable stretching sheetsaturated by a porous medium. Aerosp. Sci. Technol. 2015, 50, 196–203. [Google Scholar] [CrossRef]
- Hayat, T.; Saeed, Y.; Asad, S.; Alsaedi, A. Convective heat and mass transfer in flow by an inclined stretching cylinder. J. Mol. Liq. 2016, 220, 573–580. [Google Scholar] [CrossRef]
- Bagherzadeh, S.A.; Jalali, E.; Sarafraz, M.M.; Akbari, O.A.; Karimipour, A.; Goodarzi, M.; Bach, Q.V. Effects of magnetic field on micro cross jet injection of dispersed nanoparticles in a microchannel. Int. J. Numer. Meth. Fluid Flow 2019. [Google Scholar] [CrossRef]
- Goshayeshi, H.M.; Goodarzi, M.; Safaei, M.R.; Dahari, M. Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field. Exper. Therm. Fluid Sci. 2016, 74, 265–270. [Google Scholar] [CrossRef]
- Goshayeshi, H.R.; Goodarzi, M.; Dahari, M. Effect of magnetic field on the heat transfer rate of kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe. Exper. Therm. Fluid Sci. 2015, 68, 663–668. [Google Scholar] [CrossRef]
- Yousefzadeh, S.; Rajabi, H.; Ghajari, N.; Sarafraz, M.M.; Akbari, O.A.; Goodarz, M. Numerical investigation of mixed convection heat transfer behavior of nanofluid in a cavity with different heat transfer areas. J. Therm. Analy. Calorimetry 2019, 1–25. [Google Scholar] [CrossRef]
- Tian, Z.; Etedali, S.; Afrand, M.; Abdollahi, A.; Goodarzi, M. Experimental study of the effect of various surfactants on surface sediment and pool boiling heat transfer coefficient of silica/DI water nano-fluid. Powder Technol. 2019, 356, 391–402. [Google Scholar] [CrossRef]
- Bahmani, M.H.; Akbari, O.A.; Zarringhalam, M.; Shabani, G.A.S.; Goodarzi, M. Forced convection in a double tube heat exchanger using nanofluids with constant and variable thermophysical properties. Int. J. Numer. Methd. Fluid Flow 2019. [Google Scholar] [CrossRef]
Hayat et al. [31] | Present Results | ||||||
---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.2 | 0.2 | 1 | 0.1427 | 0.142683 | |
0.0 | 0.1397 | 0.139746 | |||||
0.1 | 0.1427 | 0.142683 | |||||
0.12 | 0.1433 | 0.143252 | |||||
0.1 | 0.1417 | 0.141627 | |||||
0.3 | 0.1436 | 0.143621 | |||||
0.5 | 0.1452 | 0.145236 | |||||
0.2 | 0.1427 | 0.142683 | |||||
0.4 | 0.1439 | 0.143921 | |||||
0.6 | 0.1450 | 0.145011 | |||||
0.1434 | 0.143397 | ||||||
0.1427 | 0.142683 | ||||||
0.1417 | 0.141653 | ||||||
0.1 | 0.1445 | 0.144551 | |||||
0.3 | 0.1409 | 0.140885 | |||||
0.5 | 0.1376 | 0.137455 | |||||
0.9 | 0.1394 | 0.139384 | |||||
1.0 | 0.1427 | 0.142683 | |||||
1.2 | 0.1480 | 0.148027 |
Hayat et al. [31] | Present Results | ||||||
---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.2 | 0.5 | 0.1 | 0.9 | 0.1427 | 0.142683 |
0.3 | 0.1712 | 0.171117 | |||||
0.5 | 0.1983 | 0.198211 | |||||
0.7 | 0.2049 | 0.224187 | |||||
0.3 | 0.1900 | 0.189984 | |||||
0.4 | 0.2278 | 0.227806 | |||||
0.5 | 0.2588 | 0.258763 | |||||
0.3 | 0.1391 | 0.139068 | |||||
0.4 | 0.1362 | 0.136198 | |||||
0.5 | 0.1339 | 0.133862 | |||||
0.3 | 0.1475 | 0.147474 | |||||
0.7 | 0.1379 | 0.137879 | |||||
1.1 | 0.1282 | 0.128200 | |||||
0.2 | 0.1310 | 0.130941 | |||||
0.3 | 0.1194 | 0.119422 | |||||
0.4 | 0.1081 | 0.108115 | |||||
0.7 | 0.1442 | 0.144269 | |||||
1.2 | 0.1411 | 0.141060 | |||||
1.6 | 0.1397 | 0.139623 |
Hayat et al. [31] | Present Results | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.1 | 1.0 | 0.1 | 0.2 | 0.2 | 0.5 | 0.1 | 0.9 | 0.2 | 0.1445 | 0.144411 |
0.0 | 0.1421 | 0.142061 | ||||||||
0.1 | 0.1445 | 0.144411 | ||||||||
0.12 | 0.1449 | 0.144864 | ||||||||
0.9 | 0.1447 | 0.144664 | ||||||||
1.0 | 0.1445 | 0.144411 | ||||||||
1.2 | 0.1441 | 0.144013 | ||||||||
0.3 | 0.1448 | 0.144730 | ||||||||
0.5 | 0.1451 | 0.145036 | ||||||||
0.7 | 0.1454 | 0.145323 | ||||||||
0.3 | 0.1432 | 0.143138 | ||||||||
0.4 | 0.1422 | 0.142127 | ||||||||
0.5 | 0.1413 | 0.141304 | ||||||||
0.3 | 0.1924 | 0.192309 | ||||||||
0.4 | 0.2307 | 0.230657 | ||||||||
0.5 | 0.2621 | 0.262084 | ||||||||
0.3 | 0.1441 | 0.144029 | ||||||||
0.6 | 0.1446 | 0.144601 | ||||||||
0.9 | 0.1452 | 0.145170 | ||||||||
0.3 | 0.1465 | 0.146412 | ||||||||
0.4 | 0.1475 | 0.147384 | ||||||||
0.5 | 0.1484 | 0.148338 | ||||||||
0.9 | 0.1445 | 0.144411 | ||||||||
1.2 | 0.1520 | 0.151954 | ||||||||
1.6 | 0.1586 | 0.158605 | ||||||||
0.4 | 0.1411 | 0.141043 | ||||||||
0.5 | 0.1395 | 0.139376 | ||||||||
0.6 | 0.1378 | 0.137719 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilal, S.; Majeed, A.H.; Mahmood, R.; Khan, I.; Seikh, A.H.; Sherif, E.-S.M. Heat and Mass Transfer in Hydromagnetic Second-Grade Fluid Past a Porous Inclined Cylinder under the Effects of Thermal Dissipation, Diffusion and Radiative Heat Flux. Energies 2020, 13, 278. https://doi.org/10.3390/en13010278
Bilal S, Majeed AH, Mahmood R, Khan I, Seikh AH, Sherif E-SM. Heat and Mass Transfer in Hydromagnetic Second-Grade Fluid Past a Porous Inclined Cylinder under the Effects of Thermal Dissipation, Diffusion and Radiative Heat Flux. Energies. 2020; 13(1):278. https://doi.org/10.3390/en13010278
Chicago/Turabian StyleBilal, Sardar, Afraz Hussain Majeed, Rashid Mahmood, Ilyas Khan, Asiful H. Seikh, and El-Sayed M. Sherif. 2020. "Heat and Mass Transfer in Hydromagnetic Second-Grade Fluid Past a Porous Inclined Cylinder under the Effects of Thermal Dissipation, Diffusion and Radiative Heat Flux" Energies 13, no. 1: 278. https://doi.org/10.3390/en13010278
APA StyleBilal, S., Majeed, A. H., Mahmood, R., Khan, I., Seikh, A. H., & Sherif, E.-S. M. (2020). Heat and Mass Transfer in Hydromagnetic Second-Grade Fluid Past a Porous Inclined Cylinder under the Effects of Thermal Dissipation, Diffusion and Radiative Heat Flux. Energies, 13(1), 278. https://doi.org/10.3390/en13010278