Fast Track Integration of Computational Methods with Experiments in Small Wind Turbine Development
Abstract
:1. Introduction
2. 3D Printing in Aerodynamics
3. The Fast Track Procedure
3.1. Blade Design (QBlade Software)
- increase of maximum Cp,
- increase of TSR (Tip Speed Ratio) range for which Cp attains relatively high value,
- improvement of structural properties (e.g., stiffness, strength) of the blade.
3.2. CAD Model Preparation
3.3. Preparing Code for 3D Printer, Printing Process
- definition of extrusion and platform temperature according to the chosen material,
- layer thickness (defining the quality of printing in vertical direction),
- type and density of the infill (determining the amount of material in usage),
- type of support,
- cooling (fan speed)—especially important in case of printing large objects.
3.4. Model Finishing
3.5. Wind Tunnel Test
3.6. Results Postprocessing and Analysis
4. Conclusions and Comments
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
ABS | Acrylonitrile Butadiene Styrene | |
BEM | Blade Element-Momentum | |
CAD | Computer-Aided Design | |
FDM | Fused Deposition Modeling | |
HP | High Pressure | |
IMP TUL | Institute of Turbomachinery, Lodz University of Technology | |
GUST | Generative Urban Small Turbine | |
LOM | Laminated Object Manufacturing | |
MAV | Micro Air Vehicle | |
MJM | Multi-Jet Modelling | |
NREL | National Renewable Energy Laboratory | |
PLA | Polylactic Acid | |
SLS | Selective Laser Sintering | |
SLA | Stereolitography | |
VARI | Vacuum Assisted Resin Infusion | |
AoA | ° | Angle of attack |
B | - | Number of blades |
Cl | - | Lift coefficient |
Cd | - | Drag coefficient |
Cn | - | Normal force coefficient |
Cp | - | Power coefficient |
M | Nm | Torque |
Ma | - | Mach number |
P | W | Power |
R | m | Rotor radius |
Re | - | Reynolds number |
RH | % | Relative humidity |
T | K | Temperature |
TSR | - | Tip Speed Ratio |
c | m | Chord length |
pa | Pa | Atmospheric pressure |
pd | Pa | Dynamic pressure |
r | m | Radial position of the control volume |
v | m/s | Flow velocity |
w | m/s | Inflow velocity |
ν | m2/s | Kinematic viscosity |
ρ | kg/m3 | Density |
σ | - | Rotor solidity |
ω | rad/s | Rotational velocity |
References
- Wang, C.; Prinn, R.G. Potential climatic impacts and reliability of very large-scale wind farms. Atmos. Chem. Phys. 2010, 10, 2053–2061. [Google Scholar] [CrossRef] [Green Version]
- Tummala, A.; Velamati, R.K.; Sinha, D.K.; Indraja, V.; Krishna, V.H. A review on small scale wind turbines. Renew. Sustain. Energy Rev. 2016, 56, 1351–1371. [Google Scholar] [CrossRef]
- Grieser, B.; Sunak, Y.; Madlener, R. Economics of small wind turbines in urban settings: An empirical investigation for Germany. Renew. Energy 2015, 78, 334–350. [Google Scholar] [CrossRef]
- Sunderland, K.; Woolmington, T.; Blackledge, J.; Conlon, M. Small wind turbines in turbulent (urban) environments: A consideration of normal and Weibull distributions for power prediction. J. Wind Eng. Ind. Aerodyn. 2013, 121, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Dodd, J. Additive manufacturing will be a ‘gamechanger’. Available online: https://www.windpowermonthly.com/article/1421837/additive-manufacturing-will-gamechanger (accessed on 31 August 2018).
- Poole, S.; Phillips, R. Rapid prototyping of small wind turbine blades using additive manufacturing. In Proceedings of the 2015 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), Port Elizabeth, South Africa, 25–26 November 2015; pp. 189–194. [Google Scholar]
- Bassett, K.; Carriveau, R.; Ting, D. 3D printed wind turbines part 1: Design considerations and rapid manufacture potential. Sust. Energy Technol. Assess. 2015, 11, 186–193. [Google Scholar] [CrossRef]
- Olasek, K.; Wiklak, P. Application of 3D printing technology in aerodynamic study. J. Phys. Conf. Ser. 2014, 530, 012009. [Google Scholar] [CrossRef] [Green Version]
- Springer, A.; Cooper, K. Comparing the aerodynamic characteristics of wind tunnel models produced by rapid prototyping and conventional methods. In Proceedings of the 15th Applied Aerodynamics Conference, Atlanta, GA, USA, 23–25 June 1997. [Google Scholar]
- Yang, D.-G.; Sun, Y.; Zhang Z.-Y., Z.; Wang, C.; Zhu, W.-J. Design and manufacture methods of rapid prototyping wind-tunnel models based on photopolymer-resin. Rapid Prototyping J. 2013, 19, 20–27. [Google Scholar]
- Aghanajafi, C.; Daneshmand, S. Integration of three-dimensional printing technology for wind-tunnel model fabrication. J. Aircraft 2010, 47, 2130–2135. [Google Scholar] [CrossRef]
- Jarallah, I.; Kanjirakkad, V.P. Improving the fidelity of aerodynamic probes using additive manufacturing. Rapid Prototyping J. 2016, 22, 200–206. [Google Scholar] [CrossRef]
- Hintz, C.; Khanbolouki, P.; Perez, A.M.; Tehrani, M.; Poroseva, S. Experimental study of the effects of bio-inspired blades and 3D printing on the performance of a small propeller. In Proceedings of the 2018 Applied Aerodynamics Conference, Atlanta, GA, USA, 25–29 June 2018. [Google Scholar] [CrossRef]
- Es-Said, O.S.; Foyos, J.; Noorani, R.; Mendelson, M.; Marloth, R.; Pregger, B.A. Effect of Layer Orientation on Mechanical Properties of Rapid Prototyped Samples. Mater. Manuf. Processes 2000, 15, 107–122. [Google Scholar] [CrossRef]
- Garg, A.; Bhattacharya, A.; Batish, A. Chemical vapor treatment of ABS parts built by FDM: Analysis of surface finish and mechanical strength. Inter. J. Adv. Manuf. Technol. 2016, 89, 2175–2191. [Google Scholar] [CrossRef]
- Smedresman, A.; Yeo, D.; Shyy, W. Design, Fabrication, Analysis, and Dynamic Testing of a Micro Air Vehicle Propeller. In Proceedings of the 29th AIAA Applied Aerodynamics Conference, Honolulu, HI, USA, 27–30 June 2011. [Google Scholar] [CrossRef]
- Lehser-Pfeffermann, D.; Häfele, T.; Rückert, F.U.; Griebsch, J.; Müller, T.; Joos, F. Location Optimized Rotor Design of Small Wind Turbines and Implementation Using Additive Hybrid Material. Mech. Mech. Eng. 2018, 22, 25–32. [Google Scholar]
- Xu, Z.; Feng, Y.-H.; Zhao, C.-Y.; Huo, Y.-L.; Li, S.; Hu, X.-J.; Zhong, Y.-J. Experimental and numerical investigation on aerodynamic performance of a novel disc-shaped wind rotor for the small-scale wind turbine. Energy Convers. Manag. 2018, 175, 173–191. [Google Scholar] [CrossRef]
- Kanjirakkad, V.; Thomas, R.; Hodson, H.; Janke, E.; Haselbach, F.; Whitney, C. Passive Shroud Cooling Concepts for HP Turbines: Experimental Investigations. Rapid Prototyping J. 2016, 22, 200–206. [Google Scholar]
- Langnau, L. In Auto Racing, 3D Printing Wins the Race for Part Production. Available online: https://www.makepartsfast.com/in-auto-racing-3d-printing-wins-the-race-for-part-production/ (accessed on 20 March 2019).
- Basson, J. Analysis of the Aerodynamic Attributes of Motor Vehicles. BSc Thesis, University of Southern Queensland, Faculty of Health, Engineering & Sciences, Toowoomba, Queensland, Australia, October 2013. [Google Scholar]
- Kulak, M.; Karczewski, M.; Leśniewicz, P.; Olasek, K.; Hoogterp, B.; Spolaore, G.; Jóźwik, K. Numerical and experimental analysis of rotating wheel in contact with the ground. Inter. J. Numer. Methods Heat Fluid Flow 2018, 1203–1217. [Google Scholar] [CrossRef]
- Kroll, E.; Artzi, D. Enhancing aerospace engineering students’ learning with 3D printing wind-tunnel models. Rapid Prototyping J. 2011, 17, 393–402. [Google Scholar] [CrossRef]
- Wood, D. Small Wind Turbines. Analysis, Design, and Application; Springer: London, UK, 2011. [Google Scholar]
- Marten, D.; Peukert, J.; Pechlivanoglou, G.; Nayeri, C.; Paschereit, C. QBLADE: An Open Source Tool for Design and Simulation of Horizontal and Vertical Axis Wind Turbines. Inter. J. Emerg. Technol. Adv. Eng. 2013, 3, 264–269. [Google Scholar]
- Available online: https://wind.nrel.gov/airfoils/AirfoilFamilies.html (accessed on 31 July 2018).
- Drela, M. XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. In Lecture Notes in Engineering: Low Reynolds Number Aerodynamics; Springer: New York, NY, USA, 1989. [Google Scholar]
- Kądrowski, D.; Kulak, M.; Lipian, M.; Stępień, M.; Baszczyński, P.; Zawadzki, K.; Karczewski, M. Challenging low Reynolds—SWT blade aerodynamics. In Proceedings of the BulTrans-2018 International Scientific Conference on Aeronautics, Automotive and Railway Engineering and Technologies, Sozopol, Bulgaria, 15–17 September 2018. [Google Scholar]
- Filament Barrus ABS For 3D Printers. Available online: https://global3d.pl/en/filaments/188-645-filament-barrus-abs-do-drukarek-3d.html (accessed on 20 March 2019).
- Buck, A.L. New equations for computing vapor pressure and enhancement factor. J. Appl. Meteorol. 1981, 20, 1527–1532. [Google Scholar] [CrossRef]
Specific Gravity | 1030 | kg/m3 |
Tensile Strength | 44 | MPa |
Strain at Break | 9 | % |
Tensile Modulus | 2000 | MPa |
Impact Strength | 36 | kJ/m2 |
Melting Temperature | 245 ± 10 | °C |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipian, M.; Kulak, M.; Stepien, M. Fast Track Integration of Computational Methods with Experiments in Small Wind Turbine Development. Energies 2019, 12, 1625. https://doi.org/10.3390/en12091625
Lipian M, Kulak M, Stepien M. Fast Track Integration of Computational Methods with Experiments in Small Wind Turbine Development. Energies. 2019; 12(9):1625. https://doi.org/10.3390/en12091625
Chicago/Turabian StyleLipian, Michal, Michal Kulak, and Malgorzata Stepien. 2019. "Fast Track Integration of Computational Methods with Experiments in Small Wind Turbine Development" Energies 12, no. 9: 1625. https://doi.org/10.3390/en12091625
APA StyleLipian, M., Kulak, M., & Stepien, M. (2019). Fast Track Integration of Computational Methods with Experiments in Small Wind Turbine Development. Energies, 12(9), 1625. https://doi.org/10.3390/en12091625